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Abstract

We propose a test for the stability over time of the covariance matrix of multivariate time

series. The analysis is extended to the eigensystem to ascertain changes due to instability in

the eigenvalues and/or eigenvectors. Using strong Invariance Principles and Law of Large

Numbers, we normalise the CUSUM-type statistics to calculate their supremum over the

whole sample. The power properties of the test versus alternative hypotheses, including

also the case of breaks close to the beginning/end of sample are investigated theoretically

and via simulation. We extend our theory to test for the stability of the covariance matrix

of a multivariate regression model. The testing procedures are illustrated by studying the

stability of the principal components of the term structure of 18 US interest rates.
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1 Introduction

In this paper, we propose a testing procedure to evaluate the structural stability of the covariance

matrix (and its eigensystem) of multivariate time series. A large amount of empirical evidence

shows that the issue of changepoint detection in a covariance matrix is of great importance.

A classical example is the application of Principal Component Analysis (PCA) to the term

structure of interest rates, with the three main principal components interpreted as \slope",

\level" and \curvature" (Litterman and Scheinkman, 1991). Bliss (1997), Bliss and Smith

(1997) and Perignon and Villa (2006) show that the principal components of the term structure

change substantially over time. Similar �ndings, using a di�erent methodology, are in Audrino

et al. (2005). PCA is also widely used in macroeconometrics, for instance to forecast ination

(Stock and Watson, 1999, 2002, 2005). The importance of verifying the stability of a covariance

matrix is also evident in the context of Vector AutoRegressive (VAR) models. In the context of

forecasting, Castle et al. (2010) show that changes in the smallest eigenvalue of the covariance

matrix of the error term have a large impact on predictive ability. Furthermore, the Choleski

decomposition of the error covariance matrix is routinely employed in the context of variance

decomposition analysis, when examining how much of the variance of the forecast error of each

variable in a VAR is due to exogenous shocks to the other variables (see e.g. Pesaran and Shin,

1998).

Despite the relevance of the topic, most studies either assume stability as a working assump-

tion without testing for it, or the testing is carried out by splitting the sample, thus assuming

knowledge of the break date a priori. This calls for a rigorous testing procedure to estimate the

location of the changepoint when breaks are detected.

The theoretical framework developed in this paper builds on a plethora of results for the

changepoint problem available in statistics and in econometrics. Existing testing procedures

(see e.g. the reviews by Cs�org}o and Horv�ath, 1997; Aue and Horv�ath, 2012; and Jandhyala et

al., 2013) are typically based on taking the supremum (or some other metric - see Andrews and

Ploberger, 1994) of a sequence of CUSUM-type statistics, thus not requiring prior knowledge

of the breakdate. In particular, Aue et al. (2009) develop a test for the structural stability

of a covariance matrix, based on minimal assumptions. However, a feature of this test is

that, by construction, it has power versus breaks occurring at least (respectively, at most)

O
�p

T
�
time periods from the beginning (respectively to the end) of the sample. Lack of
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power versus alternatives close to either end of the sample is a typical feature in this literature

(see also Andrews, 1993), which somewhat limits the applicability of the test. Situations where

breaks are due to recent events, like e.g. the 2008 recession, are left out of the analysis. Our

contribution complements that of Aue et al. (2009) by proposing a test that has power versus

breaks occurring close to the beginning/end of the sample.

The main contribution of this paper is twofold. First, testing for changepoints is extended

to PCA. In addition, the extension to testing for the stability of principal components is useful

for the purpose of dimension reduction. Our simulations show that tests for the stability of

the whole covariance matrix have severe size distortions in �nite samples. Contrary to this,

testing for the stability of eigenvalues is found to have the correct size and good power even for

relatively small samples. As a second contribution, our testing procedure is able to detect breaks

occurring up to O (ln lnT ) periods to the end of the sample. This is achieved by using a Strong

Invariance Principle (SIP) and a Strong Law of Large Numbers (SLLN) for the partial sample

estimators of the covariance matrix, and by using these results to normalize the CUSUM-type

test statistic, using a Darling-Erd}os limit theory (see Cs�org}o and Horv�ath, 1997; Horv�ath, 1993).

In the Supplemental Material to this paper (henceforth referred to as Kao et al., 2015), we also

extend our results to the case of testing for the stability of the covariance matrix of the error

term in a multivariate regression setting.

The theory derived in our paper is illustrated through an application to the US term struc-

ture of interest rates, with a dataset spanning from the late nineties to the current date. We

�nd (as expected) evidence of changes in the volatility and in the loading of the principal com-

ponents of the term structure around the end of 2007/beginning of 2008. In the Supplemental

Material (Kao et al., 2015) we also report another exercise, based on verifying the stability of

the covariance matrix of the error term in a VAR model for exchange rates.

The paper is organized as follows. Section 2 contains the SIP and its extension to the

eigensystem. The test statistic and its distribution under the null (as well as its behaviour

under local-to-null alternatives) is in Section 3. Monte Carlo evidence is in Section 4, while the

application to the term structure of interest rates is in Section 5. Section 6 concludes.

A word on notation. Limits are denoted as \!" (the ordinary limit); \ p!" (convergence in

probability); \
d!" and (convergence in distribution). Orders of magnitude for an almost surely

convergent sequence (say sT ) are denoted as Oa:s: (T
&) and oa:s: (T

&) when, for some " > 0 and
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~T < 1, P
h
jT�&sT j < " for all T � ~T

i
= 1 and T�&sT ! 0 almost surely respectively. Orders

of magnitude for a sequence converging in probability (say s0T ) are denoted as Op (T
&) and

op (T
&) when, for some " > 0, �" > 0 and ~T" < 1, P [jT�&s0T j > �"] < " for all T > ~T" and

T�&s0T ! 0 in probability respectively. Standard Wiener processes and Brownian bridges of

dimension q are denoted as Wq (�) and Bq (�) respectively; kvk denotes the Euclidean norm of a

vector v in Rn; similarly, kAk denotes the Euclidean norm of a matrix A in Rn�n, and j�jp the

Lp-norm; the integer part of a real number x is denoted as bxc. Constants that do not depend

on the sample size are denoted as M , M 0, M 00, etc.

2 Theoretical framework

This section derives results on the convergence rate of the sample covariance matrix, its eigensys-

tem, and an estimator of its asymptotic variance, assuming a covariance stationary time series

with no breaks. These calculations are useful in Section 3, for deriving the null distribution of

our test.

Let fytgTt=1 be a time series of dimension n; we assume that yt has zero mean and covariance

matrix � � E (yty
0
t). This section contains the asymptotics of the partial sample estimates of �;

the results are used in Section 3 in order to construct the CUSUM-type test statistic to test for

breaks in � and its eigensystem. Speci�cally, we report a SIP for the partial sample estimators

of � and an estimator of the long run covariance matrix of the estimated �, say V�; and we

extend the asymptotics to PCA.

Strong Invariance Principle and estimation of V�

Let �̂ be the sample covariance matrix, i.e. �̂ = T�1
PT

t=1 yty
0
t. For a given � 2 [0; 1],

we de�ne a point in time bT�c, and we use the subscripts � and 1 � � to denote quantities

calculated using the subsamples t = 1; :::; bT�c and t = bT�c+1; :::; T respectively. In particular,

we consider the sequence of partial sample estimators �̂� = (T�)�1
PbT�c

t=1 yty
0
t, and similarly

�̂1�� = [T (1� �)]�1
PT

t=bT�c+1 yty
0
t. Finally, henceforth we denote wt = vec (yty

0
t) and �wt =

vec (yty
0
t � �).

In the sequel, we need the following assumption.

Assumption 1 (i) suptE kytk2r <1 for some r > 2; (ii) yt is L2+�-NED (Near Epoch De-

pendent) for some � > 0, of size � 2 (1;+1) on an i.i.d. basis fvtg+1t=�1, with r > 2��1
��1

�
1 + �

2

�
;
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(iii) letting V�;T = T�1E

��PT
t=1 �wt

��PT
t=1 �wt

�0�
, V�;T is positive de�nite uniformly in T ,

and as T ! 1, V�;T ! V� with kV�k < 1; (iv) letting �wit be the i-th element of �wt and

de�ning SiT;m � Pm+T
t=m+1 �wit, there exists a positive de�nite matrix

�
 = f$ijg such that

T�1 jE [SiT;mSjT;m]�$ij j � MT� , for all i and j and uniformly in m, with  > 0.

Assumption 1 speci�es the moment conditions and the memory allowed in yt; no distri-

butional assumptions are required. According to part (i), at least the 4-th moment of yt is

required to be �nite, similarly to Aue et al. (2009). As far as serial dependence is concerned,

the requirement that yt be NED is typical in nonlinear time series analysis (see Gallant and

White, 1988) and it implies that yt is a mixingale (Davidson, 1994). Many of the DGPs consid-

ered in the literature generate NED series - examples include GARCH, bilinear and threshold

models (see Davidson, 2002). Part (ii) illustrates the trade-o� between the memory of yt (i.e.

its NED size �), and its largest existing moment: as � (the memory of yt) approaches 1, r

has to increase. Note that in our context, the data (yt) undergo a non-Lipschitz transformation

(viz., they are squared), and therefore the relationship between moment conditions and memory

is not the \standard" one (see e.g. the IP in Theorem 29.6 in Davidson, 1994). In principle,

moment conditions such as the one in part (ii) could be tested for, e.g. using a test based on

some tail-index estimator - J. B. Hill (2010, 2011) extends the well-known Hill's estimator to

the context of dependent data. Other types of dependence could be considered, e.g. assuming a

linear process for yt - an IP for the sample variance is in Phillips and Solo (1992, Theorem 3.8).

Part (iv) is a bound on the growth rate of the variance of partial sums of �wt, and it is the same

as Assumption A.3 in Corradi (1999). Although it is not needed to prove the IP for the partial

sum process of �wt, it is a su�cient condition for the SIP; despite it being rather technical, it

can be shown to hold e.g. for the case of a weakly stationary sequence (see Proposition 2.1 in

Eberlein (1986)).

Theorem 1 contains the IP and the SIP for the partial sums of �wt.

Theorem 1 Under Assumptions 1(i)-(iii), as T !1

1p
T

bT�cX

t=1

�wt
d! [V�]

1=2Wn2 (�) ; (1)

uniformly in � . Rede�ning �wt in a richer probability space, under Assumptions 1(i)-(iv), there
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exists a � > 0 such that
bT�cX

t=1

�wt =

bT�cX

t=1

Xt +Oa:s:

�
bT�c

1

2
��
�
; (2)

uniformly in � , where Xt is a zero mean, i.i.d. Gaussian sequence with E (XtX
0
t) = V�.

Remarks

T1.1 Equation (1) is an IP for �wt (i.e. a weak convergence result), which is su�cient to use the

test statistics discussed e.g. in Andrews (1993) and Andrews and Ploberger (1994).

T1.2 Equation (2) is an almost sure result, which also provides a rate of convergence. The prac-

tical consequence of (2) is that the dependent, heteroskedastic series �wt can be replaced

with a sequence of i.i.d. normally distributed random variables, with the same long run

variance as �wt. In both results - (1) and (2) - one di�erence with the literature is that we

are dealing with a non-Lipschitz transformation of NED data (essentially, �wt is the square

of yt), which requires some intermediate results on the dependence in �wt itself; we refer

to the Supplemental Material (Kao et al., 2015) for the whole set of derivations.

We now turn to the estimation of V�. If no serial dependence is present, a possible choice is

the full sample estimator V̂� =
1
T

PT
t=1wtw

0
t �

h
vec

�
�̂
�i h

vec
�
�̂
�i0
. Alternatively, one could

use the sequence of partial sample estimators

V̂�;� =
1

T

TX

t=1

wtw
0
t �
�
�
h
vec

�
�̂�

�i h
vec

�
�̂�

�i0
+ (1� �)

h
vec

�
�̂1��

�i h
vec

�
�̂1��

�i0�
:

To accommodate for the case 	l � E
�
�wt �w

0
t�l
�
6= 0 for some l, we propose a weighted sum-of-

covariance estimator with bandwidth m:

~V� = 	̂0 +

mX

l=1

�
1� l

m

�h
	̂l + 	̂

0
l

i
; (3)

where 	̂l =
1
T

PT
t=l+1

h
wt � vec

�
�̂
�i h

wt�l � vec
�
�̂
�i0
; or ~V�;� =

�
	̂0;� + 	̂0;1��

�
+
Pm

l=1

�
1� l

m

�
h�
	̂l;� + 	̂

0
l;�

�
+
�
	̂l;1�� + 	̂l;1��

�i
, where 	̂l;� =

1
T

PbT�c
t=l+1

h
wt � vec

�
�̂�

�i h
wt�l � vec

�
�̂�

�i0
,

and similarly for 	̂l;1�� .

In order to derive the asymptotics of V̂�;� and ~V�;� , consider the following assumption:
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Assumption 2. (i) either (a) 	l = 0 for all l 6= 0 or (b)
P1

l=0 l
s k	lk < 1 for s = 1;

(ii) suptE kytk4r < 1 for some r > 2; (iii) letting 
T = T�1E
nPT

t=1 vec [ �wt �w
0
t � E ( �wt �w0t)]

vec [ �wt �w
0
t � E ( �wt �w0t)]0

	
, 
T is positive de�nite uniformly in T , and 
T ! 
 with k
k <1.

Assumption 2 encompasses various possible cases. Part (i)(a) considers the basic, non

autocorrelated case, for which both V̂� and V̂�;� are valid choices. Part (i)(b) considers the

possibility of non-zero autocorrelations. Intuitively, the assumption that the 4-th moment of yt

exists, as in Assumption 1(i), entails, through a Law of Large Numbers (LLN), the consistency

of V̂�;� . Part (ii) supersedes Assumption 1(i), by requiring the existence of moments up to the

8-th. Intuitively, this implies that an IP holds for the partial sums of vec [ �wt �w
0
t � E ( �wt �w0t)].

The consistency of V̂�;� and of ~V�;� is in Theorem 2:

Theorem 2 Under no changes in �:

if Assumptions 1(i)-(iii) and 2(i)(a) hold, as T !1, there exists a �0 > 0 such that

sup
1�bT�c�T

V̂�;� � V�
 = op

�
1

T �
0

�
; (4)

if Assumptions 1(i)-(iii) and 2(i)(b) hold, as (m;T )!1, there exists a �0 > 0 such that

sup
1�bT�c�T

 ~V�;� � V�
 = Op

�
1

m

�
+Op

�
m
lnT

T �
0

�
; (5)

if Assumptions 1(i)-(iii) and 2(i)(b)-(ii)-(iii) hold, as (m;T )!1

sup
1�bT�c�T

 ~V�;� � V�
 = Op

�
1

m

�
+Op

�
m
lnTp
T

�
: (6)

The same rates hold for V̂� or ~V�.

Remarks

T2.1 Equation (4) is based on a SLLN for the case of no autocorrelation in wt - see also Ling

(2007). Theorem 2 provides a uniform rate of convergence for V̂�;� and ~V�;� , as it is

usually required in this literature (e.g. Lemma 2.1.2 in Cs�org}o and Horv�ath, 1997, p. 76;

see also the proof of Theorem 3 below). In case of serial dependence, (5) states that it is

possible to construct an estimator of V� with a rate of convergence. This can be re�ned

as in (6).
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T2.2 A word of warning on the the weighted-sum-of-covariance estimator ~V�;� is in order. As

well documented in several contributions (we refer to Muller, 2014, and the references

therein, for an exposition of the issues), ~V�;� can be expected to su�er from (possibly

severe) �nite sample bias, especially in the presence of large autoregressive roots. In

Section 4, we assess the robustness of ~V�;� to the case of strong serial correlation in the

data.

Estimation of the eigensystem

In this section, we extend the asymptotics for the partial sample estimates of � to its

eigensystem.

Let the i-th eigenvalue/eigenvector couple be de�ned as (�i; xi); the eigenvectors are de�ned

as an orthonormal basis, i.e. x0ixj = �ij , where �ij is Kronecker's delta. Since �xi = �ixi, a

natural estimator for (�i; xi) is the solution to the system

8
><
>:
�̂X̂ = X̂�̂

X̂ 0X̂ = I
; (7)

where X̂ = [x̂1; :::; x̂n], x̂i denotes the estimate of xi, and �̂ is a diagonal matrix containing the

estimated eigenvalues �̂i in decreasing order. Estimation of f(�i; xi)gni=1 based on (7) is known

as Anderson's Principal Component (PC) estimator. Similarly, the partial sample estimators

of the eigenvalues and eigenvectors are the solutions to �̂� x̂i;� = �̂i;� x̂i;� .

As we mention below (see Remark P1.2), one disadvantage of Anderson's PC estimator is

that the estimated eigenvectors have a singular asymptotic covariance matrix (see Kollo and

Neudecker, 1997). In order to avoid this issue, an estimator based on a di�erent normalisation

can be proposed, known as the Pearson-Hotelling's PC estimator; in this case, the estimated

eigenvalues are the same as from (7), but the eigenvectors i are de�ned (and estimated) as

an eigenvalue-normed basis, viz. 0ij = �i�ij . Thus, i � �
1=2
i xi. A typical interpretation of

the is in the context of the term structure of interest rates (Litterman and Scheinkman, 1991;

Perignon and Villa, 2006) is that �i is the \volatility" of i, and xi represents its \loading".

The estimates of the eigensystem according to the Pearson-Hotelling approach are the solution

8



to the system 8
><
>:
�̂X̂ = X̂�̂

X̂ 0X̂ = �̂
: (8)

Upon calculating the solutions of (8), it turns out that the eigenvectors are estimated by ̂i =

�̂
1=2

i x̂i, i.e. by the same estimator for the eigenvector as in (7) multiplied by the square root of

the corresponding estimate of the eigenvalue. Similarly, we de�ne the partial sample estimator

of i as ̂i;� = �̂
1=2

i;� x̂i;� .

Consider the following assumption.

Assumption 3. It holds that min1�i�n�1 (�i � �i+1) > 0 with �n > 0.

Assumption 3 requires that � has distinct, strictly positive eigenvalues, and it is typical of

PCA, a�ording to use Matrix Perturbation Theory (MPT); the assumption could be relaxed

at the price of a more complicated analysis, still based on MPT. In essence, the asymptotics of
�
�̂i;� ; x̂i;�

�
is derived by treating �̂� as a perturbation of �, thus deriving the expressions for

the estimation errors of �̂i;� and x̂i;� . The way in which the assumption is formulated is the

same as in Horv�ath and Rice (2015, see equation (1.11)). As a consequence of the requirement

that eigenvalues be strictly positive, our set-up does not directly cover the case of exact factor

models, where the covariance matrix of the data has reduced rank by construction - see Han

and Inoue (2011), Stock and Watson (2012) and Cheng, Liao and Schorfheide (2014).

The extension of the IP and the SIP to the eigensystem of � is reported in Proposition 1:

Proposition 1 Under Assumptions 1 and 3, as T !1, uniformly in �

�̂i;� � �i =
�
x0i 
 x0i

�
vec

�
�̂� � �

�
+Op

�
T�1

�
; (9)

x̂i;� � xi = vx;ivec
�
�̂� � �

�
+Op

�
T�1

�
; (10)

̂i;� � i = v;ivec
�
�̂� � �

�
+Op

�
T�1

�
; (11)

where vx;i =
hP

k 6=i
xk

�i��k (x
0
k 
 x0i)

i
and v;i =

1
2
xi

�
1=2
i

(x0i 
 x0i) +
P

k 6=i
�
1=2
i xk
�i��k (x

0
i 
 x0k).

Remarks

P1.1 Proposition 1 is the central ingredient in order to apply the test for structural breaks to

the eigensystem. It states that the estimation errors �̂i;� � �i, x̂i;� � xi and ̂i;� � i are,
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asymptotically, linear functions of �̂� � �; thus, the IP and the SIP in Theorem 1 carry

through to the estimated eigensystem. The results in Proposition 1, and the method of

proof, can be compared to related results in Kollo and Neudecker (1997).

P1.2 By (10), the asymptotic covariance matrix of
p
T (x̂i;� � xi) is vx;iV�v0x;i. It can be shown

(see e.g. Kollo and Neudecker, 1997, p. 66) that vx;iV�v
0
x;i is singular; given that there is

no obvious way to calculate the rank of vx;iV�v
0
x;i, it is di�cult to prove the consistency

of the Moore-Penrose inverse for vx;iV�v
0
x;i (see Andrews, 1987). Thus, we recommend to

carry out tests on the eigenvectors using the is.

P1.3 Proposition 1 shows that �̂i;� � �i is linear in �̂� � � to the order Op
�
T�1

�
; the

proof of the proposition shows that the leading order term in the approximation error

is T�1
P

k 6=i [x̂
0
i 
 x̂0k]

~V�
�̂i��̂k

[x̂k 
 x̂i], so �nite sample improvements may be obtained us-

ing ~�i;� = �̂i;�� T�1
P

k 6=i [x̂
0
i 
 x̂0k]

~V�
�̂i��̂k

[x̂k 
 x̂i]. This result is of independent interest;

it could be useful e.g. when measuring the percentage of the total variance of yt explained

by each of its principal components. Similarly, in equation (36) in appendix we pro-

vide a formula to estimate the expected value of the Op
�
T�1

�
order terms of (x̂i;� � xi);

combining these results, a bias-correction for ̂i;� can also be computed.

De�ne � � [�1; :::; �n]
0 as the n-dimensional vector containing the eigenvalues sorted in

descending order, and � � [1; :::; n]; ẑ �
�
�̂
0
; vec

�
�̂
�0�0

with ẑ� � z = D�vec
�
�̂� � �

�
+

Op
�
T�1

�
and D� �

�
x1 
 x1; :::; xn 
 xn; v0;1; :::; v0;n

�0
. The matrix D� can be estimated as

D̂� =
�
x̂1 
 x̂1; :::; x̂n 
 x̂n; v̂0;1; :::; v̂0;n

�0
, with v̂;i =

1
2
x̂i

�̂
1=2
i

(x̂0i 
 x̂0i) +
P

k 6=i
�̂
1=2
i x̂k
�̂i��̂k

(x̂0i 
 x̂0k).

The asymptotics of ẑ� follows from Theorem 1 and Proposition 1, and we summarize it

below.

Corollary 1 Under Assumptions 1 and 3, as T !1, it holds that
p
T (ẑ� � z) d! [Vz]

1=2Wn(2n+1) (�).

Also, there exists a � > 0 such that T (ẑ� � z) =
PbT�c

t=1
~Xt + Oa:s:

�
bT�c

1

2
��
�
, uniformly in � ,

where Vz = D�V�D
0
� and

~Xt is a zero mean, i.i.d. Gaussian sequence with E
�
~Xt
~X 0
t

�
= Vz.

Corollary 1 entails that

p
T
�
�̂� � �

�
d! [V�]

1=2Wn (�) ;

p
Tvec

�
�̂� � �

�
d! [V�]

1=2Wn2 (�) ;
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with: V� a matrix with (i; j)-th element given by V
�
ij = (x0i 
 x0i)V� (xj 
 xj), and V� is an

�
n2 � n2

�
-dimensional matrix whose (i; j)-th n� n block is de�ned as V �ij = v;iV�v

0
;j .

3 Testing

This section studies the null distribution and the consistency of tests based on CUSUM-type

statistics.

Henceforth, we de�ne the CUSUM process S (�) =
PbT�c

t=1 vec (yty
0
t). In light of Corollary 1,

test statistics for � and its eigensystem can be based on

~S (�) = R�D� �
�
S (�)� bT�c

T
S (1)

�
; (12)

with ~S (�) = 0 for � � 1
T or � 1� 1

T , and R a p�n (n+ 1) matrix. For example, when testing for

the null of no changes in the largest eigenvalue, R is the matrix that extracts the �rst element

of D� �
h
S (�)� bT�c

T S (1)
i
. Thence, testing is carried out by using (the supremum of)

�T (�) =

s
T

bT�c � bT (1� �)c �
h
~S (�)0 ~V �1z;�

~S (�)
i1=2

; (13)

with ~Vz;� = RD�
~V�;�D

0
�R

0. The test statistic de�ned in (13) can be compared with the one

proposed by Aue et al. (2009), which, in our context, would be based on (the supremum of)

�AT (�) =

r
1

T
�
h
~S (�)0 ~V �1z;�

~S (�)
i1=2

: (14)

Contrasting (13) with (14), it is clear that the only di�erence between the two test statistics

is the norming factors,
q

T
bT�c�bT (1��)c versus

q
1
T . However, such di�erence is crucial: by

virtue of the weighing scheme proposed in (13), we are able to detect the presence of breaks

closer to either end of the sample than a�orded by (14). More speci�c comments on the power

properties of tests based on (13) versus tests based on (14) are in the remarks to Theorem 4;

here we point out that the price to pay is that we are not able to study the limiting distribution

of the supremum of (13) using the IP shown in Theorem 1, but conversely the SIP is needed.

Theorem 3 contains the asymptotics of supbT�c �T (�) under the null.
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Theorem 3 Under Assumptions 1-3, as (m;T )!1 with 1
m +m

lnTp
T
! 0,

sup
bT�1c�bT�c�bT�2c

�T (�)
d! sup
�1����2

kBp (�)kp
� (1� �)

; (15)

where Bp (�) is a p-dimensional standard Brownian bridge and [�1; �2] � (0; 1). Also, as

(m;T )!1 with
p
ln lnT
m +m lnT

q
ln lnT
T ! 0,

P

(
aT

"
sup

n�bT�c�T�n
�T (�)

#
� x+ bT

)
! e�2e

�x
; (16)

where aT =
p
2 ln lnT and bT = 2 ln lnT+

p
2 ln ln lnT � ln �

�p
2

�
, with � (�) the Gamma function.

Remarks

T3.1 According to (15), the maximum is taken in a subset of [0; 1], namely [�1; �2]. This

approach requires an IP for S (�), and the Continuous Mapping Theorem (CMT). As

noted in Corollary 1 in Andrews (1993, p. 838), �T (�) is not continuous at f0; 1g and

sup1�bT�c�T �T (�)
p!1 under H0. Thus, trimming is necessary in this case. Further, in

this case it su�ces to have a consistent estimator of the long-run covariance matrix V�

which, in light of equation (6) in Theorem 2, entails that m ! 1 with m = o (T ). The

considerations in Remark T2.1 apply here.

T3.2 As an alternative approach, the SIP can be used: sums of �wt can be replaced by sums

of i.i.d. Gaussian variables, with an approximation error. Upon normalising �T (�) with

the appropriate norming constants, say aT and bT , an Extreme Value (EV henceforth)

theorem can be employed. Tests based on supn�bT�c�T�n [aT�T (�)� bT ] are designed to

be able to detect breaks close to the end of the sample. Results like (16) have been derived

by Horv�ath (1993), for i.i.d. Gaussian data, and extended to the case of dependence by

Ling (2007), inter alia. As far as the long-run covariance matrix estimator is concerned, in

this case the theory requires a consistent estimator at a rate (at least) op

��p
ln lnT

��1�
:

therefore, from (6), we need the restrictions
p
ln lnT
m ! 0 and m lnT

q
ln lnT
T ! 0.

Consistency of the test

We now turn to studying the behaviour of supn�bT�c�T�n �T (�) under alternatives. As a

leading example, we consider the case of testing for no change in � in presence of one abrupt

12



change

H(T )
a : vech(�t) =

8
><
>:

vech (�) for t = 1; :::; k0;T

vech (�) + �T for t = k0;T + 1; :::; T
; (17)

where both the changepoint (k0;T ) and the size of the break (�T ) could depend on T . More

general alternatives could be considered (see e.g. Andrews, 1993; Cs�org}o and Horv�ath, 1997):

these include epidemic alternatives, and also breaks that occur as a smooth transition over time

as opposed to abruptly as in (17). Further, note that (17) does not rule out the possibility that

only some series (i.e. only some of the coordinates of yt) actually have a break. This entails

that tests based on �T (�) are capable of detecting breaks that only a�ect some of the series,

and possibly at di�erent points in time.

Theorem 4 illustrates the dependence of the power on �T and k0;T .

Theorem 4 Let Assumptions 1-3 hold, and de�ne c�;T such that, under H0, P
h
supn�bT�c�T�n

�T (�) � c�;T ] = 1� � for some � 2 [0; 1]. If, under H(T )
a , as T !1

1

ln lnT

�
(T � k0;T ) k0;T

T
kRD��T k2

�
!1; (18)

it holds that

P

"
sup

n�bT�c�T�n
�T (�) > c�;T

#
! 1: (19)

Remarks

T4.1 Theorem 4 illustrates the impact of k0;T and �T on the power of tests based on supn�bT�c�T�n

�T (�). Particularly, consider the two extreme cases:

T4.1.a k�T k = O (1), i.e. �nite break size. In this case, the test has power as long as

k0;T is strictly bigger than O (ln lnT ). This can be compared with tests based on

sup1�bT�c�T T�1 ~S (�)0 ~V �1z;�
~S (�), which can be shown to have nontrivial power

in presence of �nite breaks at most as close as O
�p

T
�
to either end of the sam-

ple. Using similar algebra as in the proof of Theorem 4, it can be shown that

the noncentrality parameter of sup1�bT�c�T T�1 ~S (�)0 ~V �1z;�
~S (�) is proportional to

k�T k2
k2
0;T

T . Under k�T k = O (1), this entails that nontrivial power is attained as

long as k0;T = O
�p

T
�
.

T4.1.b k0;T = O (T ) - i.e. the break occurs in the middle of the sample. The test is powerful

as long as the size of the break is strictly bigger than O

�q
ln lnT
T

�
. When using

13



trimmed statistics such as in (15), the test is powerful versus mid-sample alternatives

of size O
�

1p
T

�
: when no trimming is used, there is some, limited loss of power versus

mid-sample alternatives.

T4.2 Equation (18) also indicates that the test has no power when RD��T = 0 (or whenever

it is \very small") This could e.g. happen in the case of having a break, however massive,

in the eigenvalue �i, and applying the test for a change in eigenvalue �j , j 6= i; such a test

is bound to have no ability to detect a change in �i, by construction.

In the Supplemental Material (Kao et al., 2015) we also show that all the results developed

above also hold when applied to residuals - that is, one can test for the stability of the covariance

matrix (and its eigensystem) of the error term in the multivariate regression (including e.g. a

VAR)

yt = �xt + "t; (20)

where t = 1; :::; T and yt and "t are n� 1 vectors, xt is of dimension q � 1 (and results can be

extended to also include linear or polynomial trends in xt) and the matrix of regressors � has

dimensions n� q. As shown in the Supplemental Material (Kao et al., 2015), the extension to

residuals only requires that xt"t and "t satisfy similar assumptions to the one spelt out above.

Computation of critical values

Based on Theorem 3, there are two possible approaches to the computation of critical values:

either using the EV distribution in (16) or using an approximation similar to that proposed in

Cs�org}o and Horv�ath (1997, Section 1.3.2).

Direct computation of critical values c�;T for a test of level � is based on c�;T = a�1T
�
bT � ln

�
�1
2 ln (1� �)]g. Thus, critical values only depend on p and T . It is well known that

convergence to the EV distribution is usually very slow, which hampers the quality of c�;T .

Alternatively, critical values can be simulated from

P

8
<
: sup
hnT���1�hnT

"
pX

i=1

B21;i (�)

� (1� �)

#1=2
� c0�;T

9
=
; = 1� �; (21)

where the B1;i (�)s are independent, univariate Brownian bridges, generated over a grid of

dimension T . We set T � hnT = max
n
n; ln3=2 T

o
. The \time series" part of this bound (i.e.

the ln3=2 T part) is based on Cs�org}o and Horv�ath (1997, p. 25), who show that computing
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the maxima over restricted intervals (speci�cally, by truncating at T � hnT = ln3=2 T ) yields

tests with good size properties; in our simulations, we have tried other solutions to restrict

the interval over which the maximum is taken, but truncating at ln3=2 T yielded the best size

properties. In addition to this, due to the multivariate nature of the problem, we also need to

truncate at n; this is in order to have full rank estimated covariance matrices. In view of this,

critical values c0�;T are to be simulated for a given combination of p, n and T . For the purpose

of comparison, critical values for the test statistic de�ned in (14), based on Aue et al. (2009),

are computed by using the largest value taken by
Pp

i=1B
2
1;i (�) across the whole grid for each

simulation.

4 Monte Carlo evidence

We evaluate size and power through a Monte Carlo exercise. Data are generated according to

the following DGP:

yt = �yt�1 + et + �et�1: (22)

Under the null, we simulate et as i.i.d. N (0; In). Our experiments are conducted by setting

(�; �) = f(0; 0) ; (0:5; 0) ; (0; 0:5) ; (0;�0:5)g; as far as the sample size T , and the matrix dimen-

sion n, are concerned, experiments are reported for T = f50; 200; 500g and n = f3; 10g. Finally,

in order to avoid dependence on initial conditions, T + 1000 data are generated, discarding the

�rst 1000 observations.

As far as the test is concerned, this is based on

sup
ThnT�bT�c�T�ThnT

�T (�) ; (23)

where hnT is de�ned above as hnT = max
n
n
T ;

ln3=2 T
T

o
. In all experiments, we use the long run

variance estimator in (3), based on full sample estimation of the autocovariance matrices with

m = T 2=5.

Testing for changes in the largest eigenvalue

In the �rst set of experiments, we test for the null of no changes in the largest eigenvalue of
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�. Under the alternative, breaks in E (ete
0
t) are de�ned as

8
><
>:

In for t = 1; :::; k

In +� for t = k + 1; :::; T
: (24)

Breaks are evaluated according to the following schemes

k =

�
T

2

�
and � =

r
ln lnT

T 2=3
� In; (25)

k =

�
T

2

�
and � =

r
ln lnT

T 1=2
� In; (26)

k = ThnT + 1, k =
1

2
(lnT )2 , k =

1

2
(lnT )5=2 and k = 3

p
T ; � = In (27)

The �rst two alternatives consider power versus mid-sample breaks; the last set of alternatives

considers breaks of �nite magnitude that are close to the beginning of the sample.

[Insert Tables 1-4 somewhere here]

We note that:

1. as far as size is concerned, considering a 5% level, Table 1 shows that the test is, in gen-

eral, undersized in small samples; this tends to disappear as T increases, with empirical

rejection frequencies belonging, in general, to the interval [0:04; 0:06] with few exceptions.

Interestingly, higher values of n have a slight tendency to reduce the size. Similar results

are found with Aue et al.'s (2009) test based on (14);

2. as far as power is concerned:

a. mid-sample breaks are studied in Tables 2-3, which correspond to cases (25) and (26)

respectively. The test has good power, with the power increasing as n increases. As

predicted by the theory, the test by Aue et al.'s (2009) has higher power. Note the

adverse impact of higher serial correlation on both tests;

b. breaks close to the beginning of the sample are considered in Table 4, corresponding

to equation (27). The test has power versus �nite alternatives that are close to the

beginning of the sample, and the power increases with n;
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- as is natural, Aue et al.'s (2009) test has very little power versus beginning of sample

alternatives; by construction, such tests do not have power versus changes that

occur closer than O
�p

T
�
periods to the beginning (or the end) of the sample;

again, note the adverse e�ect of higher serial correlation on the power of both

tests.

Testing for changes in the covariance matrix

We also carry out a second set of experiments to evaluate the performance of the test when

applied to detect a change in E (yty
0
t). The test is based on the null that all eigenvalues are

constant - that is, it is an omnibus test for breaks in the trace of �. We consider one mid-sample

break (based on equation (26)) and one end-of-sample break (based on equation (27)); the full

set of results is in Tables A1-A3 in the Supplemental Material (Kao et al., 2015).

The main �ndings are as follows:

1. as far as size is concerned, as n increases, the test becomes increasingly conservative in

�nite samples; however, as T !1, the empirical rejection frequencies tend towards their

nominal values;

2. as far as power is concerned:

a. under mid-sample alternatives, the power increases monotonically with T as expected.

As far as n is concerned, the power seems to have a mild tendency to increase with

n. As expected, in this context our test is less powerful than the one proposed by

Aue et al. (2009), and it has power higher than 50% when T � 200;

b. under end-of-sample alternatives, as n increases, the power also increases. As expected,

our test is decidedly more powerful than the test by Aue et al. (2009), at least for

large samples (T � 200). Neither test has satisfactory power when the sample size

is small;

c. in both experiments, we also considered a break of equal magnitude and location as

above, but only for the �rst element in the matrix, i.e. the volatility of the �rst

series. We considered the case of i.i.d. data only. Results are comparable with the

rest of the tables.
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Other experiments

We conducted some more limited experiments to assess how the test works in presence

of \boundary" situations - such as a nearly singular covariance matrix (which nearly violates

Assumption 3), or a highly persistent autoregressive process (which is bound to hamper the

performance of the weighted-sum-of-covariances estimators of the long-run variance V�).

1. The case of a nearly singular covariance matrix (Table B1 in the Supplementary Material)

has been simulated by using et � N (0; Cn) in the DGP de�ned in equation (22), where

Cn is an n-dimensional diagonal matrix de�ned as

fCngii =

8
><
>:
1 for i = 1

U [0; 0:02] for 2 � i � n
: (28)

This set-up, with one large eigenvalues and the others being very small, corresponds to

the case of having a factor model. By way of comparison, we also carried out the same

exercise, but with data generated by setting et � N (0; In). We test for the stability of

the �rst principal component, considering size and power versus mid-sample and end-of-

sample alternatives: in presence of very small eigenvalues, the test still has good size and

power properties, although power is better (especially as n grows) when eigenvalues are

of comparable magnitude.

2. The case of highly autocorrelated data (Table B2 in the Supplementary Material) has been

simulated using the following variant of the DGP de�ned in (22)

yt = 0:9yt�1 + et: (29)

Without pre-whitening, the test is so grossly oversized (empirical rejection frequencies,

under the null, are well above 50%) that we do not even report the results: the basic

message is that the test cannot be employed in presence of highly correlated data. This

is essentially due to the poor performance of the long-run variance estimator; unreported

experiments where the test is carried out using the population long-run variance reinforce

this conjecture. As a solution, we suggest pre-whitening, which in our case we carry out

by estimating a VAR(1) and using a short bandwidth chosen as m = T 1=4: in this case,

results are very good in terms of power and size. By way of robustness check, we have
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also tried to assess whether, in presence of a mis-speci�ed pre-whitening, the test works

well - to this end, we have simulated data as

yt = 0:9yt�1 + et + 0:9et�1;

with pre-whitening being carried out as before - i.e. by using a VAR(1). Results show that

even when pre-whitening is not correctly speci�ed, the test has the correct size, and good

power versus mid-sample alternatives; however, the power versus breaks close to either

end of the sample is signi�cantly lower when the pre-whitening is not correctly speci�ed.1

5 Application: the time stability of the covariance matrix of

interest rates

In this section, we apply the theory developed above to test for the stability of the covari-

ance matrix of the term structure of interest rates - returns, computed as log di�erences of

zero-coupon bond prices are used, since preliminary analysis shows that the yields are highly

persistent. Our analysis is motivated by the study in Perignon and Villa (2006), and follows

similar steps.

As a �rst step, we investigate whether the \volatility curve" (i.e. the term structure of the

volatility of interest rates) changes over time; this corresponds to testing for the stability of the

main diagonal of the covariance matrix. Further, we verify whether the whole covariance matrix

changes. This could be done by directly testing for the constancy of the matrix. Alternatively,

in order to reduce the dimensionality of the problem, one could check whether the main three

principal components (customarily known as level, slope and curvature) are stable through time.

We choose the latter approach, verifying separately, for each principal component, whether

sources of time variation are in the loadings (i.e. the eigenvectors) or in the volatility (i.e. the

eigenvalues), or both.

Previous studies have found evidence of changes in the yield curve. Using a descriptive

approach based on splitting the sample at some predetermined points in time, indicated by

stylised facts, Bliss (1997) �nds that the eigenvectors of the covariance matrix of interest rates

are quite stable, although the eigenvalues di�er across subsamples. Perignon and Villa (2006),

1It should be noted that pre-whitening is only one possible approach - an alternative of increasing popularity
in the econometric literature is to use a �xed bandwidth approach, setting m = cT ; we refer to Muller (2014) for
an analysis of this approach that goes beyond the scope of the present paper.
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under the assumption that data are i.i.d. Gaussian, �nd evidence of changes in the volatilities

(eigenvalues) of the principal components across four di�erent subperiods (chosen a priori) in

the time interval January 1960 - December 1999.

We apply our test to US data, considering monthly and weekly frequencies, spanning from

April 1997 to November 2010 (monthly - the sample size is Tm = 164) and from the �rst week

of April 1997 to the last week of November 2010 (weekly - the sample size is Tw = 713); the use

of di�erent frequencies within the same endpoint may be helpful to show whether the properties

of the data depend on their frequency or not. The number of maturities which we consider is

n = 18, corresponding to (1m, 3m, 6m, 9m, 12m, 15m, 18m, 21m, 24m, 30m, 3y, 4y, 5y, 6y, 7y,

8y, 9y, 10y). Figure 1 reports the term structure in the period considered.

[Insert Figure 1 somewhere here]

In the Supplemental Material, we also report some descriptive statistics (Table C). Since

there seems to be some serial correlation (at least with lower maturities), we pre-whiten the data

using the VAR(1) scheme employed in the previous section. We let yt denote, henceforth, the

demeaned 18-dimensional vector of maturities. The �rst step of our analysis is an evaluation

of the stability of the variances, i.e. of the elements on the main diagonal of � = E (yty
0
t).

Instead of checking for the stability of the whole main diagonal, we test the volatilities one by

one; this approach should be more constructive if the null of no changes were to be rejected,

in that it would indicate which maturity changes and when. In order to control for the size of

this multiple comparison, we propose a Bonferroni correction, computing the critical values for

each test as �I =
�P
n , where �P is the size of the whole procedure. Using these critical values

yields, approximately, a level �P not greater than 1%, 5% and 10% corresponds to conducting

each test at levels �I = 0:056%, 0:28% and 0:56% respectively.

As a second step, we verify whether the �rst three principal components are constant over

time. Particularly, we carry out separately the detection of changes in the volatility of the

principal components (verifying the time stability of the three largest eigenvalues, say �1, �2

and �3), and in their loading (verifying the stability of the eigenvalue-normed eigenvectors

corresponding to the three largest eigenvalues, denoted as 1, 2 and 3). As far as eigenvectors

are concerned, (10) and (11) ensure that, when running the test, the CUSUM transformation

of the estimated is has the same sign for all values of � , thus overcoming the issue of the

eigenvectors being de�ned up to a sign.
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Results for both experiments, at both frequencies, are reported in Table 5 (critical values

are in Table D in the Supplemental Material (Kao et al., 2015)).

[Insert Table 5 somewhere here]

Interestingly, when using a 5% level, rejections occur for the same maturities, whether one

uses the Bonferroni correction or not. The only exception is the test for the stability of the

second eigenvector, 2, when using weekly data, where the null of no change is now rejected

at 5%. A marginal discrepancy can be observed in Panel A of Table 5, when testing for the

constancy of the diagonal elements of � with weekly data. When considering a single hypothesis

testing approach, two maturities (the 30 months and the 3 years ones) now appear to have a

break. The rest of the results (especially the absence of breaks in monthly data) is the same as

when using a Bonferroni correction.

Table 5 shows some discrepancy between monthly and weekly data. Monthly data, as a

whole, have a stabler covariance structure over time, with no changes in the volatilities of the

maturities, or in any of the principal components. Indeed, the only instability is observed in

the eigenvalue structure (Panel B): �3, the volatility of the curvature, has a break signi�cant

at 5%. The corresponding estimated breakdate, selected as the maximizer of the CUSUM

statistic, is January 2008. As far as weekly data are concerned, there is evidence of instability

in the covariance structure. At a \macro" level, the variances of longer maturities (from 5 years

onwards) change, whilst the variances of shorter maturities are constant (see Panel A). For

most maturities, the breakdate is around the �rst week of December 2007, which is generally

associated with the deepening of the recent recession. It is interesting to note that the longest

maturities (9 and 10-year ones) have a break at around the last week of August 2008. As far as

principal components are concerned, Panel B of Table 5 shows that whilst the volatility of slope

and curvature does not change over time, the loading of the level changes at the �rst week of

December 2007, consistently with the �ndings for the variances. As Panel C of the table shows,

the loadings of principal components are subject to change: the level and the curvature change

signi�cantly around the middle/end of March 2008 (possibly due to an \attraction" e�ect of

the variance of the 10-year maturity); the slope has a signi�cant break also, a few weeks later.

The presence of signi�cant changes in the loadings of each principal component as a result of

the 2007-2009 recession is a di�erent feature to what Perignon and Villa (2006) found in the

time period they consider, when eigenvectors were not subject to changes over time.
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Finally, we report the proportion of the total variance explained by each principal component

before and after this date.

[Insert Table 6 somewhere here]

6 Conclusions

In this paper, we propose a test for the null of no breaks in the eigensystem of a covariance

matrix. The assumptions under which we derive our results are su�ciently general to accom-

modate for a wide variety of datasets. We show that our test is powerful versus alternatives

as close to the boundaries of the sample as O (ln lnT ). Results are extended to testing for

the stability of the eigensystem. We also derive a correction for the �nite sample bias when

estimating eigenvalues and eigenvectors, which can be relatively severe for large n or small T .

The theory is also extended to develop tests for the null of no change in the covariance matrix

of the error term in a multivariate regression (including the case of VARs; see the Supplemental

Material (Kao et al., 2015). As shown in Section 4, the properties of the test are satisfactory:

the correct size is attained under various degrees of serial dependence, and the test exhibits

good power.

The results in this paper suggest several avenues for research. An important issue is the

speci�cation of the long-run variance estimator when implementing the test. Monte Carlo

evidence suggests that employing the estimator with pre-whitening, subsequently choosing a

small bandwidth, yields good results - this could be an initial guideline for the applied user.

Also, the theory is derived under the minimal assumption that the 4-th moment exists. Aue

et al. (2009) provide a discussion as to how to proceed if this is not the case, which involves

fractional transformations of the series, viz. y�it for some � 2 (0; 1), although the optimal choice

of � is not straightforward. Also, the estimator of the long-run variance V� proves to be crucial

in a�ecting the properties of the test. These issues are currently under investigation by the

authors.

Supplemental Material [doi]COMPLETED BY THE TYPESETTER .pdf We provide tech-

nical Lemmas, and further Monte Carlo output.
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Appendix: Proofs of the main results

Proof of Theorem 1. The proof of (1) is essentially based on checking the validity

of the assumptions in Theorem 29.6 in Davidson (1994, p. 481) for the normalized sequence

�wT;t = V
�1=2
�;T �wt. In light of Lemma 2 in the Supplemental Material (Kao et al., 2005), �wT;t,

for given values of � and r in Assumption 2, is L2-NED on the strong mixing base fvtg+1t=�1
with size �0 > 1

2 , which entails the validity of Assumption (c) in Davidson (1994; Theorem

29.6). Assumption 1(ii) implies that E ( �wT;t) = V
�1=2
�;T E ( �wt) = 0. Assumption (b) in Theorem

29.6 in Davidson (1994, p. 482) follows from Assumption 1(ii) and from noting that, in light of

Assumption 1(i), suptE
�
k �wtkr=2

�
<1. Assumptions (d) and (f) in Theorem 29.6 in Davidson

(1994) are implied by Assumption 1(iii). Finally, Assumption (e) follows from the LLN entailed

by Assumptions 1(iii). Thus, (1) holds.

As far as (2) is concerned, its proof is based on Theorem 1 in Eberlein (1986, p. 263).

Lemma 2 in the Supplemental Material (Kao et al., 2005) entails that �wt is a zero-mean L2+�-

mixingale of size �00 > 1
2 . Letting =m = f �w1;:::; �wmg and STm � Pm+T

t=m+1 �wt, (2) follows if

jE [STmj =m]j2 < 1 and jE [SiTmSjTmj =m] � E [SiTmSjTm]j = O
�
T 1��

�
for � > 0 and all i,

j. Both conditions can be proved following the same passages as in Corradi (1999, p. 651-652).

Proof of Theorem 2. The proof is similar to the proof of Lemma 2.1.1 in Cs�org}o and

Horv�ath (1997, p. 74-75). In view of Lemma 3 in the Supplemental Material (Kao et al., 2005),

a SLLN holds (see Ling, 2007, Theorem 2.1), whereby for all l

1

bT�c

bT�cX

t=1

vec
�
�wt �w

0
t�l � E

�
�wt �w

0
t�l
��
= oa:s:

 
1

bT�c�0

!
;

similarly, �̂� �� = oa:s:

�
bT�c��0

�
, since wt also satis�es the assumptions needed for Theorem

2.1 in Ling (2007). This entails that, for any " > 0 and "0 > 0, there is an integer gT = gT ("; "
0)

such that

P

"
sup

gT�bT�c�T
bT�c�0

	̂l;� �	l
 > "

#
� "0;

P

"
sup

1�bT�c�T�gT
bT�c�0

	̂l;� �	l
 > "

#
� "0:

These yield sup1�bT�c�T

	̂l;� �	l
 = op

�
1
T �

0

�
. This proves (4).
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In order to prove (5), note that

 ~V�;� � V�
 �


�
	̂0;� � �	0

�
+
�
	̂0;1�� � (1� �)	0

�

+2
mX

l=1

�
1� l

m

�h�
	̂l;� � �	l

�
+
�
	̂l;1�� � (1� �)	l

�i

+2

mX

l=1

l

m
k	lk+ 2

1X

l=m+1

k	lk

= I + II + III:

Note �rst that Assumption 2(i)(b) entails III = o (m�s); clearly, this holds uniformly in � .

Also, again by Assumption 2(i)(b), II = 2m�1O (1) = O
�
m�1�, again uniformly in � . We

now study I; in particular, we will consider the quantity
Pm

l=0

�
1� l

m

� �
	̂l;� � �	l

�
. Letting

b�wt = wt � vec
�
�̂�

�
, we have

E



mX

l=0

�
1� l

m

�
1

T

bT�cX

t=1

�
b�wtb�w0t�l �	l

�


2

� T�2
mX

l=0

mX

h=0

E

2
4


bT�cX

t=1

�
b�wtb�w0t�l �	l

�




bT�cX

t=1

�
b�wtb�w0t�h �	h

�


3
5

� T�2
mX

l=0

mX

h=0

E1=2



bT�cX

t=1

�
b�wtb�w0t�l �	l

�


2

E1=2



bT�cX

t=1

�
b�wtb�w0t�h �	h

�


2

;

we know by the proof of Theorem 2.1 in Ling (2007) that there is a constant �0 > 0 such that

E1=2

PbT�c

t=1

�
b�wtb�w0t�l �	l

�
2
= O

�
bT�c1��0

�
; therefore,

E



mX

l=0

�
1� l

m

�
1

T

bT�cX

t=1

�
b�wtb�w0t�l �	l

�


2

= O
�
m2 bT�c�2�0

�
;

which entails (see Moricz, 1983)

E sup
0�m0�m

sup
1�bT�c�T



m0X

l=0

�
1� l

m0

�
1

T

bT�cX

t=1

�
b�wtb�w0t�l �	l

�


2

= O
�
m2T�2�

0

lnm lnT
�
;
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and note that lnm � lnT . Hence, it can be shown that

sup
1�bT�c�T

nh�
	̂0;� � �	0

�
+
�
	̂0;1�� � (1� �)	0

�i
+

2

mX

l=1

�
1� l

m

�h�
	̂l;� � �	l

�
+
�
	̂l;1�� � (1� �)	l

�i)

= Op

�
mT��

0

lnT
�
:

Thus, (5) follows.

Equation (6) follows from the same passages as above; however, Lemma 4 in the Supple-

mental Material (Kao et al., 2005) implies that

E



bT�cX

t=1

�
b�wtb�w0t�l �	l

�


2

� K

TX

t=1

M 00
t = O (T ) ;

where K <1 and M 00
t � max

n
M 0
t ; E kytk2r

o
- see Corollary 16.10 in Davidson (1994, p. 255).

Proof of Proposition 1. The estimation error in �̂ can be represented as a perturbation of

�, with �̂� = �+
�
�̂� � �

�
. Recall that in light of Theorem 1, supbT�c

�̂� � �
 = Op

�
T�1=2

�
.

The eigenvalue problem for the perturbed matrix is

h
�+

�
�̂� � �

�i
[xi + (x̂i;� � xi)] =

h
�i +

�
�̂i;� � �i

�i
[xi + (x̂i;� � xi)] : (30)

After expanding the product, consider the terms
�
�̂� � �

�
(x̂i;� � xi) and

�
�̂i;� � �i

�
(x̂i;� � xi).

It holds that �̂i;� � �i = Op
�
T�1=2

�
uniformly in � . This is because � is symmetric, and there-

fore Corollary 6.3.4 in Horn and Johnson (1999, p. 367) entails that
����̂i;� � �i

��� �
�̂� � �

.

Equation (1) yields the result. Also, it holds that x̂i;� � xi = Op
�
T�1=2

�
uniformly in � .

This follows from the sin� Theorem in Davis and Kahan (1970, p. 10). Letting �� =

min1�i�k;1�j�n�k
����i � �̂j

���, this entails that

jsin (x̂i;� ; xi)j � ��1�


�
�̂� � �

�
�
 ;

where � = [x1j::::jxn] and sin (x̂i;� ; xi) is the sine of the angle between the spaces spanned by x̂i;�
and xi. Now, after some manipulations, sin (x̂i;� ; xi) =

q
1� x̂0i;�xi = 2�1=2

q
(x̂i;� � xi)0 (x̂i;� � xi);

also, by the Continuous Mapping Theorem, ��1� = min1�i�k;1�j�n�k j�i � �j j + op (1). These
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results entail that the order of magnitude of x̂i;� � xi is the same as that of �̂� � �. Thus,
�
�̂� � �

�
(x̂i;� � xi) and

�
�̂i;� � �i

�
(x̂i;� � xi) are Op

�
T�1

�
uniformly in � ; hence (30) can

be written as

� (x̂i;� � xi) +
�
�̂� � �

�
xi = �i (x̂i;� � xi) +

�
�̂i;� � �i

�
xi +Op

�
T�1

�
: (31)

Consider (9). Premultiplying (31) by x0i, we obtain x
0
i� (x̂i;� � xi) + x0i

�
�̂� � �

�
xi = �ix

0
i (x̂i;� � xi)

+
�
�̂i;� � �i

�
x0ixi. Recalling that x

0
i� = �ix

0
i, and that x

0
ixi = 1, we have x0i

�
�̂� � �

�
xi =

�̂i;� � �i, which entails (9). In order to prove (10), note that the xis are a complete (and

orthonormal) basis. This entails that there exists a unique set of constants
�
�i;j;�

	n
j=1

such

that

x̂i;� � xi =
nX

j=1

�i;j;�xj : (32)

We now discuss the constants �i;j;� . Let us start by premultiplying (31) by any x
0
k for i 6= k;

using the identity x0i� = �ix
0
i, we obtain

x0k� (x̂i;� � xi) + x0k
�
�̂� � �

�
xi = x0k�i (x̂i;� � xi) +Op

�
T�1

�
;

so that, using the identity x0i� = �ix
0
i

�kx
0
k (x̂i;� � xi) + x0k

�
�̂� � �

�
xi = �ix

0
k (x̂i;� � xi) +Op

�
T�1

�
;

using (32)

�kx
0
k

nX

j=1

�i;j;�xj + x
0
k

�
�̂� � �

�
xi = �ix

0
k

nX

j=1

�i;j;�xj +Op
�
T�1

�
;

which reduces to

�k�i;k;� + x
0
k

�
�̂� � �

�
xi = �i�i;k;� +Op

�
T�1

�
;

which yields

�i;k;� =
x0k

�
�̂� � �

�
xi

�i � �k
+Op

�
T�1

�
: (33)

Also, note that

�i;i;� = x0i (x̂i;� � xi) = x0ix̂i;� � 1 = �
1

2
(x̂i;� � xi)0 (x̂i;� � xi) = Op

�
T�1

�
: (34)
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Thus, by (32) and (34)

x̂i;� � xi =
X

j 6=i

x0k

�
�̂� � �

�
xi

�i � �k
xj +Op

�
T�1

�
;

which proves (10). Using the results above, it holds that

̂i;� = �̂
1=2

i;� x̂i;� = �
1=2
i

"
1 +

�̂i;� � �i
2�i

+Op

��̂i;� � �i

2
�#
[xi + (x̂i;� � xi)]

= �
1=2
i xi + �

1=2
i (x̂i;� � xi) +

�̂i;� � �i
2�
1=2
i

xi +Op
�
T�1

�
;

which, combining (9) and (10), yields (11).

We now turn to deriving the bias estimator for �̂i;� ��i. Expanding (30) and premultiplying

by x0i we obtain

�
�̂i;� � �i

� �
1 + x0i (x̂i;� � xi)

�
= x0i

�
�̂� � �

�
xi + x

0
i

�
�̂� � �

�
(x̂i;� � xi) ;

applying Taylor's expansion

�̂i;� � �i = x0i
�
�̂� � �

�
xi �

�
x0i (x̂i;� � xi)

� h
x0i
�
�̂� � �

�
xi

i
+ x0i

�
�̂� � �

�
(x̂i;� � xi)

�
�
x0i (x̂i;� � xi)

� h
x0i
�
�̂� � �

�
(x̂i;� � xi)

i
+Op

�
T�5=2

�

= x0i
�
�̂� � �

�
xi + I + II + III:

Given that �̂� � � = Op
�
T�1=2

�
, and using (34), we get that I = Op

�
T�3=2

�
and III =

Op
�
T�2

�
. As far as II is concerned, note that using (10), x0i

P
k 6=i

x0k(�̂���)xi
�i��k xk = 0. Also

II =
�
x0i 
 (x̂i;� � xi)0

�
vec

�
�̂� � �

�

=

2
4x0i 


X

k 6=i

x0k
�i � �k

x0k
�
�̂� � �

�
xi

3
5 vec

�
�̂� � �

�
+Op

�
T�3=2

�

=
X

k 6=i

�
x0i 


x0k
�i � �k

� h
vec

�
�̂� � �

�i h
vec

�
�̂� � �

�i0
[xk 
 xi] +Op

�
T�3=2

�

= IIa +Op

�
T�3=2

�
:

We have IIa = Op
�
T�1

�
, and this is the dominating term in the bias..

The higher order terms of x̂i;� � xi can be studied from (10) following similar passages.
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Using (30), and premultiplying both sides by x0k, we have

�kx
0
k (x̂i;� � xi) + x0k

�
�̂� � �

�
xi + x

0
k

�
�̂� � �

�
(x̂i;� � xi)

= �ix
0
k (x̂i;� � xi) +

�
�̂i;� � �i

�
x0k (x̂i;� � xi) ;

whence

�k�i;k;� + x
0
k

�
�̂� � �

�
xi + x

0
k

�
�̂� � �

�
(x̂i;� � xi) = �i�i;k;� +

�
�̂i;� � �i

�
�i;k;� ;

so that (33) becomes

�i;k;� =
x0k

�
�̂� � �

�
x̂i

�i � �k +
�
�̂i � �i

� ;

note also that, by (34), x0i (x̂i;� � xi) = 1
2 (x̂i;� � xi)

0 (x̂i;� � xi). Hence we can write

x̂i;� � xi =
X

k 6=i

x0k

�
�̂� � �

�
x̂i

�i � �k +
�
�̂i � �i

�xk + x0i (x̂i;� � xi)xi (35)

=
X
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x0k
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"
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#
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0
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�
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�
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�
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�

=
X

k 6=i

x0k

�
�̂� � �

�
xi

�i � �k
xk + I + II + III +Op

�
T�3=2
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;

so that I + II + III can be estimated by

�
X

k 6=i

(x̂0k 
 x̂0i) V̂� (x̂i 
 x̂i)�
�̂i � �̂k

�2 x̂k+
X

k 6=i

X

h 6=i

(x̂0k 
 x̂0h) V̂� (x̂h 
 x̂i)�
�̂i � �̂k

��
�̂i � �̂h

� x̂k�
1

2

X

k 6=i

(x̂0k 
 x̂0i) V̂� (x̂k 
 x̂i)�
�̂i � �̂k

�2 x̂i;

(36)

or with a di�erent estimator for V̂� (e.g. ~V�;� ), or using partial sample estimates of the eigen-

system.

Proof of Theorem 3. The proof of (15) follows from (1), Theorem 2 and the CMT.

As far as (16) is concerned, the proof is based on the proof of Theorem A.4.1 in Cs�org}o and
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Horv�ath (1997, p. 368-370). Here we summarize the main steps, using, as a leading exam-

ple, _� (�) = 1p
T�(1��)

h
�S (�)0 ~V �1�;�

�S (�)
i1=2

, where �S (�) = S (�) � bT�c
T S (1). We also de�ne

�� (�) = 1p
T�(1��)

�
�S (�)0 V �1�

�S (�)
�1=2

; further, letting B1i (�) be a sequence of standard, inde-

pendent Brownian bridges for i = 1; :::; n2, we de�ne M (�) =
hPn2

i=1
B2
1i(�)

�(1��)

i1=2
. The Darling-

Erdos Theorem (see e.g. Corollary A.3.1 in Cs�org}o and Horv�ath, 1997, p. 366) states that

P
h
aT sup 1

T
���1� 1

T
M (�) � x+ bT

i
= e�2e

�x
, where the norming constants aT and bT are de-

�ned in the Theorem. In order to prove (16), it is enough to show that
���sup 1

T
���1� 1

T

_� (�) �

sup 1

T
���1� 1

T
M (�)

��� = op

h
(ln lnT )�1=2

i
. By virtue of Theorem 2, this entails that, as far as the

estimated long-run covariance matrix is concerned, we need to have sup1�bT�c�T

 ~V�;� � V�
 =

op

h
(ln lnT )�1=2

i
. This holds, by virtue of equation (6), if both

p
ln lnT
m ! 0 andm lnT

q
ln lnT
T !

0, whence the restrictions on m in the statement of the Theorem. Under such restrictions, it

su�ces to prove that

����� sup
1

T
���1� 1

T

�� (�)� sup
1

T
���1� 1

T

M (�)

����� = op

�
1p
ln lnT

�
: (37)

In order to show (37), note �rst that (2) yields the (weak) result

sup
1

T
���1� 1

T

����� (�)�M (�)
��� = op

�p
ln lnT

�
: (38)

Indeed, (2) entails

sup
u(T;")��� 1

2

[bT�c]�
����� (�)�M (�)

��� = op (1) ; (39)

sup
1

2
���1�u(T;")

[bT (1� �)c]�
����� (�)�M (�)

��� = op (1) ; (40)

for all sequences u (T; ") such that u (T; ") ! 0 and Tu (T; ") ! 1 as T ! 1; here, " is a

number between 0 and 1. Choosing Tu (T; ") = e(lnT )
"

, and applying Theorem A.3.1 in Cs�org}o

and Horv�ath (1997, p. 363) it holds that

1p
2 ln lnT

sup
1

T
���u(T;")

M (�)
p!
p
"; (41)

1p
2 ln lnT

sup
1�u(T;")���1� 1

T

M (�)
p!
p
":
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Hence, from (38)

1p
2 ln lnT

sup
1

T
���u(T;")

�� (�)
p!
p
";

1p
2 ln lnT

sup
1�u(T;")���1� 1

T

�� (�)
p!
p
":

De�ning � (T ) and � (T ) as sup1�bT�c�T M (�) = M [� (T )] and sup1�bT�c�T �� (�) = �� [� (T )],

the relationships above entail P [u (T; ") � � (T ) ; � (T ) � 1� u (T; ")] = 1 as T ! 1. Indeed,

using (41) as an illustrative example, as T !1 and "! 0

P

"
aT sup

1

T
���u(T;")

M (�)� bT � �K
#
= P

��p
"� 1

�
ln lnT � �K

�
= 0;

for some K > 0. Hence, (39) and (40) entail

sup
1

T
���1� 1

T

����� (�)�M (�)
��� = op

�
e�� ln

" T
�
;

and since
���sup 1

T
���1� 1

T

�� (�) � sup 1

T
���1� 1

T
M (�)

��� � sup 1

T
���1� 1

T

����� (�)�M (�)
���, (37) fol-

lows in view of
p
ln lnT e�� ln

" T ! 0.

Proof of Theorem 4. In order to prove (19), we show that, under H
(T )
a

P

"
sup

n�bT�c�T�n
�T (�) > c�;T

#
= P [�0 > c�;T �NCT ] ;

where �0 is the distribution of supn�bT�c�T�n �T (�) under the null of no change and NCT is

a non-centrality parameter. Tests based on supn�bT�c�T�n �T (�) are consistent as long as c�;T

� NCT ! �1 as T !1.

To begin with, note that

�2T (�) =
T

bT�c bT (1� �)c
~S (�)0 V̂ �1�

~S (�) ;

where we consider Assumption 2(i), and the full sample estimator only, for simplicity. Consider
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~S (�). Under H
(T )
a

s
T

bT�c bT (1� �)c
~S (�) =

s
T

bT�c bT (1� �)cRD�

2
4
bT�cX

t=1

�wt �
bT�c
T

TX

t=1

�wt

3
5

+RD��T

s
T

bT�c bT (1� �)c

2
4
bT�cX

t=1

I (t � k0;T )�
bT�c
T

TX

t=1

I (t � k0;T )

3
5

= ~S1 (�) + ~S2 (�) ;

where I (�) is the indicator function.

We show that under H
(T )
a ,

V̂� � V�
 is bounded in probability. Consider �̂; it holds that

vec
�
�̂
�
= vec (�t)+

h
T�k0;T

T � I (t � k0;T )
i
�T +op (1), where the op (1) term comes from a

LLN. Therefore

V̂� =
1

T

TX

t=1

�wt �w
0
t �

1

T

TX

t=1

�wt

�
T � k0;T

T
� I (t � k0;T )

�
�0T

� 1
T

TX

t=1

�
T � k0;T

T
� I (t � k0;T )

�
�T �w

0
t

+
1

T

TX

t=1

�
T � k0;T

T
� I (t � k0;T )

�2
�T�

0
T

= I + II + III + IV:

The LLN entails that I
p! V�; II and III have the same order of magnitude as each other.

Particularly, since
PT

t=1 �wt

h
T�k0;T

T � I (t � k0;T )
i
= Op

�p
T
�
, II = Op

�
k�T kp

T

�
. Finally

1

T

TX

t=1

�
T � k0;T

T
� I (t � k0;T )

�2

=
1

T

TX

t=1

�
T � k0;T

T

�2
� 2

�
T � k0;T

T

�2
+
1

T

TX

t=1

I (t � k0;T )

=
k0;T

T

T � k0;T
T

;

thus, IV = Op

�
k0;T
T

T�k0;T
T k�T k2

�
, which is Op (1) under H

(T )
a . This entails that

V̂� � V�
 =

Op (1) underH
(T )
a . Applying Taylor's expansion, we can write V̂ �1� = V �1� + �V �1�

�
V̂� � V�

�
�V �1� ,
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for some invertible matrix �V�. Further, consider the following intermediate result; since

~S2 (�) = RD��T

s
T

bT�c bT (1� �)c

��bT (1� �)c
T

k0;T

�
I (k0;T < bT�c)

+

�
T � k0;T

T
bT�c

�
I (k0;T � bT�c)

�
;

after some algebra we have

sup
1�bT�c�T

 ~S2 (�)
 = kRD��T k

s
k0;T

�
T � k0;T

T

�
: (42)

We now prove the theorem. It holds that

�T (�) = ~S1 (�)
0 V �1�

~S1 (�) + ~S2 (�)
0 V̂ �1�

~S2 (�)

+2 ~S1 (�)
0 V̂ �1�

~S2 (�) + ~S1 (�)
0 �V �1�

�
V̂� � V�

�
�V �1�

~S1 (�)

= I + II + III + IV:

Consider I; the sequence �wt is zero mean, and it satis�es the assumptions of Theorem 1, and

therefore ~S1 (�) follows the null distribution as T !1. Further, given that V̂� is Op (1) under

H
(T )
a , term II has the same order as supn�bT�c�T�n

 ~S2 (�)

2
, which isO

�
k0;T

T�k0;T
T kRD��T k2

�

in view of (42). Terms III and IV are of smaller order of magnitude than II: e.g. as far as III

is concerned, it holds that E
h
~S1 (�)

0 V̂ �1�
~S2 (�)

i
�
�
E
 ~S1 (�)


2
�1=2 �

E
 ~S2 (�)


2
�1=2

, since

V̂ �1� is Op (1); thus, supn�bT�c�T�n ~S1 (�)
0 V̂ �1�

~S2 (�) = O

�p
ln lnT

q
k0;T

T�k0;T
T kRD��T k

�
,

which is smaller than II, as T !1, when (18) holds. Therefore, underH(T )
a , P

h
supn�bT�c�T�n �T (�) > c�;T

i

= P [�0 > c�;T �NCT ], with

NCT = kRD��T k
s
k0;T

�
T � k0;T

T

�
+ o

"
kRD��T k

s
k0;T

�
T � k0;T

T

�#
:

In view of c�;T being O
�p
ln lnT

�
and of (18), it holds that c�;T � NCT ! �1 as T ! 1,

whence (19) follows.
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n T

(�; �) (0; 0) (0:5; 0) (0; 0:5) (0;�0:5)

3

50

8

<

:

Kao et al.

Aue et al.

200

8

<

:

Kao et al.

Aue et al.

500

8

<

:

Kao et al.

Aue et al.

0:013

0:006

0:041

0:029

0:044

0:034

0:015

0:002

0:048

0:023

0:058

0:027

0:009

0:003

0:041

0:025

0:043

0:029

0:010

0:005

0:040

0:029

0:045

0:033

10

50

8

<

:

Kao et al.

Aue et al.

200

8

<

:

Kao et al.

Aue et al.

500

8

<

:

Kao et al.

Aue et al.

0:004

0:005

0:030

0:023

0:044

0:036

0:006

0:003

0:053

0:033

0:063

0:033

0:004

0:005

0:040

0:028

0:057

0:035

0:002

0:004

0:029

0:026

0:051

0:040

Table 1. Empirical rejection frequencies for the null of no changes in the largest eigenvalue of �. Data are

generated according to equation (22).

n T � =

r

ln ln(T )

T2=3

(�; �) (0; 0) (0:5; 0) (0; 0:5) (0;�0:5)

3

50

8

<

:

Kao et al.

Aue et al.

200

8

<

:

Kao et al.

Aue et al.

500

8

<

:

Kao et al.

Aue et al.

0:035

0:014

0:235

0:293

0:427

0:533

0:021

0:001

0:180

0:185

0:302

0:350

0:027

0:010

0:211

0:228

0:371

0:424

0:034

0:006

0:191

0:232

0:335

0:410

10

50

8

<

:

Kao et al.

Aue et al.

200

8

<

:

Kao et al.

Aue et al.

500

8

<

:

Kao et al.

Aue et al.

0:032

0:020

0:356

0:440

0:528

0:661

0:026

0:012

0:247

0:248

0:364

0:430

0:033

0:021

0:273

0:328

0:449

0:536

0:021

0:015

0:309

0:336

0:434

0:537

Table 2. Power of the test for the null of no changes in the largest eigenvalue of �. Data are generated according

to equation (22) and under the alternative hypothesis speci�ed in equation (25).
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n T � =

r

ln ln(T )

T1=2

(�; �) (0; 0) (0:5; 0) (0; 0:5) (0;�0:5)

3

50

8

<

:

Kao et al.

Aue et al.

200

8

<

:

Kao et al.

Aue et al.

500

8

<

:

Kao et al.

Aue et al.

0:055

0:020

0:514

0:593

0:874

0:934

0:030

0:004

0:380

0:413

0:652

0:762

0:045

0:021

0:450

0:510

0:753

0:850

0:050

0:013

0:415

0:486

0:760

0:836

10

50

8

<

:

Kao et al.

Aue et al.

200

8

<

:

Kao et al.

Aue et al.

500

8

<

:

Kao et al.

Aue et al.

0:056

0:037

0:711

0:796

0:954

0:979

0:040

0:017

0:465

0:524

0:768

0:856

0:053

0:030

0:566

0:648

0:889

0:943

0:039

0:027

0:598

0:674

0:866

0:920

Table 3. Power of the test for the null of no changes in the largest eigenvalue of �. Data are generated according

to equation (22) and under the alternative hypothesis speci�ed in equation (26).

n T

k = ThnT + 1 k = 1
2 [ln (T )]

2 k = 1
2 [ln (T )]

5=2 k = 3
p
T

3

50

8

<

:

Kao et al.

Aue et al.

200

8

<

:

Kao et al.

Aue et al.

500

8

<

:

Kao et al.

Aue et al.

0:071

0:054

0:485

0:224

0:886

0:156

0:017

0:037

0:488

0:171

0:834

0:157

0:017

0:037

0:304

0:249

0:904

0:306

0:059

0:162

0:609

0:614

0:997

0:847

10

50

8

<

:

Kao et al.

Aue et al.

200

8

<

:

Kao et al.

Aue et al.

500

8

<

:

Kao et al.

Aue et al.

0:012

0:071

0:516

0:262

0:915

0:179

0:010

0:057

0:561

0:202

0:936

0:195

0:010

0:057

0:375

0:292

0:942

0:356

0:061

0:234

0:709

0:718

1:000

0:905

Table 4. Power of the test for the null of no changes in the largest eigenvalue of �. Data are generated as i.i.d.,

under the alternative speci�ed in equation (27).
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Panel A Panel B Panel C

H0 : �ii constant H0 : �i constant H0 : i constant

i

monthly weekly monthly weekly monthly weekly

1m 2:6989 2:8421

3m 2:7656 3:5461 �1 1:6921
3:5798��

[1st week, 12/2007]

x1 3:9142
6:957��

[3rd week, 03/2008]

6m 2:7394 3:0854

9m 2:3924 2:1531 �2 2:5513 2:7488 x2 4:3898
7:098��

[3rd week, 04/2008]

12m 1:5350 2:9454

15m 1:4991 2:6190 �3
3:4328��

[01/2008]

2:7726 x3 4:2340
7:261���

[2nd week, 03/2008]

18m 1:6467 2:4979

21m 1:8065 2:6907

24m 1:9827 2:9462

30m 2:0718 3:1947

3y 2:0815 3:4064

4y 1:9314 3:7837

5y 1:8964
3:8836�

[1st week, 12/2007]

6y 1:8369
4:0432��

[1st week, 12/2007]

7y 1:7677
4:0488��

[1st week, 12/2007]

8y 1:9601
4:1446��

[1st week, 12/2007]

9y 2:1046
4:2285��

[last week, 08/2008]

10y 2:1967
4:3417��

[last week, 08/2008]

Table 5. Tests for changes in the variances of the term structure; in the volatilities of each
principal component; and in the eigenvalue-normed eigenvectors. Rejection at 10%, 5% and 1%
levels are denoted with �, �� and ��� respectively. Where present, numbers in square brackets are

the estimated breakdates, de�ned as T � argmax�T (�) :
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monthly data weekly data

1st subsample 2nd subsample 1st subsample 2nd subsample

�1 0.790 0.729 �1 0.737 0.784

�2 0.163 0.214 �2 0.163 0.138

�3 0.029 0.047 �3 0.056 0.056

Table 6. Proportion of the total variance explained by principal components (�1, �2 and �3 refer
to the level, slope and curvature respectively) for each subsample. The samples are split based
on the results in Table 2. When considering monthly data, the sample was split at January 2008;

when using weekly data, at the �rst week of December 2007.
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Figure 1. Term structure of the US interest rates. Maturities correspond to 1m, 3m, 6m, 9m,
12m, 15m, 18m, 21m, 24m, 30m, 3y, 4y, 5y, 6y, 7y, 8y, 9y, 10y over the period April

1997-November 2010.
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