
Petroulakis, N. E., Spanoudakis, G. & Askoxylakis, I. G. (2016). Patterns for the design of secure

and dependable software defined networks. Computer Networks, doi:

10.1016/j.comnet.2016.06.028

City Research Online

Original citation: Petroulakis, N. E., Spanoudakis, G. & Askoxylakis, I. G. (2016). Patterns for the

design of secure and dependable software defined networks. Computer Networks, doi:

10.1016/j.comnet.2016.06.028

Permanent City Research Online URL: http://openaccess.city.ac.uk/15284/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/76981956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Patterns for the Design of Secure and Dependable SDN

Nikolaos E. Petroulakisa,b,∗, George Spanoudakisb, Ioannis G. Askoxylakisa

aInstitute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
bDepartment of Computer Science, City University London, London, UK

Abstract

In an interconnected world, cyber and physical networks face a number of chal-

lenges that need to be resolved. These challenges are mainly due to the nature and

complexity of interconnected systems and networks and their ability to support hetero-

geneous physical and cyber components simultaneously. The construction of complex

networks preserving security and dependability (S&D) properties is necessary to avoid

system vulnerabilities, which may occur in all the different layers of Software De-

fined Networks (SDN) architectures. In this paper, we present a model based approach

to support the design of secure and dependable SDN. This approach is based on ex-

ecutable patterns for designing networks able to guarantee S&D properties and can

be used in SDN networks. The design patterns express conditions that can guarantee

specific S&D properties and can be used to design networks that have these proper-

ties and manage them during their deployment. To evaluate our pattern approach, we

have implemented executable pattern instances, in a rule-based reasoning system, and

used them to design and verify wireless SDN networks with respect to availability and

confidentiality. To complete this work, we propose and evaluate an implementation

framework in which S&D patterns can be applied for the design and verification of

SDN networks.

Keywords: Design Patterns, SDN, Wireless Networks, Security, Dependability,

Drools

∗Corresponding author
Email address: npetro@ics.forth.gr (Nikolaos E. Petroulakis)

Preprint submitted to Computer Networks June 5, 2016

http://ees.elsevier.com/comnet/viewRCResults.aspx?pdf=1&docID=16705&rev=2&fileID=607122&msid={28D22796-54A3-4FE3-BE2A-E1321E386262}

1. Introduction

The design of complex system networks is of paramount importance due to their

increasing role in the implementation of Cyber-Physical Systems (CPS) and Software

Defined Networks (SDN) involving integrated ICT and physical components and de-

vices. However, the design of such networks adequate encounters difficulties which5

need to be resolved. These difficulties stem from the highly distributed and hetero-

geneous nature of SDN and the extent of intelligence, dependability and security that

they need to demonstrate during their operation. The design and verification meth-

ods for developing secure and dependable system networks is necessary and should be

considered at design level to guarantee security and mitigate safety threats, on remote10

monitored and managed networks. Especially, with the fast growing of SDN and the

integration with 5G network architectures [1], the design of networks enters in a new

era and makes necessary a careful investigation of the new security and dependability

risks, which have not been relevant in legacy systems. One of the challenges of future

networks is to develop SDN capabilities tailored to CPS and drive the reconfiguration15

of these capabilities through network configuration specifications embedded in critical

infrastructures.

SDN allow network programmability and control to be decoupled from the for-

warding plane and the forwarding plane to be directly programmable by the control

plane. In this paper, we present a model driven approach to the design and verification20

of secure and dependable SDN networks that is based on S&D network design patterns

(referred to as S&D patterns in the rest of this paper). These patterns can be used to

design and/or verify SDN network infrastructures and identify suitable paths and nodes

that can guarantee S&D properties. S&D patterns can be used to design SDN infras-

tructures, and determine also the type, location and connectivity of end nodes with25

forwarding devices. At the control layer, S&D patterns can ensure secure connectiv-

ity between the controllers and the programmable switches. In this paper, we give a

detailed description of the scheme for specifying S&D patterns and their use for the de-

sign of S&D preserving SDN networks. The main contribution of the approach is that

encodes designs of network topologies, which are proven to satisfy S&D properties,30

2

as design patterns. In addition, S&D patterns can be used for the definition of optimal

paths which are able to guarantee S&D properties in deployed networks. A first defi-

nition of our pattern-based approach for designing reliable cyber-physical systems was

given in [2]. This paper extends the original approach by developing a pattern frame-

work in which we can evaluate and emulate S&D executable patterns on SDN-based35

network designs. It also presents an application framework in which S&D patterns can

insert and modify flow rules through the controller to the programmable switches of

SDN infrastructures.

The remainder of this paper is organized as follows. In Section 2 an overview of

related work is presented. In Section 3, we present the schema of the pattern execu-40

tion form. In Section 4, we introduce abstract specification instances of patterns with

respect to confidentiality and availability encoded also to a rule-based reasoning lan-

guage. In Section 5, we propose an implementation framework in which S&D network

patterns can be applied in order to design and verify SDN network architectures. In

Section 6, we emulate our proposed network patterns for the design of wireless SDN-45

based network architectures able to provide security against physical layer attacks and

failures at design or at runtime in hostile environments. Finally, Section 7 provides

conclusions and future work.

2. Related Work

The main focus of network design relies on specification analysis, design, verifica-50

tion, and validation of systems that include hardware/software, data, procedures, and

facilities. Driven from software development methodology, Model-Driven Engineer-

ing (MDE) [3] can be used to analyze certain aspects of models, synthesize various

types of artifacts and design secure and dependable systems. An MDE framework for

architecting wireless networks is presented in [4]. The design of system is simplified55

through the modelling of design patterns. MDE applies design patterns [5, 6] as so-

lutions for reusable designs and interactions of objects by the use of formal proven

properties[7]. The development of S&D patterns may benefit from the current im-

plementations of software patterns as described in the literature in a variety of works

3

[8, 9, 10, 11, 12]. The concept of component-based architecture composition is mainly60

applied on software components and service oriented architecture but it can be used

successfully for designing networks [13, 14]. Security workflow patterns, for service

compositions based on enabling reasoning engines such as Drools, are also described

in [15, 16]. Drools enabling reasoning appeared to be also an efficient rule engine

to represent our network workflow patterns. Workflow pattern for QoS aggregation65

for web service composition have been proposed in [17]. In our approach, executable

workflow patterns are used for backward chaining for network compositions.

Especially with the softwarization of networks in SDN, design patterns can be ap-

plied in all the different layers of SDN architectures. One of major objectives of SDN

is to provide Quality of Services (QoS) and on-demand services [18]. Authors in [19]70

present an end-to-end orchestration of IoT services using SDN-enabled edge nodes.

The construction of network topologies includes also the definition of network and

traffic patterns. Traffic engineering and patterns in SDN are presented in [20]. Flow

policy patterns as expressed by Frenetic languages, can generate flow rules able to be

installed in programmable switches of SDN networks [21]. In our approach, we can75

provide paths as flow rules based on the security requirements. Design patterns can also

be used in northbound interface using RESTful API as proposed in [22]. Our proposed

pattern framework is able to interact with the controller using also the RESTful. Fur-

thermore, Service Function Chaining (SFC) [23] aims to provide end-to-end security in

SDN following security function compositions. Our approach is able to provide a step80

forward by creating dynamic security chains following a backward chaining. Finally,

the concept of intent-based engineering in SDN appears to enforce security policies

[24] as proposed by our S&D patterns.

3. S&D Pattern Schema

The design and implementation of SDN infrastructures can be based on an archi-85

tectural framework where the network elements are integrated through patterns with

proven capability to enable the semantic interoperability, and to preserve end-to-end

and link-to-link security, privacy, and dependability. S&D patterns can be used as an

4

instrument for designing, verifying and altering the topology of SDN networks, at de-

sign time or runtime. At design time, the procedure includes the definition of a design90

problem and the required S&D property that needs to be guaranteed by the SDN to be

designed. In verification, an existing SDN network design (topology) and the required

S&D properties are provided, and patterns are applied to analyse the former and estab-

lish if the latter are satisfied. The analysis is based on checking if the topology of the

pattern matches the network design or some part of it and that the individual compo-95

nents that constitute the network with the particular topology have certain properties

that can guarantee end-to-end network level S&D properties. Finally, at runtime pat-

terns are applied to alter the topology and forwarding rules of an operational network

in order to ensure the satisfaction of S&D properties. The pattern specification schema

is defined as follows:100

Definition 1. An S&D pattern schema is an abstract structure of specifying S&D pat-

tern which includes: (a) an abstract network topology, defining the control structure,

data flows of the components of an SDN, (b) constraints that should be satisfied by

the components of the network that are composed according to the structure of (a), (c)

the S&D property that the network topology in (a) guarantees, and (d) an execution105

pattern rule.

The constituents (a)-(d) of the S&D pattern schema are discussed in more detail

below.

3.1. Pattern Topology

S&D patterns define generic ways of composing (i.e., establishing the connectivity110

between) and configuring the different and heterogeneous components that may ex-

ist at all layers of the implementation stack of an SDN. The compositions defined by

S&D patterns can be both vertical and horizontal, i.e., they can involve components at

the same (horizontal) or different layers (vertical) layer in the reference architecture of

SDN. To do so, S&D patterns should encode abstract and generic component interac-115

tion and orchestration protocols, enhanced (if necessary) by transformations to ensure

the semantic compatibility of data or system functionality of the components that are

5

(or need to be) composed. Furthermore, the component interaction and orchestration

protocols encoded by the patterns must have an evidenced ability (i.e., an ability proven

through formal verification or demonstrated through testing and/or operational moni-120

toring) to achieve a semantically viable interoperability between their components. In

SDN, components can be either hosts, forwarding devices or controllers. Paths may

include single step links between two edge nodes or link compositions with at least

one intermediate and two edge nodes.

AND

AND

OR

OR

XOR

XOR

Figure 1: Basic SDN pattern logical topologies: (a) sequence (b) parallel-split-join (c) multi-choice-join (d)

exclusive-choice-join

In our S&D patterns so far, we have focused on the logical architecture of the125

network representing end-to-end connectivity, security and dependability. The basic

building blocks for forming logical network topologies are the same as those identified

for process workflows in [25]. As it can be seen in Figure 1 for example, the sequence

topology depicts the sequential composition of nodes in a network defines that a pro-

cess is enabled after the completion of a previous one. This topology appears as the130

fundamental approach for building network process blocks and the diameter/tiers of a

network. The multi-choice-join topology (OR-OR) provides the execution of a process

to be diverged to two or more branches. This topology offers redundancy in network

structures. The parallel-split-join topology (AND-AND) allows the parallel split into

two or more branches. This topology is able to provide load-balance in network trans-135

missions. Finally, the exclusive-choice-join topology (XOR-XOR) diverges of a branch

into two or more exclusive branches. The latter topology can be used in networks in

order to avoid flooding and for conditional routing.

6

3.2. Pattern Constraints

The S&D pattern schema includes also a set of constraints that should be satisfied140

by the individual network components composed by the pattern and/or the component

composition as a whole. These constraints may represent functional requirements re-

garding such as the connectivity between two components and can be related to the type

of components (hardware/software). Different parameters such as the distance between

network nodes that is a topological constraint for a network may also be expressed145

through S&D patterns constraints. For instance, in wired networks this connectivity

can be satisfied using suitable interfaces and cables. However, in wireless networks,

the connectivity is based on the coverage of each node and it can be classified into

deterministic and probabilistic models. Furthermore, the applications and services that

make use of the network are crucial factors on the design of a network as they can150

affect the available resources such as computational power, available memory, storage

and networking capabilities. Other constraints which may be expressed as S&D pattern

schema constraints may refer to the quantity and type of nodes, interfaces per nodes,

cost and energy consumption.

3.3. Pattern S&D Properties155

S&D design patterns specify SDN designs that guarantee given security (confiden-

tiality, integrity, availability) and dependability (reliability, safety and maintainability)

properties. The satisfiability of an S&D property can be defined by a Boolean value

(i.e. encryption enabled/disabled), an arithmetic measure (i.e. delay, encryption level)

or probability measure (i.e. reliability/uptime availability). It should be noted that160

the composition of two components which preserve an S&D property does not neces-

sarily guarantee that the composition will also preserve the same property. However

in networks, it is important that properties are also guaranteed on the communication

medium. Attacks on wireless medium can also cause an attack on a system component.

Since, a medium such as a wireless link cannot be modified, in order to guarantee a se-165

curity property, the property should be satisfied at both the output of the source node

and at the input of the destination node.

7

Figure 2: Stepwise Decomposition

S&D patterns can be used to recursively build component compositions or decom-

positions using forward or backward chaining respectively, as depicted in Figure 2.

Forward chaining is useful in verification and backward chaining can be used in in-170

ference. In forward chaining, the properties satisfied by components C1, ..Cn may be

different from each other and different from the property Pro that the composition sat-

isfies. When C1, ..,Cn are components that satisfy properties Pro1, ..,Pron respectively,

then the composition C formed of these components can satisfy Pro when the following

implication can be proved:175

When (C1 satisfy Pro1)∧ (C2 satisfy Pro2)∧·· ·∧ (Cn satisfy Pron)→C satisfies Pro

On the other hand, backward chaining appears to be more important in system

design with respect to a required property. When C is required to satisfy a property

reqPro, then suitable components C1, ..,Cn should be found to satisfy reqPro1, ..,reqPron:

reqPro(C)→ reqPro1(C1)∧·· ·∧ reqPron(Cn)180

As an example, let’s consider a sequential composition of two components: C→

C1 ∧C2. If a required property should be guaranteed by the C, the subcomponents C1

and C2 should satisfy the condition reqPro1(C1)∧ reqPro2(C2). If there are no atomic

components to guarantee the required reqPro1(C1)∧ reqPro2(C2), a recursive proce-

dure is used in which successive (sub-) compositions are generated until the atomic185

components bound to them satisfy the required properties. The decomposition can be

8

analyzed as follows:

reqPro1(C1)→ reqPro11(C11)∧ reqPro12(C12)

reqPro2(C2)→ reqPro21(C21)∧ reqPro22(C22)

 · · ·→ until nodes C11 ,C12 ,C21 ,C22

that satisfy reqPro are found

3.4. Pattern Rules

Once proven, relations between pattern component properties can be expressed as

production rules to enable reasoning. In implementing our approach, we have selected190

Drools [26] to express S&D patterns as rules because this rule engine supports back-

ward and forward chaining inference and verification by implementing and extending

the Rete algorithm [27]. Drools rules can encode the topology of a pattern and the

process of finding suitable component compositions in order to guarantee the required

property. Drools production rules are stored in the production memory and are used195

to process data inserted in the working memory (Knowledge Base) as facts by pattern

matching. Each rule consists of two parts: the when condition and the then actions.

When a network that matches the topology of an S&D pattern does not satisfy the re-

quired property, the pattern may be used to substitute, add or remove components from

it in order to satisfy the property.200

A Drools rule that encodes an S&D pattern includes the inputs of the pattern’s

components, the type of composition and the required S&D property in Left Hand Side

(LHS). When the conditions in the LHS are satisfied, then the rule is fired to execute the

actions as described in its Right Hand Side (RHS). In the RHS, the new requirements

of the compositions or atomic components can be inserted, updated or deleted.205

4. S&D Pattern Instances

In this section we present specifications of S&D patterns instances, which are able

to guarantee confidentiality and availability in network infrastructures based on the

pattern specification approach discussed in Section 3.

4.1. Link-to-link Confidentiality Pattern210

Confidential transmission on the infrastructure layer focuses on keeping informa-

tion private and ensuring that only the right people will have access to it [28]. In the

9

following, we define an S&D pattern that can guarantee this property, called link-to-link

confidentiality pattern.

Pattern Topology: The topology of the link-to-link confidentiality network pattern215

with two nodes N1 and N2 is sequential. This is expressed by path P between N1 and

N2: P = Path(source = N1,destination = N2). P may be either an atomic link or path

composition. The decomposition phase (as shown in Figure 3) can be analyzed as

follows: P = Path(source = N1,destination = N2) = Path(source = N1,destination =

N3)∧Path(source = N3,destination = N2).

N1

N2

N1

N2

P1

P2

N3

N1

N2

N3

N4

N6

P11

P12

P21

P22

P

Figure 3: Sequence Decomposition

220

Pattern Constraints: Further constraints of the link-to-link confidentiality pattern re-

late to the distance between edge nodes. A constraint of this type expresses that if the

maximum link range is r, the distance between edge nodes of a link-to-link composi-

tion should be r ≥ Distance(N1,N2).

Pattern S&D Property: Link-to-link encryption protects traffic flows from monitor-225

ing since all data (payload and headers) are encrypted/decrypted in every hop. When

two nodes N1 and N2 are connected following the sequence pattern, the path is con-

fidential when both nodes are able encrypt and to share encrypted data. This is ex-

pressed by the relation: Path(N1,N2,encryption = true) → Node(N1,encryption =

true)∧Node(N2,encryption = true).230

Pattern Inference Rule: The confidential rule (Rule 1) encodes the sequence work-

flow pattern topology. In the LHS of this pattern, the rule matches two nodes (lines 3-4)

10

and a path $P with source the $N1 and destination the $N2 (line 5). The constraint of

the pattern topology defines that the link range $r should be less or equal to the distance

between $N1 and $N2. The S&D property $reqPro that the pattern should guarantee235

is presented in lines 6-7. When the topology constraint and the S&D property are not

satisfied the rule will enter in the RHS of the rule. In the RHS, a new node $N3 should

be inserted between the $N1 and $N2 (lines 9-10). Moreover, two new paths $P1 and

$P2 (lines 11,14) and two new requirements $R1 and $R2 (lines 12-13,15-16) for these

paths will be inserted in the knowledge base. Finally, the rule will modify the require-240

ment of the satisfaction to true (line 17). The recursive procedure will complete when

the minimum number of nodes satisfy the distance constraint and therefore the S&D

requirement.

Rule 1: Inference Rule of Link-to-Link Confidentiality Pattern

1 r u l e ” Link−to−l i n k C o n f i d e n t i a l i t y I n f e r e n c e Rule ”

2 when

3 $N1 : Node ($ id1 : id , $p1 : p o s i t i o n , e n c r y p t i o n == t rue)

4 $N2 : Node ($ id2 : id , $p2 : p o s i t i o n , e n c r y p t i o n == t rue)

5 $P : Pa th (s o u r c e ==$N1 , d e s t i n a t i o n ==$N2 , $ r : range , $d : d i s t a n c e , $r<=$d)

6 $R : Requ i remen t (p a t h == $P , p r o p e r t y . name==” E n c r y p t i o n ” ,

7 $ r e q P r o : p r o p e r t y . va lue , s a t i s f i e d == f a l s e)

8 then

9 Node $N3 = new Node ($ id1 +$id2 , new P o s i t i o n ($N1 , $N2) , t rue) ;

10 i n s e r t ($N3) ;

11 Pa th $P1 = new Pa th ($N1 , $N3) ; i n s e r t ($P1) ;

12 R1= new Requ i remen t ($P1 , new P r o p e r t y (” E n c r y p t i o n ”) , $r , f a l s e) ;

13 i n s e r t (R1) ;

14 Pa th $P2 = new Pa th ($N3 , $N2) ; i n s e r t ($P2) ;

15 R2 = new Requ i remen t ($P2 , new P r o p e r t y (” E n c r y p t i o n ”) , $r , f a l s e) ;

16 i n s e r t (R2) ;

17 modify ($R){ s a t i s f i e d = t rue } ;

18 end

Pattern Verification Rule: The second confidentiality rule (Rule 2) expresses the ve-

rification procedure in case of an existing SDN network design. The paths can be given245

by the use of an algorithm such as the depth-first algorithm. The purpose of this veri-

fication rule is to select the path/paths (line 3) in which S&D confidentiality property

11

$Pro is guaranteed. When the path encryption is enabled ($reqPro = $Pro), as de-

fined by the requirement $R (line 4-6), the rule in the RHS will modify the requirement

satisfaction to true (line 8).250

Rule 2: Verification Rule of Link-to-Link Confidentiality Pattern

1 r u l e ” Link−to−Link C o n f i d e n t i a l i t y V e r i f i c a t i o n Rule ”

2 when

3 $P : Pa th ($N1 : sou rce , $N2 : d e s t i n a t i o n , $Pro : p r o p e r t y)

4 $R : Requ i remen t (p a t h . s o u r c e ==$N1 , p a t h . d e s t i n a t i o n == $N2 ,

5 p r o p e r t y . name==” E n c r y p t i o n ” , $ r e q P r o : p r o p e r t y . va lue ,

6 $ r e q P r o ==$Pro , s a t i s f i e d == f a l s e)

7 then

8 modify ($R){ s a t i s f i e d = t rue } ;

9 end

4.2. Redundancy Availability Pattern

Network availability is the ability of a system to be operational and accessible when

required for use [28]. Availability patterns can be used for the discovery and the ve-

rification of composition of network elements with guaranteed availability properties.

The description of the redundancy availability pattern is following:255

N1

N2

N1

N2

N3 N4 N3 N4

N1

N2

N5

N6 N7

N8

N9

N10 N11

N12

P1 P3

P4P2

Figure 4: Redundancy Pattern Decomposition

Pattern Topology: The topology of the redundancy pattern follows both the sequence

and the multi-choice-join structure. The topology of the pattern consists of four nodes,

12

the source N1, the destination N2 and two nodes N3 and N4 placed in the middle of end

nodes. It also includes four paths: P1 = Path(source = N1,destination = N3), P2 =

Path(source = N3,destination = N2), P3 = Path(source = N1,destination = N4), P4 =260

Path(source = N4,destination = N2). The decomposition phase can be analyzed as

follows: P=Path(source=N1,destination=N2) = (Path(source=N1,destination=

N3)∧Path(source = N3,destination = N2))∨ (Path(source = N1,destination = N4)∧

Path(source = N4,destination = N2)). The decomposition procedure (Figure 4) can

continue until atomic links are found.265

Pattern Constraints: The constraint of redundancy availability pattern refers to the

connectivity between nodes, expressing that if the maximum link range is r, the dis-

tance d between these nodes should be r ≥ d. When constructing a network from a

source node N1 to a destination host N2, any nodes that are added to create the network

between N1 and N2 are assumed to be on the same straight line, even they have been270

created by the multi-choice-join composition pattern.

Pattern S&D Property: The availability guaranteed by this pattern is related to the

sequence and multi-choice path composition. When m are the number of parallel paths

P, n are the number of sub-paths of each parallel path and Pro(P) is the probabilistic

availability of each sub-path, the probabilistic availability Pro of the composition can

be given by the following formula:

Pro = 1−
m

∏
i=1

(1−
n

∏
j=1

Pro(Pi j))

Since the topology of redundancy availability pattern consists of two parallel paths

with two sub-paths in sequence ((P1 ∧ P2)∨ (P3 ∧ P4)), the availability Pro will be

equal to: Pro = 1− (1−Pro(P1) ·Pro(P2))(1−Pro(P3) ·Pro(P4)). When the required

availability property of the entire path is reqPro, the network availability should sat-275

isfy the following condition: reqPro ≤ Pro. In case of equal uptime probability of

each sub-path (Pro(P1) = Pro(P2) = Pro(P3) = Pro(P4) = Pro(P)), the required avail-

ability should satisfy the equation: reqPro ≤ Pro = 1− (1−Pro(P)2)2 ⇒ Pro(P) ≥√
1−
√

1− reqPro. If there is not any atomic path with this availability, the pattern

will be executed by adding two new nodes and four new paths in the middle distance280

of each path Pi, as defined by the pattern topology. The new required availability of

13

each new path will be: reqPro′ =
√

1−
√

1− reqPro. It can easily be proven that the

reqPro′ ≤ reqPro applies for requested path availability greater than 62%. Finally, the

recursive execution of the pattern will increase network availability and will guarantee

the required path availability.285

Rule 3: Inference Rule of Redundancy Availability Pattern

1 r u l e ” Redundancy A v a i l a b i l i t y I n f e r e n c e Rule ”

2 when

3 $N1 : Node ($ id1 : id , $p1 : p o s i t i o n)

4 $N2 : Node ($ id2 : id , $p2 : p o s i t i o n)

5 $P : Pa th ($N1== sou rce , $N2== d e s t i n a t i o n , $ r : range , $d : d i s t a n c e , $r<=$d ,

6 Pro . name==” A v a i l a b i l i t y ” , $Pro : Pro . v a l u e)

7 $R : Requ i remen t (p a t h ==$P , p r o p e r t y . name==” A v a i l a b i l i t y ” ,

8 $ r e q P r o : p r o p e r t y . va lue , $Pro<$reqPro , s a t i s f i e d == f a l s e)

9 then

10 Node $N3 = new Node ($ id1 +$id2 , new P o s i t i o n ($N1 , $N2)) ; i n s e r t ($N3) ;

11 Node $N4 = new Node ($ id1 +$id2 , new P o s i t i o n ($N1 , $N2)) ; i n s e r t ($N4) ;

12 Pa th $P1 = new Pa th ($N1 , $N3 , $r , $Pro) ; i n s e r t ($P1) ;

13 i n s e r t (new Requ i remen t ($P1 , new P r o p e r t y (” A v a i l a b i l i t y ” ,

14 Math . s q r t (1−Math . s q r t (1− $ r e q P r o))) , f a l s e)) ;

15 Pa th $P2 = new Pa th ($N3 , $N2 , $r , $Pro) ; i n s e r t ($P3) ;

16 i n s e r t (new Requ i remen t ($P2 , new P r o p e r t y (” A v a i l a b i l i t y ” ,

17 Math . s q r t (1−Math . s q r t (1− $ r e q P r o))) , f a l s e)) ;

18 Pa th $P3 = new Pa th ($N1 , $N4 , $r , $Pro) ; i n s e r t ($P2) ;

19 i n s e r t (new Requ i remen t ($P2 , new P r o p e r t y (” A v a i l a b i l i t y ” ,

20 Math . s q r t (1−Math . s q r t (1− $ r e q P r o))) , f a l s e)) ;

21 Pa th $P4 = new Pa th ($N4 , $N2 , $r , $Pro) ; i n s e r t ($P4) ;

22 i n s e r t (new Requ i remen t ($P4 , new P r o p e r t y (” A v a i l a b i l i t y ” ,

23 Math . s q r t (1−Math . s q r t (1− $ r e q P r o))) , f a l s e)) ;

24 modify ($R){ s a t i s f i e d = t rue } ;

25 end

Pattern Inference Rule: The pattern rule encodes the described redundancy topology

(Rule 3). In the LHS of this pattern, the rule matches two nodes $N1 and $N2 (lines

3-4). The pattern also matches a path $P with source the $N1 and destination the

$N2 (lines 5-6). The constraint of the pattern topology defines that the link range $r

between the nodes should be less or equal to the distance between $N1 and $N2. The290

S&D property $reqPro that the pattern should guarantee is specified in lines 7-8. When

the topology constraint and the S&D property are not satisfied the rule will enter in the

14

RHS of the rule. In the RHS, two nodes $N3 and $N4 should be inserted in parallel

between the $N1 and $N2 (lines 10-11). Moreover, four new paths and requirements

will be inserted in the knowledge base (line 12-23). Finally, the rule will modify the295

requirement satisfaction to true. The recursive procedure will be completed when the

distance constraint and required availability property are satisfied.

Rule 4: Verification Rule of Redundancy Availability Pattern

1 r u l e ” V e r i f i c a t i o n o f Redundancy A v a i l a b i l i t y Rule ”

2 when

3 $P : Pa th ($N1 : sou rce , $N2 : d e s t i n a t i o n , $Pro : p r o p e r t y . v a l u e)

4 $R : Requ i remen t ($P== path , p r o p e r t y . name==” A v a i l a b i l i t y ” ,

5 $ r e q P r o : p r o p e r t y . va lue , $Pro>= $reqPro , s a t i s f i e d == f a l s e)

6 then

7 modify ($R){ s a t i s f i e d = t rue } ;

8 end

Pattern Verification Rule: Rule 4 expresses the verification process, which according

to the redundancy availability pattern can be followed to check a network’s availability.

The rule is able to discover suitable paths (line 3) with verified availability properties300

(line 4-5) by the use of a predefined set of paths applied in a depth first manner.

5. Implementation and Tool Support

Design patterns can be used for the design of the SDN infrastructure layer or the

verification of existing SDN infrastructures. To give a proof of concept of our approach

and evaluate its applicability for the design and verification of SDN networks we have305

developed a prototype implementing our framework. In the next subsections, the anal-

ysis of each implementation phase of the S&D Pattern Framework will be presented.

5.1. Architectural Framework

The architectural framework used in our approach includes the developed S&D

Pattern Framework which applies in an SDN architecture, as shown in Figure 5. The310

SDN network architecture consists of three high level layers: the infrastructure layer,

the control layer and the application layer. The infrastructure layer is responsible for the

15

data forwarding functionality of the network between end hosts through programmable

switches. The control layer is focused on the control functionality of the network

containing base network service functions such as topology/flow/connection manager315

and flow statistics. The control layer is connected with the infrastructure layer through

the so-called Southbound Interface (SBI). Finally, the application layer includes SDN

applications, SDN/network management and security/dependability management. It is

also able to interact with the control layer through the Northbound Interface (NBI).

S&D Pattern
Framework

Infrastructure Layer

Control Layer

Application Layer

Network Functions

Topology
Manager

Flow
Manager

AP

OF

HOST
OF

OFHOST HOST

Router
HOST

AP

AP

AP

SDN Applications

Switch

Connection
Manager

NBI (REST)

SBI(OpenFlow)

SDN Management

Flow
Statistics

Transformer 2

Transformer 1

Security and
Dependability
Management

Drools
Engine

Pattern
Rules

Network
Components

S&D
Requirements
& Properties

Figure 5: Framework Architectural Diagram

The S&D Pattern Framework contains Drools Engine and suitable Java classes.320

The rules defining S&D patterns were deployed in Eclipse Modelling Tool (4.5) with

the JBoss Drools 6.3. Different Java classes were developed to represent the differ-

ent Network Components of the topology (nodes, links, paths and flows) and the S&D

Requirements and Properties as needed by Pattern Rules. The framework can interact

with SDN architecture using suitable transformers. The transformer 1 can export net-325

work topologies, as generated by Drools, into a custom format acceptable by Mininet1,

an emulator which is able to create realistic virtual SDN networks. The created cus-

1http://mininet.org/

16

tom configuration file may contain nodes (i.e., hosts and switches) and links of the

network. Especially with the use of simulators such as Mininet-WiFi [29] and NS32, it

is possible to include not only switches and hosts, but also OpenFlow-enabled access330

points. The transformer 2 is able to import existing network topologies and flows from

the inventory list of the controller such as OpenDaylight3. It is also capable to export

produced OpenFlow rules as generated by the Drools rules. These topologies and flows

are imported/exported in a REST/XML format by the use of the NBI interface. Finally,

both transformers have been developed in Java as part of our framework.335

Interaction
with Inventory

Topology

S&D Pattern Framework

Convert Facts-
Network Topologies

Pattern
Rules

Pattern
Matching

Insert/
Update/

Retract Facts

Insert S&D
Patterns

Working
Memory
(Facts)

Controller

Create Physical
Custom Topologies

Import Network
Topologies to an

SDN Emulator

Figure 6: Process Diagram of S&D Pattern Framework for SDN Design

5.2. Design and Verify SDN using the Framework

The framework that we have developed can be used to design an SDN infrastructure

that satisfies particular S&D properties as shown in the process diagram in Figure 6.

More specifically, a network designer can Insert S&D Patterns in our tool as Pattern

Rules and descriptions of network and S&D network requirements and constraints as340

Facts in the Working Memory of the framework. The tool then uses Drools to apply

Pattern Matching and identify if a network can be formed out of the available types of

nodes that satisfies the required S&D property. The framework is able to Convert Facts

to Network Topologies which can be used either to Create Physical Custom Topologies

or to Import Network Topologies to an SDN emulator. Finally, the created network will345

be inserted in the inventory list of the Controller.

2http://www.nsnam.org/
3https://www.opendaylight.org

17

Convert Facts -
Flows/Nodes

S&D Pattern Framework

Pattern
Rules

Insert/
Update/

Retract Facts

Insert S&D
Patterns

Working
Memory
(Facts)

Pattern
Matching

Controller

GET Network
Topology/Flows

Topology
Manager

Flow
Manager

PUT Flows

Programmable
Switches

POST Flows

DELETE Flows

Figure 7: Process Diagram of S&D Pattern Framework for SDN Verification and Adaptation

The verification of an existing SDN network with regards to S&D, is supported

by our S&D pattern framework as shown in Figure 7. In particular, a designer can

Insert S&D Patterns in the Pattern Rules production memory of the framework and

S&D requirements the Working Memory as Facts. After specifying or importing the350

network to be verified (GET Network Topologies/Flows), S&D patterns are executed to

realise the verification process and, new paths can be inserted (PUT Flows) or current

paths can be deleted (DELETE Flows) or modified (POST Flows) in the Controller and

consequently in the Programmable Switches. Through the use of verification patterns,

suitable paths can be found in order to pre-plan and reserve paths with respect to S&D355

properties. Finally, the proposed framework can be used not only for the verification of

network paths but also at runtime i.e. following a network link failure or when a S&D

property is not guaranteed. The use of our framework at runtime can not only verify a

network but also re-construct it to restore required S&D properties in cases where such

properties have been violated.360

6. Evaluation and Experiments

The implementation described in Section 5 has been used for an evaluation of our

approach in two different SDN design scenarios. These scenarios and the outcomes of

the evaluation are presented in the following subsections.

18

6.1. Scenario 1 - Design of SDN Networks365

The first scenario involves the transmission between two host nodes (source and

destination) using wireless-enabled network nodes. Apart from the source and the des-

tination, all the other nodes act as relays that send the received data continuously. To

design an S&D network able to avoid attacks on the communication medium such

as eavesdropping and DoS, the confidentiality and availability patterns that were dis-370

cussed in Section 4 are applied. The inputs to the pattern based network design tool for

both S&D patterns are: (a) the distances between source and destination node of the

network are 500m, 1.000m, 2.000m, 5.000m, 7.000m and 10.000m and (b) the maxi-

mum range of communication link is 100m. The outputs that the tool generates are: (i)

the network nodes, (ii) their position (i.e., the tier in which the nodes should be placed)375

and (iii) the number of links.

Link-to-Link Confidentiality Pattern: The pattern requires that the exchanged data on

the communication channel should be encrypted. Therefore, each node should be able

to encrypt/decrypt data by applying link-to-link encryption.

Redundancy Availability Pattern: The pattern implies that the path availability is re-380

lated to the probability of an attack. In our experiments we considered 99% the uptime

probability and the required network availability is 99.999% (or less than one-minute

daily network downtime) network.

Table 1: Results of Conducted Experiments

Confidentiality Pattern Availability Pattern

Distance Required Exec.Time Required Exec.Time

(metres) Relay Nodes (msec) Relay Nodes (msec)

500 4 44 12 56

1.000 8 58 44 81

2.000 16 60 170 192

5.000 32 85 684 1487

10.000 64 101 2734 7530

The results of the tool, after applying the above two patterns, are presented in Table

1. The table shows the number of nodes of each pattern and the time that was needed385

to execute each pattern. The number of required nodes produced by the confidential-

19

ity pattern, represents also the minimum number of nodes for a functional network,

although the purpose of this pattern is to enable link-to-link encryption. On the other

hand, the requirement of 99.999% availability suggests that a great number of nodes

should be installed, especially for long distance links.390

The developed S&D network topologies can be transformed to an SDN network by

the use of Mininet emulator, as discussed in Section 5. The created SDN infrastructure

can include hosts and OpenFlow-enabled (wired or wireless) switches as obtained by

the S&D patterns. Then, the emulator is able to forward the topology to a remote

controller such as OpenDaylight. Figure 8 depicts the outputs (nodes and links) of the395

redundancy pattern when the distance between the source and the destination is 500m,

the range is 100m and the uptime probability is 99%.

Figure 8: OpenDaylight SDN Infrastructure Topology

The scenario could be extended by adding multiple end-host. However, the net-

works that would be generated between the same source node and multiple end-hosts

will be disjoint. This is due to the fact that the current set of patterns place nodes on a400

straight line between a source and a destination (this point has been clarified in Section

4 in the paper). Thus, adding end hosts merely adds disjoint networks (and their costs

20

should be added).

6.2. Scenario 2 - Verification and Runtime Adaptation of SDN Networks

The second scenario includes the verification of an existing SDN infrastructure405

(such as the network topology shown in Figure 8). The initial network topology (nodes

and links) can be obtained from the topology manager of OpenDaylight controller as

discussed in Section 5. However, in this scenario, network nodes and links have differ-

ent channel availability and encryption level as presented in Table 2.

Table 2: S&D Properties of Network Topology

Links l 1
(n

1,
n 5
)

l 2
(n

1,
n 6
)

l 3
(n

1,
n 7
)

l 4
(n

1,
n 8
)

l 5
(n

5,
n 3
)

l 6
(n

6,
n 3
)

l 7
(n

7,
n 4
)

l 8
(n

8,
n 4
)

l 9
(n

3,
n 9
)

l 1
0(

n 3
,n

10
)

l 1
1(

n 4
,n

11
)

l 1
2(

n 4
,n

12
)

l 1
3(

n 9
,n

2)

l 1
4(

n 1
0,

n 2
)

l 1
5(

n 1
1,

n 2
)

l 1
6(

n 1
2,

n 2
)

Encrypted X X X X X X X X X X X X X X X X

Availability (%) 99 99 97 99 98 99 99 98 99 97 98 99 98 99 97 99

S&D verification patterns can be executed to define paths and convert them to410

OpenFlow rules with high priority. As an evaluation test of our approach, the fol-

lowing requirements were inserted in the working memory:

R1= Requirement(path.source == $n1, path.destination == $n2, property.name ==

”Availability”, property.value == 0.95, satisfied == false) and

R2 = Requirement(path.source == $n1, path.destination == $n2), property,name ==415

”Encryption”, property.value == true, satisfied == false).

After the execution of confidentiality and availability verification patterns, a num-

ber of possible solutions were produced. The paths that guarantee both properties are

presented in the following expression in which the ∧ represents the sequence compo-

sition and ∨ represent the parallel composition:

SR1 ∧SR2 = l4∧ l8∧ ((l11∧ (l15)∨ (l12∧ l16))

Verification patterns can also be executed to support runtime SDN adaptation in

cases like DoS attacks. In a network fall for example, new alternative network paths

must be found. However, the most important factors for runtime adaptation appear to

21

be both the detection to identify an attack or failure and the reaction time to transfer420

the new flow rules to the controller and the switches. This can be done by the use

of node connector statistics as fetched from the OpenFlow-enabled switches to the

OpenDaylight controller. The statistics include receive and transmit packets, errors,

drops CRC errors and collisions. S&D patterns can retrieve these statistics and react

immediately as an intrusion detection mechanism in case of malicious adversaries that425

create DoS attacks and forward traffic to different secure paths.

7. Conclusion and Future Work

In this paper, we proposed an S&D patterns based framework for the design and

verification of networks that need to satisfy given security and dependability proper-

ties. This is crucial for the design of highly interconnected ICT and CPS that need to430

preserve S&D properties as the network is the backbone for ensuring such properties.

Our approach is based on S&D patterns which express what conditions and properties

that need to be satisfied by abstract networks of different topologies in order to preserve

particular end-to-end S&D properties. It also includes processes for applying the S&D

patterns for this purpose. Our approach is aimed at minimizing the effects of passive435

and active attacks on physical layer. To prove the applicability of our S&D patterns ap-

proach, we developed a prototype tool supporting the design and verification of SDN

network infrastructures and evaluated in initial experiments involving design and ve-

rification scenarios involving the security properties of confidentiality and availability.

Our future plans involve the development of the patterns specification scheme and pat-440

tern instances suitable to guarantee properties not only at the infrastructure layer, but

also at the control and application layer. We are also planning to extend our framework

with more S&D patterns and new functional capabilities to cover not only horizontally

layered designs but also vertical layers of SDN architectures.

References445

[1] P. Agyapong, M. Iwamura, D. Staehle, W. Kiess, A. Benjebbour, Design consid-

erations for a 5g network architecture, Vol. 52, IEEE, 2014, pp. 65–75.

22

[2] N. E. Petroulakis, G. Spanoudakis, I. G. Askoxylakis, A. Miaoudakis, A. Tra-

ganitis, A pattern-based approach for designing reliable cyber-physical systems,

in: Globecom 2015, IEEE, 2015.450

[3] D. C. Schmidt, Model-driven engineering, in: Computer Society, Vol. 39, 2006,

pp. 286–298.

[4] K. Doddapaneni, E. Ever, O. Gemikonakli, I. Malavolta, L. Mostarda, H. Muc-

cini, A model-driven engineering framework for architecting and analysing wire-

less sensor networks, in: SESENA, 2012.455

[5] C. Preschern, N. Kajtazovic, C. Kreiner, Applying patterns to model-driven de-

velopment of automation systems: an industrial case study, in: Proceedings of the

17th European Conference on Pattern Languages of Programs, ACM, 2012, p. 5.

[6] B. Hamid, C. Percebois, D. Gouteux, A methodology for integration of patterns

with validation purpose, in: Proceedings of the 17th European Conference on460

Pattern Languages of Programs, ACM, 2012, p. 8.

[7] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: elements of

reusable object-oriented software, Pearson Education, 1994.

[8] G. Spanoudakis, S. Kokolakis, Security and Dependability for Ambient Intelli-

gence, Springer Science & Business Media, 2009.465

[9] H. Mouratidis, Software Engineering for Secure Systems: Industrial and Re-

search Perspectives: Industrial and Research Perspectives, IGI Global, 2010.

[10] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, P. Som-

merlad, Security Patterns: Integrating security and systems engineering, John

Wiley & Sons, 2013.470

[11] E. Fernandez-Buglioni, Security patterns in practice: designing secure architec-

tures using software patterns, John Wiley & Sons, 2013.

23

[12] B. Hamid, J. Geisel, A. Ziani, J.-M. Bruel, J. Perez, Model-driven engineering for

trusted embedded systems based on security and dependability patterns, in: SDL

2013: Model-Driven Dependability Engineering, Springer, 2013, pp. 72–90.475

[13] H. Petritsch, Service-oriented architecture (soa) vs. component-based architec-

ture, 2006.

[14] G. Gössler, J. Sifakis, Composition for component-based modeling, 2005.

[15] L. Pino, K. Mahbub, G. Spanoudakis, Designing Secure Service Workflows in

BPEL, in: ICSOC 2014, Paris, France, 2014.480

[16] L. Pino, G. Spanoudakis, A. Fuchs, S. Gürgens, Discovering secure service com-

positions, in: 4th International Conference on Cloud Computing and Services

Sciences, Barcelona, Spain, 2014.

[17] M. C. Jaeger, G. Rojec-goldmann, M. Gero, QoS Aggregation for Web Service

Composition using Workflow Patterns, no. Edoc, 2004.485

[18] E. Liotou, G. Tseliou, K. Samdanis, D. Tsolkas, F. Adelantado, C. Verikoukis,

An sdn qoe-service for dynamically enhancing the performance of ott applica-

tions, in: Quality of Multimedia Experience (QoMEX), 2015 Seventh Interna-

tional Workshop on, IEEE, 2015, pp. 1–2.

[19] R. Vilalta, A. Mayoral, D. Pubill, R. Casellas, R. Martı́nez, J. Serra, C. Verik-490

oukis, R. Muñoz, End-to-end sdn orchestration of iot services using an sdn/nfv-

enabled edge node, in: Optical Fiber Communication Conference, Optical Soci-

ety of America, 2016, pp. W2A–42.

[20] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, W. Chou, A roadmap for traffic engi-

neering in sdn-openflow networks, Vol. 71, Elsevier, 2014, pp. 1–30.495

[21] J. Reich, C. Monsanto, N. Foster, J. Rexford, D. Walker, Modular sdn program-

ming with pyretic, 2013.

24

[22] W. Zhou, L. Li, M. Luo, W. Chou, Rest api design patterns for sdn northbound api,

in: Advanced Information Networking and Applications Workshops (WAINA),

2014 28th International Conference on, IEEE, 2014, pp. 358–365.500

[23] J. Halpern, C. Pignataro, Service function chaining (sfc) architecture, Tech. rep.

(2015).

[24] R. Cohen, K. Barabash, B. Rochwerger, L. Schour, D. Crisan, R. Birke,

C. Minkenberg, M. Gusat, R. Recio, V. Jain, An intent-based approach for

network virtualization, in: Integrated Network Management (IM 2013), 2013505

IFIP/IEEE International Symposium on, IEEE, 2013, pp. 42–50.

[25] W. Van Der Aalst, A. Ter Hofstede, B. Kiepuszewski, A. Barros, Workflow pat-

terns, Vol. 14, Springer, 2003.

[26] Drools, Business rules gement system solution, www.drools.org.

[27] C. Forgy, Rete: A fast algorithm for the many pattern/many object pattern match510

problem, Vol. 19, Elsevier, 1982, pp. 17–37.

[28] A. Geraci, F. Katki, L. McMonegal, B. Meyer, J. Lane, P. Wilson, J. Radatz,

M. Yee, H. Porteous, F. Springsteel, IEEE standard computer dictionary: Compi-

lation of IEEE standard computer glossaries, 1991.

[29] R. R. Fontes, S. Afzal, S. H. Brito, M. A. Santos, C. E. Rothenberg, Mininet-wifi:515

Emulating software-defined wireless networks, in: 11th International Conference

on Network and Service Management (CNSM), IEEE, 2015.

25

www.drools.org

