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Abstract. Ensuring that the compositions of services that constitute service-based

systems satisfy given security properties is a key prerequisite for the adoption of the

service oriented computing paradigm. In this paper, we address this issue using a

novel approach that guarantees service composition security by virtue of the gener‐

ation of compositions. Our approach generates service compositions that are guar‐

anteed to satisfy security properties based on secure service orchestration (SESO)

patterns. These patterns express primitive (e.g., sequential, parallel) service orches‐

trations, which are proven to have certain global security properties if the individual

services participating in them have themselves other security properties. The paper

shows how SESO patterns can be constructed and gives examples of proofs for such

patterns. It also presents the process of using SESO patterns to generate secure

service compositions and presents the results of an initial experimental evaluation

of the approach.

Keywords: Software services · Secure service compositions · Security

certificates

1 Introduction

The security of service based systems (SBS), i.e., systems that are composed of distributed

software services, has been a critical concern for both the users and providers of such

systems [3, 17, 24]. This is because the security of an SBS depends on the security of the

individual services that it deploys, in complex ways that depend not only on the particular

security properties of concern but also on the exact way in which these services are

composed to form the SBS. Consider, for example, the case where the property required

of an SBS is that the integrity of any data D, which are passed to it by an external client,

will not be compromised by any of its constituent services that receive D. The assessment

of this property requires knowledge of the exact services that constitute the SBS, the exact

form of the composition of these services and the data flows between them, and a guar‐

antee that each of the constituent services of SBS that receives D will preserve its integ‐

rity. Such assessments of security are required both during the design of an SBS and at
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runtime in cases where one of its constituent services S needs to be replaced and, due to the

absence of any individual service matching it, a composition of services must be built to

replace S. Whilst the construction of service compositions that satisfy functional and

quality properties has been investigated in the literature (e.g., [1, 2, 27]), the construction

of secure service compositions is not adequately supported by existing research.

In this paper, we present an approach for generating compositions of services, which

are guaranteed to satisfy certain security properties. Our approach is based on the appli‐

cation of SEcure Service Orchestration patterns (SESO patterns). SESO patterns specify

primitive service orchestrations, which are proven to have particular global (i.e., compo‐

sition level) security properties, if their constituent services satisfy other service-level

security properties. A SESO pattern specifies the order of the execution (e.g., sequential,

parallel) of its constituent services and the data flows between them. It also specifies

rules dictating the security properties that the constituent services of the pattern must

have for the orchestration to satisfy a global security property. These rules express

security property relations of the form IF P THEN ∧i=1,…,nPi where P is a global security

property required of the service orchestration and Pi are security properties, which must

be satisfied by the services of the pattern for P to hold. These security property relations

are formally proven. The constituent services of a SESO pattern are abstract “place‐

holder” services that need to be instantiated by concrete services when the pattern is

instantiated.

When a constituent service S of an SBS needs to be replaced at runtime and no single

alternative service S’ satisfying exactly the same security properties as S can be found,

SESO patterns can be applied to generate compositions of other services that have

exactly the same security properties as S and could replace it within SBS. SESO patterns

determine the criteria (security, interface and functional) that should be satisfied by the

services that could instantiate them. These criteria are used to drive a discovery process

through which the pattern can be instantiated. If this process is successful, i.e., different

combinations of services that satisfy the required criteria and fit with the orchestration

structure of the pattern are discovered, any combination (composition) of services that

is built according to the pattern is guaranteed to have the required global security prop‐

erty by construction.

An earlier account of our approach has been given in [20, 22]. In this paper, we

extend [22] by presenting the method that underpins the proof of security properties

in SESO patterns, showing additional examples of concrete proofs of security prop‐

erties for specific SESO patterns, and presenting the composition algorithm that

generates secure service compositions that functionally relevant to the needed

service.

The rest of this paper is organized as follows. Section 2 presents an overview of our

approach. Section 3 discusses the validation of SESO patterns and provides examples

of proofs of security properties for some patterns. Section 4 discusses the encoding of

SESO patterns. Section 5 presents the SESO pattern driven service composition algo‐

rithm. Section 6 provides the results of an initial experimental evaluation of our

approach. Section 7 overviews related work. Finally, Sect. 8 provides conclusions and

directions for future work.
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2 Overview

The service composition approach that we present in this paper extends a general frame‐

work developed at City University to support runtime service discovery [28]. This

framework supports service discovery driven by queries expressed in an XML based

query language, called SerDiQueL, which supports the specification of interface, behav‐

ioural and quality discovery criteria. The execution of queries can be reactive or proac‐

tive. In reactive execution, the SBS submits a query to the framework and gets back any

services matching the query that are discovered by the framework. In proactive execu‐

tion, the SBS submits to the framework queries that are executed in parallel, to find

potential replacement services that could be used if needed, without the need to initiate

and wait for the results of the discovery process at this point [28].

To take into account service security requirements as part of the service discovery

process, we have extended the above framework in two ways. Firstly, we have extended

SerDiQueL to enable the specification of the security properties that are required of

individual services as querying conditions (the new language is called A-SerDiQueL).

Secondly, we have developed a module supporting the generation of possible compo‐

sitions of services that could replace a given service in an SBS in cases where a discovery

query cannot find any single matching service. The generation of service compositions

is based on the approach presented in this paper. In particular, this paper focuses on the

process of searching for and constructing secure service compositions and the SESO

patterns used in this process.

The key problems during the composition process are to ensure that the constructed

composition of services: (a) provides the functionality of the service that it should

replace, and (b) satisfies the security properties required of this service. To address (a),

our approach uses abstract service workflows. These workflows express service coor‐

dination processes that realize known business processes through the use of software

services with fixed interfaces. Such workflows are available for specific application

domains such as telecom services (IBM BPM Industry Packs [13]), logistics (RosettaNet

[25]), and are often available as part of SOA architecting and realization platforms (e.g.,

IBM WebSphere). Service workflows are encoded in an XML based language that

represents the interfaces, and the control and data flows between the workflow activities.

To address (b), we are using SESO patterns. These patterns are based on primitive

service orchestrations that have been proposed in the literature (e.g., sequential and

parallel service execution) but augment them by specifying concrete security properties

P1,…, Pn that must be provided by the individual services that instantiate the pattern for

the overall orchestration to satisfy a required security property P0. The derivation of these

security properties is based on rules that encode formally proven relations between the

security properties of the individual placeholder services of the pattern and the security

property required of the entire service orchestration represented by the pattern. Once

derived through the application of rules, the security properties required of the individual

partner services of the orchestration are expressed as queries in A-SerDiQueL. These

queries are then executed to identify concrete services with the required security proper‐

ties, which could instantiate the placeholder services of the pattern. If such services are

found the pattern is instantiated. The pattern instantiation process is gradual and, if it is
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completed successfully, a new concrete and executable service composition that satisfies

the overall security property guaranteed by the pattern is generated.

A key element of our approach is the formal validation of the relations between the

security properties of the individual placeholder services of a SESO pattern and the

security property of the entire composition expressed by the pattern. The validation of

such relations is discussed in the next section.

GetISIN GetEURQuote EURtoUSD 

Symbol ISIN EUR value USD value 

StockExchange 

Fig. 1. Composition to replace GetStockQuote.

To illustrate our approach assume that a Stock Broker SBS that uses an operation

GetStockQuote from a service StockQuote to obtain price quotations for a given stock.

GetStockQuote takes as input a string Symbol identifying a stock and returns the current

value of that stock in USD. If StockQuote becomes unavailable at runtime, then it

becomes necessary to replace it with another service or a service composition (if no

single replacement service can be discovered). A composition that may replace Stock‐

Quote is shown in Fig. 1. This composition contains three activities connected by two

sequential patterns (indicated as dashed areas in workflow). The first placeholder of the

outer sequence contains the activity GetISIN, which converts the Symbol identifying the

Stock into the ISIN (another unique stock identifier). The second placeholder corre‐

sponds to the inner sequence. Within this inner sequence, the first placeholder is the

activity GetEURQuote that involves StockExchange and returns the current stock value

in EUR given the Stock ISIN. The second placeholder is the activity EURtoUSD, which

converts a given amount from EUR to USD.

3 Validating Secure Service Compositions

In this section we introduce our approach for formally proving security properties of

service compositions. This is based on generic models of service systems that take into

account the different types of agents and actions that can be part of such systems. We

then transform SESO patterns into different compositions of generic system models and

show that such compositions satisfy specific security properties given that the individual

system models satisfy some other security properties. In particular, we show that a

sequential composition of two generic service models provides specific data integrity

properties. Instantiating these service models with the concrete services of our example

results in assurance that their sequential composition satisfies the respective concrete

data integrity properties.

The task of formally validating the security of a service composition requires a three-

step approach. It starts with a formal model of the service to be replaced and the formal

models of the services to be composed. Firstly, the service composition is represented
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in terms of a formal model derived from the models of the individual services by applying

a set of formal construction rules. These rules project the respective security properties

of each of the composed services as well as the targeted property of the service to be

replaced into the composed system. Secondly, additional properties are added to the

composed system regarding the behaviour of the orchestrator, i.e., the primitive service

orchestration pattern. Finally, the desired property is verified using the properties of the

composed services and the orchestrator.

For the formal system representation and validation of security properties we utilize

the Security Modeling Framework SeMF developed by Fraunhofer SIT [9–11]. In

SeMF, a system specification is composed of a set ℙ of agents and a set Σ of actions,

 denoting the actions of agent P, and other system specifics that are not needed in

this paper and are thus omitted. The behaviour B of a discrete system Sys can then be

formally described by the set of its possible sequences of actions. Security properties

are defined in terms of such a system specification. Relations between different formal

models of systems are partially ordered with respect to different levels of abstraction.

Formally, abstractions are described by so called alphabetic language homomorphisms

that map action sequences of a finer abstraction level to action sequences of a more

abstract level while respecting concatenation of actions. Language homomorphisms

satisfying specific conditions are proven to preserve specific security properties, the

conditions depending on the respective security property. Further information about

SeMF can be found in [9–11].

Based on the representations of each of the service systems in the composition,

we present a general construction rule using homomorphisms that map the service

composition onto the individual services by preserving the individual services’

security properties. This allows us to deduce the respective security properties to be

satisfied by the composition. The different SESO patterns are translated into behav‐

iour of the orchestrator regarding the invocation of the respective services. This

includes functional and security related property statements. Based on this informa‐

tion it is possible to deduce the overall security properties of the composition system

and validate whether they meet the expected results. In the next three sections, we

illustrate our approach by exemplarily proving a specific data integrity property. The

formal representation of services, composition and security properties is given in

terms of generic agents and actions that are later instantiated by the SESO patterns

towards concrete services and security properties. While our example focus on a

single property on a specific set of orchestrations, our approach can handle various

different orchestrations patterns, proving different instantiations of various security

properties regarding integrity and confidentiality [21].

3.1 Formal Representation of Generic Service Composition

The formalization of a generic composition structure for service based systems is based

on the following types of agents:

• Clients C. These are agents that use the service. They are thus specific to the service,

and their actions are derived from the service’s WSDL.
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• Service S. This is the agent representing the service’s communication interface

(corresponding to its WSDL).

• Backend Agents S-*. These are service specific agents representing the implementa‐

tion specifics, i.e. the internal functionality of a certain service (e.g. a backend storage

used by the service).

• Global agents G-*←representing third parties that are known to be identical for all

services (e.g., some service providing external information).

• R (the “rest of the word”). This is a default global external agent that is used to

represent any agent other than those identified in C, S-* and G-*.

In the following, we denote (i) the system model of the service  to be replaced by a

composition by , (ii) the system models of the services  and  to be composed by

 and , respectively, and (iii) the composition system by . The sets of agents and

actions are denoted analogously (i.e. by , , for ). We mark service specific

agents with the corresponding superscripts. We also mark global agents, even though being

global, with superscripts in order to indicate the context of invocation (i.e. a global agent

G-A being invoked by  is denoted by . A generic system  with service , client

, a backend agent  and a global agent  can for example be instantiated by a

service StockbrokerService using a backend storage service StockbrokerService-Storage for

logging of client data and a global service StockExchange for actually retrieving the stock

data.

Fig. 2. Service Composition.

The principal idea of substituting a service by a composition is depicted in Fig. 2.

More specifically, we assume two services  and  to act independently of (i.e., not to

invoke) each other and utilize an orchestration engine  for their composition that takes

the roles of both the clients  and  of  and  respectively, as well as the role

of the service  in  to be replaced. Any global agent of  will be part of the

composition system and will be invoked by either  or . Furthermore, backend agents

of  will be removed, their functionality will be provided by the services  or  or

their backend agents which will be part of the composition as well. This gives rise to

the following set of agents of the composition:
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We then view the systems Sys0, Sys1 and Sys2 as homomorphic images of the

composed system Sysc.

In order to determine the action set  of the composition we use a generic renaming

function  that replaces all occurrences of agent  in an action by Q. Based

on this function, we define functions  that formalizes the

orchestrator taking the roles of  as follows:

The resulting set  of actions of the composed system is then as follows:

 represents additional actions taken by the orchestration engine beyond the

communication with client and services. These actions depend on the specific orches‐

tration pattern used and will be discussed in the next section.

Now we need to assure that for all actions in  exists an equivalent provided

by either  or , i.e. the above set  of actions must satisfy the following:

Since the functions  are injective we can now use their inverse image in order

to define the homomorphisms that map the composition system onto the abstract

systems: each homomorphism  abstracts  to . Regarding the actions corre‐

sponding to those in ,  is simply the inverse of , and all other actions are mapped

onto the empty word. Hence for  we define  as

follows:

These homomorphisms serve as a means to relate not only the models of the

individual systems to the composition model but also to relate - under certain condi‐

tions - their security properties. A homomorphism that fulfills certain conditions

“transports” a security property from an abstract system to the concrete one, i.e. if

the conditions are satisfied and the property holds in the abstract system, the corre‐

sponding property will also hold in the concrete system. Thus, the homomorphism

preserves the property. The conditions that must be satisfied depend on the property
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in question; see [9, 10] for example. We use this approach to prove specific security

properties for a composition of services based on the security properties of these

services.

3.2 Formally Representing Sequential Composition

Our methodology for service composition has been applied to various different patterns,

proving different instantiations of various security properties (see [21] for more details).

In the following, we will focus on a specific case for a sequential service composition

that corresponds to the example introduced in Sect. 2.1 in order to illustrate our approach.

We assume the original service  to invoke a global agent  (denoted by ). For

its substitution, the pattern for sequential composition of services realizes the subsequent

invocation of two services  and , where the output of  serves as input for . The

global agent  will be invoked by either  or  (denoted by  and ,

respectively).

The actions of the systems are constructed from the generic service operations op0,

op1, and op2 (that represent the operations of concrete services’ WSDL) as prefix,

followed by one of the suffixes IS, IR, OS, OR to represent InputSend, InputReceive,

OutputSend, OutputReceive, respectively. This naming scheme corresponds to our

method of transforming a service’s WSDL into sets of agents and actions introduced in

[12]. The actions of the global agents, not being part of the service’s WSDL, do not

follow this notation. This leads to the following specification of systems Sys
i
:

with i = 0,1,2, and j = 0,1 for , and j = 0,2 for .

In the system , when  receives some data data0 from the client, before

forwarding it to the global agent it applies a function . In our stockbroker example

introduced in Sect. 2.1, this function could for instance remove the client’s name or

account). The global agent (StockExchangeService in the example) acts on receiving the

input  and produces the output  (say, the stock value in Euros and the bill

for the service provided). The global agent’s input and output may or may not be func‐

tionally related. Such a relation is necessary in case an integrity property shall be

expressed that involves the complete sequence of actions, starting with the client

providing the input data and ending with the client receiving the final output. The case

we investigate below considers only half of this sequence, starting with the global

agent’s output, thus a relation between global agent’s input and output is not needed.

Accordingly,  returns  to . The service then applies a function  and

sends the result to the client. The stockbroker service in our example could for instance

remove the bill and just keep the stock value, and convert it to US dollar.
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In the sequential composition pattern, the orchestrator forwards data0 received from

C0 to S1. In case it is S1 that invokes the global agent, before doing so the service computes

 (removes the client’s name and account) and sends this to . As in ,

the global agent produces  and returns this to . Note that input as well as output

of the global agent are the same as in  (otherwise the global agent would not be

global). Now  applies  (removes the global agent’s bill) and sends  to

the orchestrator. These data are then forwarded by the orchestrator to S2 who applies f2

(converts euro to dollar) and returns  which the orchestrator finally

returns to the client. A similar sequence of actions occurs if the global agent is invoked

by . In a more complex scenario the orchestrator can for example alter (e.g., split) the

client data and combine the output of  with some data resulting from the client’s input

and send this to . A proof for this more complex construction is achievable analogously

to the one presented below.

The agent and action sets of the composition are constructed as specified in the

previous section, using the functions r0, r1 and r2. Function r0 for example maps action

op0-IS(C0, S0, data0) onto op0-IS(C0, O, data0), hence h0(op0-IS(C0, O, data0)) = 

op0-IS(C0, S0, data0), while h0(op2-OR(O, S2, f2(data2))) = h0(r2(op2-OR(C2, S2,

f2(data2)))) = ε., with data1: = data0 and .

3.3 Validation of Integrity Preserving Compositions

Our approach of proving security properties of service compositions is generic and has

already been applied to various integrity and confidentiality properties (see [21] for more

details). As an example of such proofs, we will now present the proof regarding a specific

data integrity property of S0 being provided by the orchestration specified above. The

definition of (data) integrity that we assume in our example is taken from RFC4949, i.e.

“The property that data has not been changed, destroyed, or lost in an unauthorized or

accidental manner.” [26]. In SeMF, this property of data integrity is expressed by the

concept of precedence: pre(a, b) holds if all sequences of actions  that contain

action b also contain action a. Obviously, precedence is transitive (we omit the trivial

proof). Further, precedence is preserved by any homomorphism if  (see [11]

for a proof). With  all

precedence properties are preserved in the following, with  denoting the orches‐

trator assumptions (see P4 and P5 below).

Out of the many properties related to integrity and sequential composition we now

investigate one that is related to transmission of data between a global agent and a client

which results into four different properties. On the one hand, we can investigate the

integrity of data transmitted from the client to a global agent vs. the one transmitted from

a global agent to the client. On the other hand, we can differentiate between the global

agent being invoked by either  or . Exemplarily we use the case where  invokes

the global agent and assume  to provide the following integrity property: Each time

client  receives data from service , this data originates from the global agent that

was properly manipulated by . Formally:
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As explained above, precedence shall be preserved by h0 (as constructed in Sect. 3.1).

Since the global agent’s action in the composition is identical to the one in , it must

receive the same input in order for the composition to achieve the same functionality,

hence . Also, what  receives in the composition must be identical to what it

receives in . This implies  which results in the following property of the

composition (corresponding to P1’) that we want to prove:

For our proof, we assume that the services Sys1 and Sys2 provide the properties:

The homomorphisms h1 and h2 as constructed in Sect. 3.1 preserve these precedence

properties. Accordingly, the corresponding properties in  are:

In addition, the orchestrator must act according to the pattern (as specified in

Sect. 3.2), i.e., satisfy the following properties:

Proof. Assume there is  with . Property P5

implies that . By P3,  and further

. In the next step, Property P4 implies that

. By P2, we can deduce , i.e.

, and  which implies

that property P1 holds.

Due to the simplicity of the precede property, the above proof is simple. In [21] we have

proven other integrity properties (e.g. the global agent being invoked by ). We have also

10



proven several confidentiality properties. All proofs use the approach presented in this

paper: (i) deriving the formal model of the service composition from the formal models of

the individual services, (ii) relating these models by using property preserving homomor‐

phisms and thus representing the individual services’ security properties in terms of the

composition model, and (iii) using appropriate security properties to be satisfied by the

orchestrator. Whilst we assume the orchestrator to behave correctly and hence to satisfy

these additional properties, the security properties we assume for the individual services

of the composition are translated into inference rules, which are then used in order to

construct a concrete service compositions. The proofs of security properties for specific

SESO patterns need to be constructed offline and encoded in the patterns as rules. At

runtime, the rules encoding the patterns are used to deduce the security properties that must

be satisfied by the candidate services that may instantiate the pattern.

4 Secure Service Orchestration Patterns

Proofs of security properties, like the one that we discussed in Sect. 3, form the basis of

SESO patterns in our approach. More specifically, an SESO pattern encodes: (a) a prim‐

itive orchestration describing the order of the execution and the data flow between

placeholder services, and (b) the implications between the security properties of these

services and the security property of the whole orchestration. The placeholder services

within a primitive orchestration can be atomic activities (i.e., abstract partner services)

or other patterns. The implications in (b) are of the form:

These implications reflect proofs of security properties, developed based on the

approach discussed in Sect. 3. They are encoded as inference rules and used during the

composition process to infer the security properties that would be required of the place‐

holders of a pattern P for it to satisfy ρ
P
. The benefit of encoding proven implications

as inference rules is that there is no need to reason from first-principles when attempting

to construct compositions of services, based on SESO patterns.

To be more specific, SESO patterns and implications of the above form are encoded

as Drools production rules [8]. Drools is a rule-based reasoning system supporting

reasoning driven by production rules. Production rules in Drools are used to derive

information from data facts stored in a Knowledge Base (KB). A production rule in

Drools has the general form: when <conditions> then <actions>. When a rule is applied,

the rule engine of Drools checks, through pattern matching, whether the conditions of

the rule match with the facts in the KB and, if they do, it executes the actions of the rule.

This execution can update the contents of the KB. Table 1 shows the encoding of integ‐

rity in the sequential orchestration pattern that was presented in Sect. 3.3 as a Drools

rule. This rule uses the following definitions of integrity:
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Table 1. Integrity Rule for Sequential SESO Pattern.

Definition 1. The integrity of data X generated by a global agent GA and sent to the

client by S1: IntegrityGA2C(Si, GA, fi(X)) = pre(act(GA, _, X), opi-OR(Ci, Si, fi(X)))

Definition 2. The end-to-end integrity of the data, from input to output (i.e. the property

investigated in a former version of this work [22]): IntegrityE2E(Si, X, Y) = 

pre(opi-IS(Ci, Si, X), opi-OR(Ci, Si, Y)).

Using such more abstract security properties in the rules avoids the need to

encode in the rule the formalism that the proof is based on. This makes it also

possible to use SESO patterns proven through different formalisms in our approach.

Returning to the rule in Table 1, lines 3–9 describe the primitive orchestration

that the security property refers to. More specifically, the rule can be applied when

a sequential pattern ($P) with two placeholders, i.e., activity $S1 followed by

activity $S2, is encountered. Activity $S1 interacts with a global agent $GA1 that

generates output $outGA. The rule defines the parameters of these activities: $S1

has an output parameter $f1-outGA, that is a function of $outGA, and $S2 uses

the input parameter $f1-outGA in order to generate the output parameter $f1-f2-

outGA, as shown in Table 1. Line 10 describes the original security requirement

requested on the composition pattern $rhoP, i.e. integrity on the pattern $P of the

data $f2-f1-outGA originally generated by $GA1. This requirement is equiva‐

lent to the property P1 presented in Sect. 3.3. Lines 12–14 (i.e., the then part of the

rule) specify the security properties that are required of the activities of the pattern

in order to guarantee $rhoP, namely: (i) integrity on the output ($f1-outGA) of

$S1 generated by $GA1, as stated by the precedence property P2, and (ii) end-to-end

integrity on the input ($f1-outGA) and output ($f2-f1-outGA) of $S2, as

required from P3. Additionally, we assume the framework executing the orchestra‐

tion to satisfy properties P4–P5, hence these need not be mentioned in the rule.
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Finally, according to the rule, once the original requirement $rhoP is guaranteed

by the new ones, it can be removed from the KB.

Similar encodings of other SESO patterns have been expressed using this approach.

SESO pattern encoding rules, like the one presented above, are used during the composi‐

tion process to infer the security properties that are required of the concrete services that

may instantiate the placeholder services in a workflow. This process is discussed next.

5 SESO Pattern Driven Service Composition

The service composition process is carried out according to the algorithm shown in

Table 2. This algorithm is invoked when an SBS service needs to be replaced but the

service discovery query specified for it cannot identify any single service matching it.

In such cases, the structural part of the query, which defines the operations that a

service should have and the data types of the parameters of these operations, is used to

retrieve from the repository of the discovery framework abstract workflows that can

provide the required service functionality. An abstract workflow represents a coarse

grained orchestration of activities, which collectively offer a specific functionality, and

is exposed as a composite service. Such workflows are fairly common (e.g., [5, 19]) and

result from reference process models in specific domains [13, 25]. The activities of an

abstract workflow are orchestrated through a process consisting of the primitive orches‐

trations that underpin the security patterns, as discussed in Sect. 4. If such workflows

are found the generation of a service composition is attempted by trying to instantiate

each abstract workflow.

As shown in Table 2, initially, the algorithm identifies the abstract workflows that

could be potentially used to generate a composition that can provide the operations of

the required service (see  function in line 3). This is based on the

execution of the query associated with the service to be replaced ( ). If such workflows

are found, the algorithm continues by starting a process of instantiating the activities of

each of the found workflows with services. The activities of the workflows are instan‐

tiated progressively, by investigating each workflow W in a depth-first manner. More

specifically, the algorithm takes the first unassigned activity A in W (in the control flow

order) and builds a query  based on the workflow specification and the discovery query

. In particular, the structural part of  is taken from the description of A in the abstract

workflow. The security conditions in  are generated through the procedure

.

This procedure infers the security conditions for A based on the Drools rules that

encode the SESO patterns detected within the current workflow. More specifically, all

the information about the workflow, its patterns, activities, security properties and

requirements are put into the KB. Then the rules that represent the detected SESO

patterns are fired (i.e. applied), propagating the requirements through the workflow. The

generated requirements for the unassigned activity are then retrieved and converted to

query conditions. The propagation of security requirements is possible as each workflow

can be seen as a recursive application of primitive orchestrations.
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Table 2. Service Composition Algorithm.

Figure 3 shows the order of propagation through the use of the rules, on a workflow

shown in (c). A security requirement ρS is initially given for a service S (Fig. 3(a)). The

first rule that will be fired by Drools is the one for the outermost pattern of the workflow:

a choice pattern (i.e., the if-then-else primitive orchestration in Fig. 3(b)). The security

requirement is then propagated by the relevant rule (if such a rule exists) to the place‐

holders A and B returning the requirements ρA1, …, ρAn and ρB1, …, ρBm (with n, m ≥ 0

and n + m ≥ 1). For each security requirement ρ
Ai

 (with i = 1, …, n), a rule is fired to

propagate the requirement to the sequential pattern that instantiates A (Fig. 3(c)). This

process generates the security requirements for placeholders C and D.

If a security requirement cannot be propagated to the atomic activity level (e.g., no

rules are defined for the given pattern or security property) then Drools returns an error

state to point out that a security requirement cannot be guaranteed by the existing set of

rules. This ensures that no security requirements are ignored.

After constructing , the query is executed by the runtime discovery framework in

[28] to identify a list of candidate services for . The candidate services (if any) are

then used to instantiate the activity A in W. Note that the composition algorithm imple‐

ments a depth-first search in the composition generation process in order to explore fully

the instantiation of a particular activity within a pattern before considering other activ‐

ities. This spots dead-ends sooner than a breadth-first search.
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As an example of applying the algorithm in Table 2, consider the Stock Broker

example introduced in Sect. 2.1. Suppose that the Stock Broker SBS has a security

requirement regarding integrity of the output data of its StockQuote service, and

would consider replacement services that can offer the same operation only if they

satisfy this particular security requirement. To deal with potential problems with

StockQuote at runtime (e.g., unavailability), Stock Broker can subscribe a service

discovery query QSQ for replacing StockQuote to the discovery framework and

request its execution in proactive mode. QSQ should specify the functional and

security properties that the potential replacement services of StockQuote must have.

If the execution of QSQ results in discovering no single service matching it (i.e., when

single service discovery fails), the service composition process is carried out. At this

stage, according to the algorithm of Table 2, the framework will query the abstract

workflow repository to locate workflows matching QSQ.

Suppose that this identifies the abstract workflow WSQ shown in Fig. 1 that matches

the query. This workflow contains a sequence of three activities: GetISIN, GetEURQuote

and EURtoUSD. The framework then infers the security properties required for each of

the services that could instantiate the activities of WSQ and uses them to query for such

services. Initially, a rule for integrity of data D on a sequential pattern with the global

agent generating D in the second activity is fired on the external sequential pattern. This

rule and the related proof are given in [21] (Sect. 3.3.3, case 2). The rule is applied

because the property required for the external sequential pattern is that the output of the

workflow (i.e., USD value) must have been computed from the value returned by Stock‐

Exchange. From the required security property, the rule derives only one property about

the integrity of USD value (again, from the value coming from StockExchange) for the

inner sequential pattern. This newly generated property fires the rule shown in Table 1

resulting in two security properties: (1) integrity from the global agent StockExchange

to the client for GetEURQuote output EUR value, and (2) end-to-end integrity on inputs

and outputs of EURtoUSD.

Fig. 3. Recursive applications of secure service orchestration patterns.
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After the application of the rules, we derive the required property for the first

unassigned activity GetISIN. In this instance, no security properties are requested

from the first activity. This means that the query used to instantiate the workflow

consists only of the interface required for GetISIN. In a similar way, a query speci‐

fying the required interface is created for the second activity, GetEURQuote. This

query, however, will include also the security property required for the activity i.e.,

integrity of EUR value that is passed from StockExchange to the client. The query

is then executed and the discovered services are used to instantiate the workflow.

Note that in the discovery process, services are considered to satisfy the required

security properties only if they have appropriate certificates asserting these proper‐

ties. Similarly for the last activity, EURtoUSD, a query is generated from the service

interface and the required security properties and then executed, and the workflow

gets instantiated by the results. After the replacement service is fully composed, the

service composition is published in a BPEL execution engine and its WSDL is sent

to the Stock Broker SBS in order to update its bindings.

6 Tool Support and Experiments

To implement and test our approach, we have developed a prototype realizing the

composition process and integrated it with the runtime service discovery tool described

in Sect. 2. The prototype gives the possibility to select a service discovery query and

execute it to find potential candidate services and service compositions. If alternative

service compositions can be built, the alternatives are presented to the user who can

select and explore the services in each of them.

Early performance tests of our approach have been carried out using service registries

of different sizes. Table 3 shows average execution times for single service and service

composition discovery obtained from using our tool on an Intel Core i3 CPU (3.06 GHz)

with 4 GB RAM. The reported times are average times taken over 30 executions of each

discovery query. In the experiments, we used service registries of four sizes (150, 300,

600 and 1200), 25 abstract workflows and 3 patterns.

As shown in the table, the time required for building service compositions is consid‐

erably higher than the time required for single service discovery. The main part of this

cost comes from the process of discovering the individual services to instantiate the

partner links of the composition. Although the overall composition time is high, its

impact is not as significant, since as we discussed in Sect. 2 our framework can apply

discovery and service composition in a proactive manner, i.e., discover possible service

compositions in parallel with the operation of an SBS and use them when a service needs

to be replaced. Furthermore, the cost of compositions can be reduced or kept under a

given threshold by controlling the number of alternative compositions that the algorithm

in Table 2 builds. In [28], the authors have shown the benefits of a proactive execution

of the service discovery process used in our approach. Hence, we believe that the proac‐

tive generation of compositions could also reduce execution time but this would need

to be confirmed experimentally.
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Table 3. Execution times (in msecs).

Registry size 150 300 600 1200

Single service discovery time 194 275 355 642

Composition discovery time 777 2214 4943 12660

No. of generated compositions 4 12 24 40

7 Related Work

Existing work in service composition has focused on creating compositions that have

certain functional and quality of service properties (e.g., [1, 2, 14, 17, 23, 24, 27]) and

provides only basic support for addressing security properties in service composition,

which is the main focus of our approach.

The creation of service compositions that satisfy given security properties has

been a focus of work on model based service composition (e.g., [4, 6, 7]). In this

area, service compositions are modeled using formal languages and their required

properties are expressed as properties on the model. Our approach to composition is

also model based. However, it uses model based property proofs to identify how

overall security properties of compositions can be guaranteed through the security

properties of the individual components (services) of the composition. Existing work

on model based service composition could provide proofs of additional security

properties, which could be used to extend the patterns used in our approach, even if

they use different formalisms. The compositionality results for information flows

discussed in [18], for example, can be easily converted into SESO patterns.

Other work on service composition focuses on discovering services that have given

security properties (e.g., [3, 5, 15, 16, 19]). Some of these approaches focus on specific

types of security properties (e.g., [16, 19]) whilst other focus on how to express and

check security properties but only for single partner services of a composition (e.g., [3,

5, 15]). In contrast, our approach can support arbitrary security properties and properties

of entire service compositions.

Two ontology-based frameworks for automatic composition are described in [15]

and [19]. The first framework defines a set of metrics for selecting amongst different

compositions but provides limited support for security. The second framework intro‐

duces hierarchies of security properties but does not support the construction of

secure service compositions. In [16] planning techniques have been used to build

sequential compositions guarantying access control models, and [5] introduces an

approach to security aware service composition that matches security requirements

with external service properties. The focus of [3] is on generating test-based virtual

security certificates for service compositions, derived from the test-based security

certificates of the external services that form the composition.
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8 Conclusion

In this paper, we have presented an approach supporting the discovery of secure service

compositions. Our approach is based on secure service orchestration (SESO) patterns.

These patterns comprise specifications of primitive orchestrations describing the order of

the execution and the data flow between placeholder services, and rules reflecting formally

proven relations between the security properties of the individual placeholders and the

security property of the whole orchestration. The formal proofs (and patterns) developed

so far cover different integrity and confidentiality properties for different forms of primi‐

tive orchestrations. During the composition process, the proven relations between security

properties are used to deduce the actual properties that should be required of the indi‐

vidual services that may instantiate an orchestration for the orchestration to satisfy specific

security properties as a whole. In order to facilitate reasoning, SESO patterns are encoded

as Drools rules. This enables the use of the Drools rule based system for inferring the

required service security properties when trying to generate a service composition.

Our approach has been implemented and integrated with a generic framework

supporting runtime service discovery that is described in [28]. We are currently investi‐

gating the validity of our approach through a series of focus group evaluations. We are also

investigating further SESO patterns (e.g., for availability), and conducting further perform‐

ance and scalability analysis of our prototype. We are also exploring the use of heuristic

controls over the number of compositions generated by the algorithm to speed up the

processing.
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