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Abstract

Critical node discovery plays a vital role in assessing the vulnerability of a computer network to malicious attacks and
failures and provides a useful tool with which one can greatly improve network security and reliability. In this paper, we
propose a new metric to characterize the criticality of a node in an arbitrary computer network which we refer to as the
Combined Banzhaf & Diversity Index (CBDI). The metric utilizes a diversity index which is based on the variability of a
node’s attributes relative to its neighbours and the Banzhaf Power Index which characterizes the degree of participation
of a node in forming shortest paths. The Banzhaf power index is inspired from the theory of voting games in game
theory. The proposed metric is evaluated using analysis and simulations. The criticality of nodes in a network is assessed
based on the degradation in network performance achieved when these nodes are removed. We use several performance
metrics to evaluate network performance including the algebraic connectivity which is a spectral metric characterizing
the connectivity robustness of the network. Extensive simulations in a number of network topologies indicate that the
proposed CBDI index chooses more critical nodes which, when removed, degrade network performance to a greater
extent than if critical nodes based on other criticality metrics were removed.

Keywords: Node criticality, Network vulnerability, Weighted node degree, Banzhaf power index, Algebraic
connectivity.

1. Introduction

Critical node discovery is an important process for un-
derstanding network vulnerability. A node is deemed as
critical, if it plays a vital role in maintaining network per-
formance and by removing that node, the overall perfor-
mance deteriorates and in some cases leads to network
partitioning [1] which is highly undesirable. Evaluating
the criticality of nodes is significant in various complex
networks. In Wireless Sensor Networks (WSNs) employ-
ing geographical routing, for example, malicious attack or
malfunction of a few beacon nodes leads to fallacious node
discovery for the remaining nodes in the network, thus
jeopardizing the stable operation of the routing protocol
[2]. Moreover, in [3] it was observed that removal of 4%
of the nodes in a Peer to Peer Gnutella Network resulted
in major fragmentation of the whole network. The node
criticality problem in Peer to Peer and overlay networks
was also addressed in [4]. Finally, in [5] it was shown that
in a telecommunication network, the penetration of a virus
can be prevented by removing a few critical nodes. Node
criticality problem is also significant in network paradigms
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beyond computer networks. In road networks, for exam-
ple, intersections which can be considered as nodes in a
graph theoretic framework, might experience heavy traffic
loads when in proximity to a major landmark. Identifying
such critical nodes is significant when investigating possi-
ble extensions of the existing infrastructure [6]. Likewise,
in a social network of terrorist activists, the removal of a
few critical nodes can paralyse the communication in the
network, making the network ineffective [7].

Several studies have addressed the node criticality prob-
lem and various metrics have been proposed to character-
ize the criticality of nodes in a network. Among these
metrics, the degree centrality metric [8] is one of the most
commonly used. In a simple undirected network, the de-
gree centrality of a node is calculated as the number of
its adjacent neighbours, whereas for a directed network,
the metric, based on the direction of flow, is divided into
the in-degree and out-degree centrality. The higher the
degree, the more critical the node is assumed to be. De-
spite its simplicity, this metric does not take into account
the geometrical characteristics of the network, which are
known to highly affect performance and this has led to
the consideration of the closeness centrality metric. Close-
ness Centrality [8] utilizes the average geodesic distance
between all nodes in the network. The node that has the
highest closeness centrality value is the one which is placed
in the geographical center of the network and it thus has
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the shortest distance to all its neighbouring nodes. A dis-
tributed algorithm to find nodes with the highest closeness
centrality value is presented in [9]. The global Cluster-
ing Coefficient metric [10] uses similar ideas to weigh each
node’s degree of participation in cluster formation thus
characterizing its criticality.

The node criticality problem has also been viewed as
an algebraic connectivity minimization problem, where the
most critical nodes are the ones which minimize the alge-
braic connectivity of the network [11]. Since the solution of
the optimization problem becomes computationally expen-
sive to find as the size of the network increases, a number
of suboptimal solutions have been proposed in literature
[12][13][14]. Another set of approaches that exist in lit-
erature are based on the ability of nodes to fragment the
network when removed. In [15], Neng et al. formulate two
optimization models, namely the graph partitioning prob-
lem (GPP) and the critical node problem (CNP). They
use GPP to identify nodes which, when removed result in
the highest decrease in the sum of weights of the edges
between disjoint sets and CNP to identify a set of nodes
which result in he highest reduction in the pairwise con-
nectivity of a network upon their removal. The proposed
approaches have been shown to perform well in identify-
ing critical nodes, however as the authors point out, the
computational complexity of the proposed approaches in-
crease significantly with the increase in the network size.
To address this problem, Thang et al. in [16] formulate two
alternative optimization problems which use the pairwise
connectivity measure of a network to identify a set of crit-
ical nodes or edges, which if removed result in the highest
degradation in the networks pairwise connectivity. More-
over, [17],[18] and [19] use network partitioning concepts
to assess the vulnerability of a network based on the size of
the largest connected components after cascading failures
occur. It has been shown that these approaches perform
well in abstract models of interdependent networks which
assume random interdependency between nodes. Finally,
in [1], it is conjectured that partitioning of a network into
two equal segments leads to the highest degradation in net-
work performance thus motivating the consideration of the
pairwise connectivity. The relevant critical node and link
disruptor optimization problems are considered and the N-
P hardness of these problems is addressed by a heuristic
method to which they refer to as HILPR.

The aforementioned metrics are based on topological
properties of the network, which assess the criticality of a
node without taking into consideration the flow paths of
the active connections. The latter is accounted for in the
Betweenness Centrality metric. Betweenness Centrality
[20], determines the criticality of a node by estimating the
contribution of each node in forming a shortest path route.
A node that participates in maximum shortest path routes
is considered as a highly critical node. The participation
of a node in path formation is also accounted for in [21]
where, a node is considered as critical, when it achieves the
highest decrease in the rank of the routing matrix upon its

removal from the network. The flow induced by the active
connections is considered by Xuan et al. in [22] where,
taking into account the traffic shockwave model which was
earlier proposed by Wang Dianhai in [23], they identify
as critical the nodes which when removed, result in the
highest increase in average network congestion. A similar
approach was also used by Yew-Yih et al. in [24] where
the delayflow of the network is used as the performance
metric with which the criticality is assessed.

Furthermore, in [25],[26] node criticality is assessed
based on the resulting efficiency of the network after nodes
are iteratively removed. The node that reports the highest
reduction in efficiency upon its removal is referred to as the
most critical. This approach suffers from the high com-
putational complexity associated with the iterative pro-
cedure utilized to detect critical nodes. The problem is
exacerbated by the fact that multiple node removal may
also lead to maximum efficiency decrease. This problem
is addressed in [27] where criticality is assessed not only
based on the node removal but also on the removal of the
associated paths.

In this work, based on our preliminary results in [28],
we propose a criticality metric which is shown to be more
successful in identifying nodes, the removal of which, sig-
nificantly affects network operation. The metric encom-
passes three main node attributes: the weighted node de-
gree, the variation in link length of the node from its neigh-
bours and its contribution in forming shortest paths. Un-
like previous proposals, which take into account the ab-
solute node degree, in this proposal we consider the node
degree weighted by the average common neighbours of the
node with all its neighbours. The presence of common
neighbours is an indication of the presence of path alter-
natives which undermine the criticality of a node. In addi-
tion, in order to account for long range links which cause
nodes to act as relay nodes thus accommodating heavy
traffic and becoming critical for the whole network opera-
tion, we introduce the notion of the variation in link length
between neighbouring nodes. The diversity in the number
of neighbours and the diversity in link lengths thus con-
tribute to the criticality of a node and are used to form the
diversity index. We then account for the contribution of
each node in forming the routing paths by employing a new
technique which is inspired by voting games in game the-
ory. The metric emanating from this technique is known
as the Banzhaf Power index. The combination of the lat-
ter with the diversity index yields the proposed criticality
metric which we refer to as the Combined Banzhaf & Di-
versity Index (CBDI).

We evaluate the performance of the proposed metric
using analysis and simulations. The evaluation is based
on the degradation in performance reported when nodes
selected using the criticality metric under consideration
are removed from the network. We compare the proposed
metric against other metrics that have been proposed in
the literature, namely the Hybrid Interactive Linear Pro-
gramming Rounding (HILPR) proposed in [1], the Control-
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lability of complex networks (Cont) in [21] and the Degree
Centrality, Betweenness Centrality, Closeness Centrality
used in [8]. The Random Network Topology, the WaxMan
Network Topology and the Small World Network Topology
were considered in the simulation experiments and network
performance was evaluated using a number of performance
metrics which include the average node degree, the aver-
age path length, the number of isolated nodes, the network
throughput, the average per packet delay, the average per
packet jitter, the number of dropped packets and the al-
gebraic connectivity. The latter, defined as the second
smallest eigenvalue of the Laplacian of a network, serves
as a connectivity robustness metric. It provides an ana-
lytical perspective as to why the proposed metric and its
key features work effectively. Extensive simulations indi-
cate that the proposed criticality metric in the considered
scenarios is able to achieve a more severe degradation in
network performance compared to other approaches, indi-
cating that it is superior in characterizing the criticality of
the network nodes.

The rest of the paper is organized as follows: in Section
II we describe the proposed criticality metric, in Section III
we elaborate on the algebraic connectivity of a network, in
Section IV we evaluate its performance using simulations
and finally in Section V we offer our conclusion of the
paper.

2. Proposed Criticality Metric

As mentioned in the introduction, in this work, we pro-
pose a new criticality metric which is the combination of
the Banzhaf power index and the diversity index. In this
section, we explain the reasoning behind our design choices
and formally define the diversity index and the Banzhaf
power index. We then show how we combine the two to
form the proposed criticality index.

2.1. Diversity index

Diversity index is a measure of the variation of node
properties between neighbouring nodes. We consider vari-
ation of two attributes of neighbouring nodes which are
logically related to their criticality: the variability in link
lengths and the variability in their list of neighbours. In-
creasing both the variability of link lengths and the vari-
ability in the list of neighbours implies greater node crit-
icality. Below we give a detailed description of the two
and explain how they are combined to form the diversity
index.

2.1.1. Variation in link length

This attribute measures the variation in the length of
the links between neighbouring nodes. A greater variation
in link length certifies the existence of both long distance
and short distance links. A node with the aforementioned
property is capable of acting as a relay node between the
nodes in proximity and the distant ones. This will aid

neighbouring nodes in getting their data relayed to dis-
tant nodes and vice versa at a reduced network energy
and time cost [29]. Since a node with a higher variation
in link length has a higher probability of acting as a re-
lay node hence, it is deemed as critical for information
dissemination.

We define the variation of link length as the average
difference between the transmission radii of neighbouring
nodes. We assume a graph G = (V,E), where V represents
the set of Nodes and E represents the set of Edges. Each
node x in V is characterized by its transmission radius
Tx. For each node x, the set of nodes which lie within the
transmission range of x is the set of its neighbours and
is denoted by N(x). The variation in link length of x is
denoted by Dd(x) and is given by:

Dd(x) =
1

|N(x)|

∑

u∈N(x)

(Tx − Tu) (1)

Figure 1: Node N acts as a relay node between the two network par-
titions and thus has a higher variation in link length value compared
to node A.

In order to demonstrate the way that the variation in
link length characterizes the criticality of a node, we con-
sider the example network of Fig 1. The links between
nodes are drawn to scale so that longer link lengths on the
diagram, indicate longer link lengths in the actual net-
work. Nodes A and N in the considered network share
the same node degree. However, node N reports a larger
value of the variation in link length metric, as it has both
short and long length links. Node A on the other hand,
only has short length links resulting in a low variation in
link length value. The removal of node A partitions the
network, however, it only isolates nodes C and M . The
removal of node N , on the other hand, partitions clusters
1 and 2 thus resulting in isolation of a far larger number
of nodes. This demonstrates the higher criticality of node
N which is reflected in a higher value of variation in link
length.

2.1.2. Weighted Node Degree

Node degree was used by Freeman in [8] for determin-
ing the criticality of a node. Despite the simplicity of the
method it fails to take into consideration self loops and
one hop reachability of neighbouring nodes which leads to
overestimates of the node criticality. Therefore, in this
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work, we avoid the consideration of these redundant paths
by elaborating on the variability of the list of neighbours
of neighbouring nodes, leading to the notion of weighted
node degree. The weighted node degree takes values be-
tween 0 and 1, and increases as the number of common
neighbour decreases. A greater number of common neigh-
bours implies more one hop paths between neighbouring
nodes which undermines the criticality of a node. The
weighted node degree of x is represented by Dn(x) and is
given by:

Dn(x) =
∑

u∈N(x)

|N(u)\N(x)|

|N(u)|
(2)

where \ denotes the set difference and |.| denotes the
cardinality of the set. So, the weighted node degree of a
node x is calculated by summing the dissimilarity ratios of
all of its neighbours. The dissimilarity ratio for a particu-
lar neighbour u is the ratio of number of neighbours of u
which are not neighbours of x over the set of all neighbours
of u.

Figure 2: Example network to highlight the rationale behind the
consideration of the weighted node degree.

In order to highlight the methodology with which the
weighted node degree determines the criticality of a node
we use the example network of Fig 2. In this network,
nodes A and D share the same node degree but a different
weighted node degree. The weighted node degree of node
A is lower than that of node D due to the link between
nodes B and C which causes the neighbours of A to have
one common link. This extra link adds to the redundancy
of connections of node A and thus when node A is removed
from the network, the resultant network is still connected
through the link between nodes B and C. On the other
hand, the removal of node D completely isolates node E
and hence partitions the network in two segments. This
demonstrates that a node with a higher weighted node de-
gree has a higher influence on the network upon its removal
and is thus a more critical node.

Both the variation in link length and the weighted node
degree of a node described above are used to calculate the
diversity index of that node. The diversity index H(x) is
defined as the product of the two metrics such that:

H(x) = Dd(x)Dn(x) (3)

It follows from the discussion above that the greater the
diversity index, the more critical a node is. The criticality
of a node is further refined by weighing its participation
in path formation. To this end, we use the Banzhaf power
index which is described below.

2.2. Banzhaf power index

In game theory, different assumptions have led to differ-
ent definitions for determining the importance of an agent
in a game. One of the most prominent among these is
the Banzhaf power index [30]. This index has been widely
used primarily for the purpose of weighted voting games.
In a voting game, each voter is assigned a weight and the
coalition of these voters determines the outcome of the
game. A game is considered as a winning game, if the sum
of all the weights of the nodes in a coalition is greater than
or equal to a predefined threshold weight. A node has a
pivotal role if, its removal transforms a winning game into
a loosing game. Nodes with the aforementioned property
are called swing nodes. A node that acts as a swing node
in maximum coalitions is the most critical node and is
assigned the highest Banzhaf power index.

We adapt the above ideas in a communication network
setting in order to characterize the criticality of nodes par-
ticipating in the network. In the same way that weights
are being used to select coalitions in a voting game setting,
we use the link bandwidths in a communication network
setting to select the nodes participating in shortest path
formation. A coalition of nodes is considered as a winning
coalition, if the path they form satisfies the bandwidth re-
quirements of a particular source destination pair. We thus
disregard links which cannot support these bandwidth re-
quirements. Once a shortest path has been established, a
node is called a swing node if it participates in the shortest
path. The removal of a node that participates in maximum
shortest path routes, will have a higher impact on network
performance and is thus considered a critical node in the
network. So, in analogy to the voting games setting, a
node which acts as a swing node in maximum coalitions is
the most critical node and is assigned the highest Banzhaf
power index formally defined below.

In the graph G = (V,E), I denotes the set of all source
destination pairs w = (i, j), i, j ∈ V . For each w ∈ I,
L(w) contains the set of nodes which constitute the short-
est path route that fulfils the bandwidth requirements. A
node k that belongs in L(w) acts as a swing node for the
source destination pair w. The Banzhaf power index for
a node is the ratio between, the number of times a node
acts as a swing node, over the total number of times all
the nodes in V act as swing nodes. The Banzhaf power
index is denoted by Ck and is given by:

Ck =

∑

w∈I(|L(w)| − |L(w)\k|)
∑

p∈V

∑

w∈I (|L(w)| − |L(w)\p|)
(4)

2.3. Combined Banzhaf & Diversity Index (CBDI)

The proposed criticality metric is obtained by multi-
plying the diversity index and the Banzhaf Power Index
as shown below:

CBDI(x) = CxH(x) (5)
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The combination method used is a design parameter
and we support our selection using simulations in section
III. The metric is referred to as Combined Banzhaf & Di-
versity Index (CBDI ) and refines the mechanism of critical
node detection. According to this index, a node is criti-
cal not only if it participates in maximum shortest path
routes but, if it is also prominent among its neighbours
due to a higher variation in node attributes. The index,
unlike previous approaches, is able to refine nodes which
participate in the same number of shortest paths by dif-
ferentiating between nodes which relay information from
multiple inputs to multiple outputs and nodes which relay
information from a single input to a single output. Fur-
ther, it can identify nodes which can relay data to distant
nodes thus having a high probability of experiencing heavy
traffic. Finally, it is able to refine the information obtained
by the node degree by excluding neighbouring nodes whose
participation in path formation is not critical.

3. Algebraic Connectivity of a Network

Algebraic connectivity, also referred to as the Fiedler
value, is a spectral metric defined as the second smallest
eigenvalue of the Laplacian matirx of a network. Its signif-
icance stems from a theorem by Fiedler [31] which states
that a network is disconnected, if and only if, the algebraic
connectivity attains a value of zero. It has thus been con-
jectured that the algebraic connectivity can be used as a
connectivity or robustness measure of the network in the
sense, that the higher its value is, the more difficult it is to
partition the network. Such a conjecture is supported by a
number of theorems which offer insights towards this direc-
tion. The algebraic connectivity is related to the critcality
of a node as it provides an analytical metric with which one
can assess the degradation in network connectivity when
the node is removed. In this section, we review key defini-
tions and theorems pertinent to the algebraic connectivity
concept which can provide insights in how key features of
the proposed criticality metric identify nodes the removal
of which lead to the network becoming more disconnected.

Let G = {V,E} be a graph of |V | = n nodes and
|E| = m edges. If G is undirected then, A(G) = (aij) is the
adjacency matrix of G with aij = 1 if nodes i and j share
an edge z ∈ E and aij = 0 otherwise, for i, j ∈ V . The di-
agonal degree matrix δ(G) = diag(degi, degi+1, ...degn) is
an n× n matrix with the diagonal entry degi representing
the degree of the node i ∈ V and all non-diagonal entries
equal to zero. The Laplacian matrix for such an undi-
rected graph G is an n× n matrix, L(G) = δ(G)− A(G).
In case of a directed graph, the Laplacian matrix is repre-
sented by L(G) = N(G)N(G)t where, N(G) denotes the
incidence matrix [11]. The incidence matrix N(G) is an
n×n matrix with nij = 1 if an edge is directed from node
i to j, nij = −1 if the edge is directed from node j to
i and nij = 0 otherwise. The laplacian matrix L(G) of
a graph is real, symmetric and non-negative semi-definite
with all its eigenvalues being real and non-negative [32].

These eigenvalues are highly correlated with the connec-
tivity of a graph and this relation is further elaborated in
the following lemma [33].

Lemma 1: If 0 = λ0(G) ≤ λ1(G) ≤ ... ≤ λn−1(G) are
the eigenvalues of the Laplacian matrix L in an ascending
order, then λ1(G) > 0 if G is connected. Additionally,
if λi(G) = 0 and λi+1(G) 6= 0, then G has exactly i + 1
disjoint connected components.

The zero row and column sum of the Laplacian matrix
generates an eigenvalue of zero which is considered as the
smallest eigenvalue λ0 of the matrix. The aforementioned
lemma indicates that if a graph is connected then the
eigenvalue of zero will have a multiplicity of one whereas, if
the eigenvalue of zero has a multiplicity of j then there are
j disconnected components of the graph. Similar to the
smallest eigenvalue, the largest eigenvalue λn−1(G) also
has a multiplicity of 1 if the graph is connected [34]. The
largest eigenvalue is upper bounded by the maximum de-
greeDmax and lower bounded bymax (D̄(G),

√

Dmax(G))
[34].

Apart from the smallest and the largest eigenvalues,
the second smallest eigenvalue λ1, which is also referred to
as the Fiedler value, is of vital importance for determin-
ing the connectivity of a graph [31]. A higher order Fiedler
value, which is strictly larger than zero, shows a connected
graph whereas, a smaller value shows a weakly connected
graph. It is lower bounded by the smallest eigenvalue of
zero and upper bounded by the minimal nodal degree of
the network. The minimal nodal degree defines the mini-
mum number of links that if broken could possibly result
in another disconnected component and hence, the bounds
on the Fiedler value can be expressed as [32]:

0 ≤ λ1(G) ≤
n

n− 1
Dmin(G) (6)

Here, Dmin is the minimal nodal degree of an incomplete
graph. The above inequality indicates that the algebraic
connectivity can be used as a connectivity robustness mea-
sure. The smaller the Dmin value, the easier it is for the
network to become disconnected as fewer node removals
are required to lead to network partitioning. As Dmin de-
creases, so does the upper bound on the algebraic connec-
tivity and one may thus conjecture that the easier it is for
the network to become disconnected the more likely it is
for the algebraic connectivity to attain a small value. Re-
versing the argument, one may conjecture that the smaller
the algebraic connectivity value, the easier it is for the
network to become disconnected. The use of the algebraic
connectivity as a connectivity robustness measure can be
further supported by the following lemma [32][31]:

Lemma 2: If there are two edge disjoint graphs with the
same number of nodes Ga and Gb, then λ1(Ga)+λ1(Gb) ≤
λ1(Ga ∪Gb).

Corollary 1: Likewise, if there are two graphs with
the same number of nodes but different set of edges, such
that Ga(V,Ea) and Gb(V,Eb) for Ea ⊆ Eb then the Fiedler
value is non-decreasing and can be represented as, λ1(Ga) ≤
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λ1(Gb).
Corollary 1 suggests that the removal of edges from a

network, which makes it easier for the network to become
disconnected, leads to a decrease in the algebraic connec-
tivity. Again reversing the argument one can conjecture
that the smaller the algebraic connectivity value is, the
easier it is for the network to become disconnected. The
effect of removing edges from the network on the algebraic
connectivity is captured by Corollary 1. Removal of nodes
is also of primal importance as the criticality of a node is
assessed by its impact on the network performance when
it is removed. The following Lemma describes the affect of
node removal on the algebraic connectivity of a network.

Lemma 3: If G1 is the resultant graph after removal of
k vertices along with all the adjacent edges, then:

λ1(G1) ≥ λ1(G)− k

The Lemma suggests that the removal of nodes de-
creases the lower bound on the algebraic connectivity. This
means that by appropriate choice of the nodes, one can de-
crease the algebraic connectivity thus making it easier for
the network to become disconnected. The above properties
of the algebraic connectivity are now used to explain how
a key feature of the proposed criticality metric, namely the
weighted node degree, identifies more critical nodes than
if the normal degree was used.

Assume an arbitrary network G1 and an arbitrary node
within the network u1. The weighted degree of any node
becomes higher when the number of common neighbours
with all its neighbours becomes smaller. The number of
common neighbours can be reduced by removing particu-
lar edges of the network. Edges are chosen which do not
affect the degree of node u1 and are removed to yield net-
work G2. G1 and G2 have the same number of nodes.
Node u1 maintains its degree in G1 and G2, however, its
weighted node degree in G2 is higher. We now investigate
the algebraic connectivity of G1 and G2 when node u1 is
removed in both networks. Since u1 has the same node
degree in G1 and G2, its removal will result in G2 having
less edges than G1 by construction. From Lemma 3 one
can thus conclude that:

λ(G2) ≤ λ(G1) (7)

The above indicates that when nodes with the same
node degree but higher weighted node degree are removed
then the algebraic connectivity of the network decreases.
The weighted node degree can thus be used to refine the
node degree concept and identify more critical nodes.

4. Performance Evaluation

In this section, we evaluate the performance of the
proposed criticality index using simulations conducted on
Matlab [35] and the Network Simulator (NS-3) [36]. We
conduct a comparative study to investigate the perfor-
mance of the proposed index against other approaches

that have appeared in the literature: the Hybrid Inter-
active Linear Programming Rounding (HILPR) algorithm
proposed in [1], the algorithm in [21] (Cont) which at-
tempts to reduce the rank of the routing matrix and the
node centrality metrics such as the betweenness central-
ity, closeness centrality and degree centrality metrics that
are used in [20]. Among all criticality indices proposed in
literature we have chosen the above as they contain some
of the features included in our approach, namely the di-
versity, the node degree and the participation in shortest
paths. In addition, they have been shown to outperform
the other proposals in a number of scenarios. In each con-
ducted simulation experiment, nodes participating in the
network are assigned a criticality measure based on the
criticality index under consideration. A fixed percentage
of the most critical nodes are removed and the degradation
in network performance is evaluated. The most effective
criticality index is the one that leads to a greater degra-
dation in performance.

In the first set of simulation experiments conducted
on Matlab network performance is evaluated in terms of
topological performance metrics, in the second set of sim-
ulation experiments network performance is evaluated in
terms of the algebraic connectivity of the network and in
the third set of simulation experiments conducted on the
Ns-3 simulator, network performance is evaluated in terms
of the network centric performance metrics.

4.1. Topology Based Evaluation

In the first set of simulation experiments conducted on
Matlab, we evaluate the ability of the proposed metric to
choose critical nodes in terms of topology based perfor-
mance metrics such as the Average Node Degree, the Av-
erage Path Length and the Number of Isolated Nodes. The
Average Node Degree is the average number of neighbours
of all nodes participating in the network. Small average
node degree values imply smaller connectivity, therefore,
the smaller the average node degree, the greater is the
degradation in network performance. The Average Path
length is obtained by calculating the average of all path
lengths over all source destination paths in the network.
High average path length in a network implies lack of crit-
ical nodes which can participate in shortest path routes.
So, the higher the average path length, the greater is the
degradation in network performance. Finally, the Number
of Isolated Nodes are the nodes that have no connections
with any other node in the network. High number of iso-
lated nodes is undesirable as it implies greater network
partitioning.

The evaluation was conducted using three different net-
work topologies in an area of 1000 × 1000m2.The Ran-
dom Network Topology assumes x and y coordinates of
the nodes which are uniformly distributed in the area un-
der consideration. The number of nodes were chosen in
the range of 10 − 80 and among them 90% of the nodes
were assumed to have a constant transmission range equal
to 300m whereas, some randomly selected 10% of nodes
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were assigned a transmission range of 450m in order to
enable long distance links [37]. In the WaxMan Network
Model [38], the probability that a connection is established
between any two randomly distributed nodes u, v in the
network P (u, v) depends on the distance d between the
nodes as shown below:

P (u, v) = αe−d/bL (8)

where 0 < α < 1 and b <= 1 are constants and L is
the maximum distance between any two nodes. As α in-
creases, the probability of having edges between two nodes
increases, whereas, with the increase in b, the ratio of long
distance to short distance edges increases. In our simula-
tions, we fix, the total number of nodes to 80 and consider
a constant value of b = 0.5. In order to analyze the effect of
node density on the performance of the network, we vary
the value of α from 20− 80%. Finally, in the Small World
Network Model [39], N nodes form a one-dimensional lat-
tice with each node placed uniformly on the boundary of a
circle. Each node in the network forms a direct connection
with its kth nearest neighbours, where k is a constant and
it represents the edge connectivity of the network. In this
network topology, a network size varying from 20−80 was
considered, with a fixed edge connectivity of k = 2. In
addition, 10% of the edges are randomly re-wired to intro-
duce the long range links in the network. These long range
links reduce the average path length between the nodes.

In each of these topologies, the criticality metric was
evaluated by removing the selected critical nodes from the
network and then measuring the network performance. In
order to reduce the variance of the obtained results, each
simulation experiment was repeated 50 times and the val-
ues presented, are averages over all obtained outputs. We
assume a fluid flow model of the network and the band-
width of each node is randomly selected according to a
uniform distribution with a maximum value of 2Gbits/sec.
Information sources are assumed to be non-responsive and
their data rate is chosen from a uniform distribution in the
range 0-2Gbits/sec. In each experiment, the performance
of the reference network (we refer to it as the original
network) is evaluated and then compared with the per-
formance of the network when 20% of the total nodes are
removed. The nodes which are removed are the ones which
have been assigned the highest criticality value according
to the criticality index under investigation.

In Fig 3 for each network topology we show the average
node degree values obtained in the original network and
compare it with the values obtained when the most crit-
ical nodes are removed using the three criticality metrics
under investigation. For the Random Network Topology,
and the Small World Topology, the average node degree
is plotted against the number of nodes within the net-
work. In the WaxMan Topology, the average node degree
is plotted against the parameter α of the model which is
a measure of the edge density within the network. The
greater the value of α, the greater is the edge density and

(a) Random Network Topology (b) WaxMan Network Topology

(c) Small World Network Topol-
ogy

Figure 3: Average Node Degree versus the number of nodes and α for
the Original network and when nodes are removed using the CBDI,
Cont and HILPR algorithms, in three different network topologies.

thus the number of edges. We observe that in all cases, the
proposed CBDI criticality metric achieves a larger reduc-
tion in the average node degree, a strong indication of a
greater degradation in network performance. This implies
that the nodes removed using the proposed CBDI met-
ric are more critical. The highest impact of our approach
compared to the others is observed in the Small World
Topology whereas the smallest impact is reported in the
Random Network Topology. It is worth noting that in the
Random Network Topology as the number of nodes in-
creases, so does the average node degree. This is expected
due to the increase in node density. A similar pattern is
observed in the WaxMan Network Topology, however, the
increase rate is smaller. For the Small World topology,
the average node degree is fairly constant with increasing
number of nodes due to the nature of the model which as-
sumes a constant value for the average node degree equal
to 2.

In Fig 4, for each considered network topology, we show
the Average Path Length reported in the original network
and the network resulting from the removal of the critical
nodes. The critical nodes are chosen using the proposed
criticality metric and the other two metrics under consid-
eration. Higher Average Path Length values are desirable,
when removing critical nodes, as they imply the removal
of nodes which participate in shortest paths. We observe
that the proposed metric, is able to slightly increase the
average path length in the WaxMan and Random Network
Topologies, at high α and number of node values respec-
tively. This is expected due to a higher variability in node
attributes when increasing the node density. In the Small
World Network almost zero path length values are reported
by the CBDI metric due to the large number of isolated
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(a) Random Network Topology (b) WaxMan Network Topology

(c) Small World Network Topol-
ogy

Figure 4: Average Path Length versus the number of nodes and α, for
the Original network and when nodes are removed using the CBDI,
Cont and HILPR algorithms, in three different network topologies.

nodes that it creates. This is highlighted below.
Finally in Fig 5 we show the number of isolated nodes

reported in each of the network topologies under considera-
tion. The number of isolated nodes is shown for increasing
values of the number of nodes and α in the original net-
work and when the critical nodes have been removed us-
ing the considered criticality metrics. The results demon-
strate the superiority of the proposed metric, especially in
the case of the Random Network Topology and the Small
World topology. In all three topologies, the removal of
critical nodes using the proposed CBDI criticality metric
yields a larger number of isolated nodes implying a severe
degradation in network performance. Increasing number
of isolated nodes suggests that the network becomes in-
creasingly intermittent in nature. It is worth noting that,
in the Random Network Topology and the WaxMan Net-
work Topology, as the number of nodes and α increase, the
isolated nodes decrease. This is expected due to the fact
that an increase in the node or edge density makes isola-
tion of nodes more improbable. On the other hand, in the
case of the Small World Topology as the number of nodes
increases, so does the number of isolated nodes. This is due
to the fact that in this topology the average node degree is
fixed, which means that as the number of nodes increases,
the number of nodes removed also increases which renders
more nodes to become isolated. The fact that the node
degree is originally fixed yields zero isolated nodes in the
original network, as shown in Fig 5.

4.2. Algebraic Connectivity Evaluation

In section III, we have argued that the algebraic con-
nectivity can be used as a robustness metric for the connec-
tivity of the network. In this section, we use the algebraic

(a) Random Network Topology (b) WaxMan Network Topology

(c) Small World Network Topol-
ogy

Figure 5: Number of Isolated nodes versus the number of nodes
and α, for the Original network and when nodes are removed using
the CBDI, Cont and HILPR algorithms, in three different network
topologies.

connectivity as the performance metric, to show that the
proposed criticality metric and key constituents such as
the weighted node degree and the variation in link length
outperform other proposals which have been proposed in
literature. The evaluation has been simulative with the
experiments conducted on Matlab. The Random Network
Topology was considered. The number of nodes in the
considered area were chosen in the range 20−80, and 10%
of the most critical nodes were removed each time.

We first compare the proposed weighted node degree
against the node degree metric. The weighted node degree
aims at refining the criticality assessment of the normal de-
gree metric by taking into account one hop paths which
are identified by the existence of common neighbours. The
reported algebraic connectivity values for various number
of nodes are shown in Fig 6 for the original network, for the
network when 10% of the most critical nodes are removed
according to the weighted node degree metric and when
they are removed according to the degree centrality met-
ric. We observe that the weighted node degree achieves
the most significant reduction in the algebraic connectiv-
ity value. Since the algebraic connectivity is a connectivity
robustness metric it follows that the weighted node degree
renders the network more susceptible to network partition-
ing indicating that it is more successful in identifying the
most critical nodes.

We next use the algebraic connectivity to compare the
variation in link length against the closeness centrality
metric and the betweenness centrality metric. The vari-
ation in link length uses local information (neighbouring
link length information) to identify nodes which are likely
to act as relay nodes thus accommodating a large number
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Figure 6: Comparison of the weighted node degree and the degree
centrality metrics in terms of the algebraic connectivity for different
number of nodes in a Random Network Topology.

of active connections. The number of active connections
at a node is also considered by the betweenness centrality
metric which, however, requires full network information
in order to calculate all shortest paths in the network. In
Fig 7 we show the reduction in the algebraic connectiv-
ity achieved by the closeness centrality, the betweenness
centrality and the proposed variation in link length. We
observe that the betweenness centrality and the variation
in link length achieve the most severe reduction in the al-
gebraic connectivity indicating that they are able to best
assess the criticality of the nodes. In addition, we note that
despite the fact that the variation in link length requires
only local information its performance is comparable to
that of betweenness centrality.

Figure 7: Comparison of the Variation in Link Length, closeness
centrality and and Betweenness Centrality metric in terms of the
algebraic connectivity for different number of nodes in a Random
Network Topology.

Finally, we use the algebraic connectivity to compare
the performance of the proposed CBDI metric against the
performance of the HILPR scheme and the Cont Scheme.
The results are shown in Fig 8. We observe that the CBDI
scheme removes nodes which reduce the algebraic connec-
tivity to the greatest extent, indicating that the connec-
tivity of the network is mostly affected. The Cont scheme
achieves a smaller reduction, while the HILPR scheme
leads to a slight increase in the algebraic connectivity de-
spite the node removal.

Figure 8: Comparison of the proposed CBDI metirc with the existing
HILPR and Cont metrics in terms of the algebraic connectivity for
different number of nodes in a Random Network Topology.

4.3. Network Centric Evaluation

Our final set of experiments aim at evaluating the per-
formance of the proposed criticality metric in more real-
istic network scenarios. We conduct the simulation ex-
periments on the Ns-3 Simulator (NS-3) [36] and evalu-
ate the network performance using network centric perfor-
mance criteria such as the total throughput, the average
per packet delay, the average per packet jitter and the
number of packet drops. In all the simulations we use the
Random Network Topology to evaluate the performance
of the proposed criticality metric against metrics such as:
Cont [21], HILPR [1], Degree centrality, closeness central-
ity and betweenness centrality [8].

The evaluation was conducted on a wireless adhoc net-
work of 100 nodes which were uniformly distributed in
an area of 1500 × 1500m2 thus forming a Random Net-
work Topology. Each node was equipped with a 802.11b
transceiver with a transmit power of 7.5dbm. 15% of them
had the option of transmitting at a power of 1.5× 7.5dbm
[37] thus forming long range communication links. The
degradation in signal strength as a function of the dis-
tance covered was represented by the Friss loss propaga-
tion model. A randomly selected set of 20 source/sink
pairs initiate the communication in the network by trans-
mitting packets at a rate of 2.048Kb/s each. Packet based
transmission was assumed with the packet size set to 64byte
packets. Routing paths within the network are formed us-
ing the OLSR routing protocol [40]. All measurements
are obtained in the interval 100 − 300 seconds after the
start of the simulation. This provides sufficient time for
the OLSR algorithm to converge to its equilibrium state.
The degradation in network performance is evaluated after
10% of the most critical nodes are removed from the net-
work. This process is repeated 10 times with the results
averaged to decrease the stochastic uncertainty of the ob-
tained results.

We first compare the performance of the proposed crit-
icality metric against the HILPR and Cont Algorithms in
terms of the throughput achieved. The throughput is de-
fined as the total number of packets delivered to their des-
tinations within the network per unit time. The main goal
of any network configuration is to maximize the achieved
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Figure 9: Time evolution of the network throughput for the original
network and when nodes are removed according to the CBDI, HILPR

and Cont metrics.

throughput. In Fig 9 we show the achieved throughput
as a function of time when 10% of the nodes are removed
using the three metrics under consideration. We observe
that the CBDI algorithm reports the largest decrease in
the achieved throughput relative to the original network
before node removal. This demonstrates that the proposed
algorithm is successful in choosing more critical nodes.
The decrease in average throughput observed at certain
periods of time is due to long range link enabled nodes
attempting to transmit at that time. Since their transmis-
sion power is higher, they attempt to reserve a larger por-
tion of the common communication medium, thus increas-
ing the probability of collisions and leading to throughput
degradation.

Figure 10: Time evolution of the network throughput for the orig-
inal network and when nodes are removed according to the Degree

Centrality and Weighted Node Degree metrics.

We next use the achieved throughput as the perfor-
mance metric in order to compare key components of the
proposed CBDI metric against similar approaches which
exist in the literature. We first compare the weighted
node degree metric against the degree centrality metric.
The proposed weighted node degree refines the degree cen-
trality metric by considering as more critical, nodes which
have small number of common neighbours with their neigh-
bours. Smaller number of common neighbours indicates
smaller number of one hop path alternatives when the node
is removed. So, upon removal of a node with high critical-
ity, it is easier for the network to become disconnected thus
increasing the probability of reporting a smaller through-
put. This is in fact what is reported by the simulation

results presented in Fig 10. When removing nodes iden-
tified as critical using the weighted node degree, a larger
degradation in throughput is achieved compared to node
removal using the degree centrality metric. This demon-
strates the superiority of the weighted node degree metric.

Figure 11: Time evolution of the network throughput for the original
network and when nodes are removed according to the Closeness

Centrality, Betweenness Centrality and Variation in Link Length

metrics.

We next compare the proposed variation in link length
metric against the betweenness centrality and the close-
ness centrality metrics. All three approaches aim at iden-
tifying nodes which accommodate the largest number of
active connections. However, the closeness centrality and
the betweenness centrality metrics use global network in-
formation whereas, the variation in link length utilizes
local information only to achieve the same thing. The
throughput achieved for the original network and when
nodes are removed according to the various metrics are
shown in Fig 11. The closeness centrality and the vari-
ation in link length achieve significant reduction in the
throughput achieved. It is really striking to note that the
betweenness centrality metric reports similar throughput
to the original network prior to node removal. A possi-
ble explanation is the existence of alternative paths which
upon node removal continue to render the network, ensur-
ing high network throughput.

We now conduct similar experiments, aiming to com-
pare the proposed criticality metric and its key constituents
against other approaches, using other performance met-
rics. The delay experienced by packets in transit is an
important network attribute which describes its perfor-
mance. Low delays are preferable. In wireless ad hoc
networks, such as the one considered in this study, delays
are due to a number of reasons: network congestion result-
ing in queuing delays, poor channel behaviour resulting in
re-transmissions and contention resulting in large vacant
medium delay times due to the CSMA/CA mechanism. In
this work, we consider the average per packet delay as the
performance metric. This is calculated by dividing the to-
tal number of delays observed with the number of delays
transmitted throughout the simulation time. In Fig 12 we
show the time evolution of the average per packet delay
reported in the original network and when nodes are re-
moved according to a number of proposed criticality met-
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(a) (b)

(c)

Figure 12: Time evolution of the average per packet delay when
nodes are removed based on a) CBDI, Cont and HILPR, b) Degree

Centrality, Weighted Node Degree, c) Closeness Centrality, Between-

ness Centrality, Variation in Link Length.

rics including the proposed criticality metric and its key
constituents. We observe that the proposed CBDI met-
ric is able to bring a major degradation in performance as
the average per packet delay increases significantly when
nodes are removed. In addition, the weighted node de-
gree does not on average increase the per packet delays
however, it does manage to outperform the degree cen-
trality metric which reports smaller per packet delay val-
ues. When the variation in link length is now compared
to the closeness centrality and the betweenness central-
ity metrics we observe that they eventually exhibit similar
behaviour by decreasing the per packet delays compared
with the original network. However, what is important
is that despite individual constituent elements not always
outperforming other proposals, when combined, achieve a
significant degradation in network performance.

We next consider the average per packet delay jitter
as the performance metric. The latter is calculated by di-
viding the total delay jitter observed throughout the sim-
ulation experiment with the total number of transmitted
packets. The delay jitter is calculated as the variation
in packet reception times at the receiver. Increasing de-
lay jitter values indicate increasing congestion within the
network, so small delay jitter values are preferable. In
Fig 13, we show the time evolution of the average per
packet delay jitter observed in the original network and
when nodes are removed according to various criticality
metrics. We observe that the proposed CBDI metric out-
performs the other proposals as it manages to significantly
increase the delay jitter thus degrading network perfor-
mance. The same applies for the weighted node degree
which is also observed to increase the delay jitter. The pic-
ture is different in the case of the variation in link length

(a) (b)

(c)

Figure 13: Time evolution of the average per packet jitter observed
when nodes are removed based on a) CBDI, Cont and HILPR, b)
Degree Centrality, Weighted Node Degree, c) Closeness Centrality,
Betweenness Centrality, Variation in Link Length.

which is shown to decrease the average delay jitter rela-
tive to the original network and the closeness centrality
metric. However, as mentioned above, despite individual
elements, such as the variation in link length, not outper-
forming other proposals, when these are combined, cause
the proposed CBDI metric to cause major degradation in
network performance.

Finally, we consider the total number of dropped pack-
ets as the performance metric. High number of dropped
packets in the network due to buffer overflow, is a strong
indication of congestion. When nodes are removed from
the network, the number of available paths decreases and
the remaining paths are forced to accommodate all traffic.
This makes them more vulnerable to congestion. When
critical nodes are removed, congestion is expected to be
more severe and the number of dropped packets is thus
higher. The results of the conducted simulation experi-
ments are shown in Fig 14. We observe that during the
whole simulation time the proposed CBDI scheme is able
to bring a major increase in the number of dropped pack-
ets compared to HILPR and Cont Algorithms. The other
two algorithms report packet drops similar to the ones re-
ported prior to node removal. Fig 14 also highlights the
superiority of the weighted node degree relative to the de-
gree centrality metric. Both cause the number of packets
dropped to increase, however the increase achieved by the
weighted node degree is higher. The picture for the varia-
tion in link length is different. While the variation in link
length leads to an increase in the number of dropped pack-
ets the closeness centrality metric reports an even higher
number. The betweenness centrality metric in fact reports
a slight decrease in the number of dropped packets. This is
consistent with the throughput performance analysis an-
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Figure 14: Time evolution of the total number of packets dropped
when nodes are removed based on a) CBDI, Cont and HILPR, b)
Degree Centrality, Weighted Node Degree, c) Closeness Centrality,
Betweenness Centrality, Variation in Link Length.

alyzed earlier. Despite the fact that the closeness cen-
trality exhibits superior performance relative to the varia-
tion in link length metric, the superiority of the other con-
stituent elements of the proposed criticality metric render
it to be more successful than other metrics proposed in
literature. In addition, as mentioned before, the variation
in link length requires only local information whereas the
closeness centrality requires full network information thus
increasing the implementation complexity.

5. Conclusions

In this work, we highlight the contribution of critical
nodes in network operation and demonstrate how the net-
work reacts when these critical nodes are affected. We
propose a new crticiality index which is based on the di-
versity of node attributes within the network and the par-
ticipation of each node in forming shortest path routes.
We evaluate the performance of the proposed metric un-
der various network topologies using multiple performance
metrics and observe that the proposed metric outperforms
existing approaches by showing a greater degradation in
network performance when the critical nodes, selected us-
ing this index, are removed from the network.
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