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Analytical Pricing of Discretely Monitored
Asian-Style Options: Theory and Application to

Commodity Markets

Gianluca Fusai� Marina Marenay Andrea Roncoroniz

Abstract

We compute an analytical expression for the moment generating func-
tion of the joint random vector consisting of a spot price and its discretely
monitored average for a large class of square-root price dynamics. This
result, combined with the Fourier transform pricing method proposed by
Carr and Madan (1999) [Carr, P., Madan D., 1999. Option valuation us-
ing the fast Fourier transform. Journal of Computational Finance 2(4),
Summer, 61-73] allows us to derive a closed-form formula for the fair value
of discretely-monitored Asian-style options. Our analysis encompasses the
case of commodity price dynamics displaying mean reversion and jointly
�tting a quoted futures curve and the seasonal structure of spot price
volatility. Four tests are conducted to assess the relative performance
of the pricing procedure stemming from our formulae. Empirical results
based on natural gas data from NYMEX and corn data from CBOT show
a remarkable improvement over the main alternative techniques developed
for pricing Asian-style options within the market standard framework of
geometric Brownian motion.
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1 Introduction

Asian-style options, and other options written on alternative de�nitions of av-
erage prices, are e¤ective hedging devices in commodity markets. As reported
by Eydeland and Wolyniec (2003), these derivatives play an important role in
price risk management performed by local delivery companies in the gas market.
Moreover, oil markets often use these securities to stabilize cash �ows that stem
from meeting obligations to clients.
The market model for pricing Asian-style options is the geometric Brown-

ian motion. This process is fraught with two major shortcomings. First, the
assumption of normal price returns does not re�ect the empirical features dis-
played by the vast majority of time series of commodity quotes. As illustrated
by Richter and Sorensen (2000), Eydeland and Wolyniec (2003), and Regnier
(2007), among others, these latter exhibit variable degrees of time varying and
price dependent volatility functions. Second, there is no closed form expres-
sion for the arbitrage-free price of options on arithmetic averages of lognor-
mally distributed prices. Time consuming price approximations must be imple-
mented, sacri�cing both precision and time in the resulting procedure (Wilmott,
Dewynne, and Howison (1993)). In this respect, Fusai and Roncoroni (2008)
provide a detailed comparison of alternative pricing methods for Asian-style
options written on price dynamics following a geometric Brownian motion.
We start by assuming that asset price dynamics are driven by a square-root

process in the spirit of Cox, Ingersoll, and Ross (1985). This process subsumes
important elements characteristic of commodity price series while preserving an-
alytical tractability. Moreover, it can easily be extended such that the resulting
evolution �ts the market forward curve, the time pattern of spot price volatility
and mean reversion.
On the theoretical side, we derive an analytical formula for pricing discretely

monitored Asian-style options in the above mentioned setting. To achieve this
goal, we follow a two step procedure: �rst, we compute the moment generating
function of the joint pair consisting of the commodity spot price Sn� at a future
maturity n� and the weighed cumulated price

Pn
j=0 �jSj� over the discretely

monitored time horizon f0;�; :::; n�g; then, we apply a computational pricing
approach based on the Fourier transform, as proposed by Carr and Madan
(1999). The ability to compute an analytical expression for the underlying

pair
�
Sn�;

Pn
j=0 �jSj�

�
constitutes the main theoretical result obtained in

this paper in relation to the existing literature in the �eld. Incidentally, we
note that discrete monitoring de�nitively represents a more realistic assumption
than continuous monitoring. Moreover, it allows us to compute the transform of
the joint distribution of the absolute and cumulated spot prices using a simple
recursive procedure. A striking result is that the mentioned transform can be
obtained using only the transform of the underlying commodity price.
We also present three important extensions of our main formula: �rst, we

let the underlying spot price process exhibit a time dependent drift, a prop-
erty allowing the resulting dynamics to recover the quoted set of forward prices;
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second, we adopt a time varying volatility coe¢cient, a feature allowing our
model to �t either the term structure of implied volatilities or a time depen-
dent, e.g., seasonal, spot price historical volatility; third, we consider spot price
dynamics exhibiting mean reversion in their trend, a quality shown by some
important classes of commodity prices, among which we cite agriculturals and
energy-related products such as electricity and gas. These extensions represent
a further theoretical innovation on the pricing of Asian-style options compared
to published literature (Dassios and Nagaradjasarma (2006)).
On the empirical side, we perform four experiments aimed at assessing the

absolute and relative quality of our pricing device. First, we measure the extent
to which prices computed using discrete monitoring deviate from �gures result-
ing from those obtained using formulae for the continuous monitoring case. We
see that convergence is approximately linear in the number of monitoring dates.
The resulting rate of convergence underpins the use of a fast, accurate method
of pricing discretely monitored Asian-style options such as the one we propose
herein.
Next, we compare prices obtained using the standard Black-Scholes model to

the ones stemming from implementing our formulae. The former are obtained
using two methods proposed in the literature on the subject. The latter are
computed using a volatility assessment for our square-root model that is con-
sistent with the volatility parameter in the geometric Brownian motion used to
feed in the alternative methods mentioned above. This procedure makes our
price directly comparable to the others. Our pricing device proves to be rather
quick to obtain, whereas alternative pricing algorithms are always much slower
to perform . Moreover, it mostly o¤ers results which lie within the alternative
methods used to approximate the option price under the market model.
Then, we measure the impact of including market information about the

forward prices into the spot price dynamics for the purpose of pricing Asian-
style options. We perform this analysis using quotes taken from the Natural Gas
Market at NYMEX. It turns out that a non �at forward curve produces highly
signi�cant option price deviations from �gures obtained in the case where such
information is not accounted for by the underlying spot price model.
Finally, we assess the impact of including information about the time struc-

ture of historical volatility into our pricing device. We perform a test on corn
price data quoted at CBOT. It turns out that using this information may result
in signi�cant price discrepancies compared to the quotes obtained using the mar-
ket model represented by the geometric Brownian motion. Our results suggest
that when pricing Asian-style options in market contexts where a seasonal com-
ponent strongly a¤ects the evolution of spot price volatility, one should include
this information as precisely as possible. This remark is particularly important
for several commodity markets, such as energy and agriculturals, where the time
variation of volatility is signi�cantly pronounced.
The paper is organized as follows. Section 2 derives a closed-form expression

for the moment generating functions of the underlying commodity price Sn�
and the pair

�
Sn�;

Pn
j=0 �jSj�

�
. Section 3 extends these results to the case
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of spot price dynamics that �t a quoted forward price curve, a time varying
volatility structure, and a mean reverting behavior. Section 4 relates these
expressions to the Laplace transform of the �xed strike Asian-style option price
and the Fourier transform of the �oating strike Asian-style option price. Section
5 performs numerical experiments on gas data taken from NYMEX. Section 6
concludes with a few comments and suggestions for future development.

2 Recursive Valuation of the Underlying Pair

Transform

We consider spot price dynamics driven by a simple square-root process under
the (possibly selected) risk-neutral probability measure:1

dSu = (r � c)Sudu+ �
p
SudWu; (1)

S0 = x:

Here r denotes the instantaneous short rate of interest, c is the instantaneous
net spot convenience yield,2 � is the percentage instantaneous volatility and W
represents a standard one-dimensional Brownian motion. In this section, we
assume coe¢cients r; c and � are all constant. Later, we derive an extension to
time varying drift and volatility, allowing the model to �t the forward price curve
in the market at a given date and either the term structure of implied volatilities
for a given strike price or the seasonal pattern followed by the historical market
price volatility.
We remark that model (1) is a¢ne in the state variable, a property allowing

us to use results taken from the vast literature on this class of models (Du¢e,
Pan and Singleton (2001)).
We consider a time horizon [0; T ] split into a number n + 1 of �-spaced

monitoring dates 0;�; :::; n� = T . Our goal is to compute analytic formulae for
�xed maturity options whose payo¤ structure depends on the commodity spot
price at maturity Sn� or on a linear average Avgn =

Pn
j=0 �jSj� (

P
�j = 1)

of the spot prices S0; S�; :::; Sn� monitored over the contract lifetime, or on any
combination of them. In the energy markets, for instance, weights �j represent
relative volumes delivered to the customer, i.e., �j = Vj=

Pn
i=1 Vi. In particular,

we consider Asian-style options with either a �xed or a �oating strike price
under a discrete monitoring rule. The pay-o¤ functions for these derivatives are
described in Table 1. To this end, we compute the moment generating function

1 If the underlying market is incomplete, as is the case for nonstorable or partly storable
commodities such as electricity or perishable goods, a variety of equivalent probability mea-
sures are compatible with the assumption of absence of arbitrage opportunities. In this case,
the user has to adopt an appropriate method for selecting one of these pricing measures for
pricing purposes. In our model setting, we assume that a measure is selected within this class
at the outset.

2The net convenience yield is de�ned as the net convenience represented under continuous
compounding. The net convenience is given by the net bene�t (reward minus costs) stemming
from physically holding one unit of the commodity, but not from holding a long position in a
forward or futures contract written on the same commodity.
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Option Payo¤

Fixed strike max fAvgn �K; 0g

Floating strike max fSn� �Avgn �K; 0g

Underlying variable

Standard Avgn =
Pn

j=0 Sj�

n+1

Volume weighed Avgn =
Pn

j=0
VjP
i Vi
Sj�

Table 1: Payo¤ functions of Asian-style options under continuous and discrete
monitoring.

Option  � �j m.g.f. v0;x (n;�; ; �)
Standard
European

any 0 - E0

�
e�Sn�

�

Fixed
strike
std.Asian

0 any 1
n+1 E0

h
e�

�
n+1

Pn
j=0 Sj�

i

Fixed
strike
vol.weighed

0 any VjP
i Vi

E0

h
e
� �P

i Vi

Pn
j=0 VjSj�

i

Floating
strike
std.Asian

any � 1
n+1 E0

h
e�(Sn��

1
n+1

Pn
j=0 Sj�)

i

Table 2: Moment generating functions for a sample set of popular Asian-style
energy derivatives.

(m.g.f.) corresponding to the joint probability density of the pair consisting of
the spot price Sn� and the cumulated spot price

Pn
j=0 �jSj� under the selected

monitoring rule. This function is de�ned as:

(; �)! v0;x (n;�; ; �) , E0

0
@exp

8
<
:�

2
4Sn� + �

nX

j=0

�jSj�

3
5
9
=
;

1
A :

Table 2 illustrates instances of this function which correspond with traded op-
tions in the energy markets. Our main theoretical result provides a closed-form
formula for the m.g.f. v0;x (n;�; ; �). We start by recalling the analytical ex-
pression for the m.g.f. of the underlying commodity price St+� given the market
information available at time t as represented by the �-algebra FSt generated
by the price process up to time t.

Lemma 1 Under spot price dynamics (1), the moment generating function of
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St+� given the market information available at time t is given by:

vt;y (1;�; ; 0) , Et
�
e�St+�

�
= e�A(�;)y; (2)

where

A (�; ) =
e(r�c)�

1 + 1
2�

2 e
(r�c)��1
r�c

. (3)

proof. See Ingersoll (1987, pp.397-8).

The explicit dependence on t has been indicated for the sole purpose of making
the formula compatible with its extension to the case of time varying coe¢cient
as shown in the following section.

Proposition 2 Under dynamics (1), the moment generating function of the

pair
�
Sn�;

Pn
j=0 �jSj�

�
given the information available at time 0 is given by:

v0;x (n;�; ; �) = e
��0(�;;�)x; (4)

where the function �j (�; ; �) satis�es the recursive equation:

�j (�; ; �) = A (�;�j+1 (�; ; �)) + ��j ; (5)

for j = n� 1; n� 2; :::; 1; 0, with starting value:

�n (�; ; �) =  + ��n: (6)

Here A is de�ned as in formula (3).

proof. The m.g.f. v can be equivalently expressed as:

v0;x (n;�; ; �) = E0

h
e�(+��n)Sn���

Pn�1
i=0 �iSi�

i
:

By repeatedly using the tower law of probabilities and the analytical expression
(2) for the m.g.f. v0;x (n;�; ; 0) given in Lemma 1, we may write:

v0;x (n;�; ; �) = E0

h
En�1

h
e�(+��n)Sn�

i
e��

Pn�1
i=0 �iSi�

i

= E0

h
e�A(�;+��n)S(n�1)�e��

Pn�1
i=0 �iSi�

i

= E0

h
En�2

h
e�(A(�;+��n)+��n�1)S(n�1)�

i
e��

Pn�2
i=0 �iSi�

i

= E0

h
e�A(�;A(�;+��n)+��n�1)S(n�2)�e��

Pn�2
i=0 �iSi�

i

:::(by recursion)

= e��0(�;;�)x;

where �0 (�; ; �) is obtained by solving for the recursive equation:

�j (�; ; �) = A (�;�j+1 (�; ; �)) + ��j ;
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for j = n� 1; n� 2; :::; 1; 0, starting with �n (�; ; �) =  + ��n. Q.E.D.

This result is important for two reasons. First, it shows that given realistic
assumptions about the monitoring policy, a closed-form expression for the joint
transform can be obtained with little computational e¤ort using the method
detailed in the proof. Second, no information beyond the transform of the state
variable is required. In particular, there is no need to tackle the cumbersome

issue of computing the joint transform of the pair
�
ST ;

R T
0
�uSudu

�
as in the

continuous monitoring rule.

3 Fitting the Quoted Forward Curve and Volatil-

ity Structure

Commodity-linked derivatives should be priced consistently with all market
price information available at the valuation time. In particular, traders need
models which produce prices taking into account three sets of information:
1) The quoted forward/futures prices of the commodity, provided they are

available;3

2) Possible time patterns displayed by the historical price volatility;
3) Mean reversion characterizing spot price dynamics.

These features usually re�ect properties related to the physical use of the com-
modity for industrial or consumption processes.
The specialized literature has examined these issues in great detail. Rout-

ledge, Seppi, and Spatt (2000) underline the impact of periodical components
on the price dynamics of most commodities. Eydeland and Wolyniec (2003)
show that the predictable component of electricity price dynamics is bound by
weather and consumption related features. Todorova (2004) notes that oil and
gas markets show seasonal components a¤ecting expected future spot prices,
while Richter and Sorensen (2000) and Lien and Koekebakker (2004) �nd strong
evidence of seasonality e¤ects upon agricultural commodity prices. For most
commodities, mean reversion is a stylized fact empirically accepted by several
studies. In energy markets, the relevance of this property may vary across prod-
ucts and over time within the same commodity. For instance, Bessembinder
et al. (1995) �nd clear evidence of mean reversion across eleven commodity
markets, pointing out strong patterns for agriculturals and crude oil (see also,
Pindyck (2001)), and weak patterns for metals. Schwartz (1997) and Casas-
sus and Collin-Dufresne (2005), among others, con�rm the existence of a mean
reversion property in crude oil, copper, gold and silver. The case of electric-
ity markets is rather peculiar: Roncoroni (2002) and Geman and Roncoroni
(2006) discover the existence of two competing mean reversion e¤ects in most
US power markets: one is the traditional smooth reversion to average prices;

3For the purpose of our analysis, we assume interest rates are deterministic. This amounts
to treating forward and futures prices as equivalent.
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the other stems from the spiky behavior of electricity spot prices during periods
of capacity congestion.
Our data clearly con�rm those �ndings. Figure 1 displays futures curves

for light, sweet crude oil, natural gas, and heating oil as quoted at NYMEX on
March 1, 2007, and corn as reported by CBOT on December 1, 2006. The time
dependent component is plainly visible in the reported graphs. In particular,
corn exhibits a clear seasonal pattern, which should be considered while pricing
options on averages. This phenomenon has been extensively studied in Benth,
Koekebakker, and Ollmar (2007). Figure 2 shows a periodical component af-

0 0.5 1
62

64

66

68
Light,Sweet CrudeOil (Nymex 1-3-2007)

Maturity (years)
0 0.5 1
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Figure 1: Futures curves for a sample of energy and agricultural commodities.

fecting the spot price of corn and soybean.
We now present a simple, yet e¤ective method to make the spot dynamics

include all price information implied by the quoted forward/futures curve, if
any. This task can be achieved by letting the risk-neutral drift of spot price
dynamics be time dependent. Moreover, the spot price volatility is allowed to
reproduce any time pattern assigned by the user. We remark that the impor-
tance of assuming a time varying drift goes beyond the ability to �t a quoted
forward/future curve. For instance, Cartea and Williams (2007) point out that
gas price dynamics exhibit a time varying historical trend and market price of
risk. Therefore, estimating these quantities may represent a viable alternative
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Figure 2: Seasonal patterns of historical price volatilities for two agricultural
commodities.

to directly �tting the risk-neutral price drift to forward quotes. This option can
be useful whenever forward/futures quotes are not available or their reliability
is limited by, say, liquidity constraints.
Our starting point is the assumption that the excess � of the risk-free interest

rate r over the net spot convenience yield c is a deterministic function of time,
namely:

�t = rt � ct:
Correspondingly, spot price dynamics (1) read as:

dSu = �uSudu+ �u
p
SudWu; (7)

S0 = x.

We assume that forward prices F0;t are observed at time 0 for maturities t up
to time T = n�. Since E0 (ST ) = x exp

R T
0
�sds, the matching condition reads

as:
xe
R
T

0
�sds = F0;T . (8)

This condition can be equivalently written as:

�T = @T ln
F0;T
x

= @T lnF0;T : (9)

The following result extends Lemma 1 to the case of time dependent spot price
drift and volatility.
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Lemma 3 Under commodity spot price dynamics (7), the moment generating
function of St+� given the information available at time t is:

��t;y (1;�; ; 0) , Et
�
e�St+�

�
= e�A

�
t (�;)y (10)

where:

A�t (�; ) ,
e
R
t+�
t

�sds

1 + 
2

R t+�
t

ds�2se
R
t+�
s

�udu
(11)

=

F0;t+�
F0;t

1 + 
2F0;t+�

R t+�
t

�2s
F0;s

ds
; (12)

and y = S (t).

proof. See Fusai, Marena, and Roncoroni (2007).

We remark that expression (12) may be essential to the numerical e¤ectiveness
of our pricing mechanism. At a �rst sight, formula (9) suggests that a model
�tting a forward curve ought to be derived following a two step procedure: �rst,
a continuous forward curve F = (F0;t)0�t�T is computed by interpolating a set
of market quotes; then, a corresponding drift �T is calculated by numerically
evaluating the �rst order derivative of F . The quality of the resulting assessment
can be undermined by the lack of stability that characterizes any di¤erentiation
procedure. This property may lead to unreasonable patterns for the time vary-
ing drift, a phenomenon known as the �Sydney opera house e¤ect� (Rebonato
(1996)). Formula (12) states that we do not need to take this path so long as
only integrals of �T are required to compute the moment generating function in
question. In particular, no di¤erentiation is required for pricing purposes.
The result stated in the lemma allows us to extend the statement in Propo-

sition 2 to the case of time dependent drift and volatility.

Proposition 4 Under spot price dynamics (7), the moment generating function

of the pair
�
Sn�;

Pn
j=0 �jSj�

�
given the information available at time 0 is:

v�0;x (n;�; ; �) = e
���0(�;;�)x; (13)

where the function ��j (�; ; �) satis�es the recursive equation:

��j (�; ; �) = A
�
j�

�
�;��j+1 (�; ; �)

�
+ ��j ;

for j = n� 1; n� 2; :::; 1; 0, with starting value:

��n (�; ; �) =  + ��n:

Here A� is de�ned as in formula (11).
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proof. See Fusai, Marena, and Roncoroni (2007).

We �nally extend the results above to the case of commodity price dynamics
exhibiting mean reversion to a time varying trend:

dSu = � (�u � Su) du+ �u
p
SudWu: (14)

Again, the spot price volatility is allowed to follow any time pattern of interest
and the drift term � is selected such that the model �ts the forward/futures
price curve quoted in the market, i.e.,

E0 (ST ) = F0;T . (15)

Since

E0 (ST ) = e
��Tx+ �

Z T

0

e��(T�s)�sds;

a simple di¤erentiation with respect to the variable T leads to an expression for
the �tting drift term:

�T = F0;T +
1

�
@TF0;T : (16)

The following result extends Lemma 3 to the case of a mean reverting spot price
process with time varying coe¢cients.

Lemma 5 Under commodity spot price dynamics (14), the moment generating
function of St+� given the information available at time t is:

��t;y (1;�; ; 0) , Et
�
e�St+�

�
= e�A

�
t (�;)y�B

�
t (�;);

where

A�t (�; ) =
e���

1 + 
2

R t+�
t

�2se
��(t+��s)ds

; (17)

B�t (�; ) = F0;T � F0;tA�t (�; )�
1

2

Z t+�

t

F0;s�
2
sA

�
s (�; )

2
ds; (18)

and y = S (t).

proof. See Fusai, Marena, and Roncoroni (2007).

The result stated in proposition 4 can be extended as follows:

Proposition 6 Under spot price dynamics (14), the moment generating func-

tion of the pair
�
Sn�;

Pn
j=0 �jSj�

�
given the information available at time 0

is:

v�0;x (n;�; ; �) = e
���0 (�;;�)x�

Pn�1
j=0 B

�
j�(�;�

�
j+1(�;;�)); (19)

where the function ��j (�; ; �) satis�es the recursive equation:

��j (�; ; �) = A
�
j�

�
�;��j+1 (�; ; �)

�
+ ��j ;
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for j = n� 1; n� 2; :::; 0, with starting value:

��n (�; ; �) =  + ��n:

Here A�j� is de�ned as in formula (17) and B
�
t is given by expression (18).

proof. See Fusai, Marena, and Roncoroni (2007).

4 Asian-Style Option Price Transforms

We now relate the results obtained in the previous section to the option pricing
problem stated in the introduction. We need to consider two cases separately:
1) plain vanilla and �xed strike Asian-style options; 2) �oating strike Asian-style
option.
In the former, the underlying variables are the commodity spot price Sn�

and the average price
P
�jSj�. These quantities are positive valued random

variables, a property allowing us to use the Laplace transform of the option
price.
In the case of �oating strike, the underlying variable is represented by the

di¤erence Sn� �
P
�jSj�, a quantity that may assume positive as well as

negative values. This fact leads us to adopt a computational approach based on
the Fourier transform in the spirit of Carr and Madan (1999).
We restrict our analysis to the case of standard Asian-style options.4

4.1 Case 1: Fixed strike

We consider a contingent claim paying o¤ (YT � k)+ dollars at time T , where
k is the strike and Y is a nonnegative Markovian stochastic process. This form
includes plain vanilla calls (YT = Sn�) and standard �xed strike Asian-style

options (YT =
nP
j=0

�jSj�) struck at k. As before, x denotes the time 0 spot

price S0.
The time 0 arbitrage-free option price seen as a function of the strike price

k reads as:

k ! CT0;x (k) = e
�rT

Z +1

0

(y � k)+ fYT (y) dy = e�rT
Z +1

k

(y � k) fYT (y) dy;

where fYT denotes the risk-neutral probability density of YT .
Provided that the m.g.f. of YT exists, then we can de�ne the Laplace trans-

form L of the option price CT0;x (k) with respect to the strike price k as:

�! L
�
CT0;x (�)

�
(�) = cT0;x (�) ,

Z +1

0

e��kCT0;x (k) dk:

4Minor modi�cations to what follows allow the user to derive expressions for volume-
weighed options.
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Simple calculations lead to the following analytical explicit expression:

cT0;x (�) = e
�rT

 
E0

�
e��YT

�

�2
+
E0 (YT )

�
� 1

�2

!
:

Provided that cT0;x (�) has abscissa of convergence with real part �0, the option
price may be recovered as:

CT0;x (k) = L�1
�
cT0;x (�)

�
(k) = lim

R!1

1

2�
p
�1

Z a+
p
�1R

a�
p
�1R

cT0;x (�) e
k�d�; (20)

where the real number a > �0 must be selected such that all the singularities
of the image function cT0;x are located to the left-hand side of the vertical line
� = �0.
Using the fact that the Laplace inverse transform of 1=� is 1, and that of

1=�2 is k, the option price can be written as:

CT0;x (k) = e
�rT

 
L�1

"
E0

�
e��YT

�

�2

#
(k) + E0 (YT )� k

!
:

Note that the expected values E0
�
e��YT

�
and E0 (YT ) can easily be computed

as reported in the following table:
YT Dynamics� coe¢cients E0

�
e��YT

�
E0 (YT )

Vanilla

Call
Sn�

Constant(1)
Varying (7)
Mean rev.(14)

v0;x (n;�; ; 0)
v�0;x (n;�; ; 0)

v�0;x (n;�; ; 0)

xe(r�c)T

F0;T
F0;T

Asian

Options

nP
j=1

�jSj�

Constant (1)
Varying (7)
Mean rev.(14)

v0;x (n;�; 0; �)
v�0;x (n;�; 0; �)

v�0;x (n;�; 0; �)

nP
j=0

�jxe
(r�c)j�

nP
j=0

�jF0;j�

nP
j=0

�jF0;j�

where expressions for v0;x, v�0;x, and v
�
0;x are given in formulae (4) ; (13), and

(19), respectively, and F0;t denotes the commodity forward price prevailing in
the market at time 0.
The Asian-style option price can be represented as:

CT0;x (k) = e�rt

 
1

2�
p
�1

Z al+
p
�11

al�
p
�11

e�k
v0;x (�; n; 0; �)

�2
d�

nX

j=0

�jF0;j� � k

1
A (21)

where al is located to the right-hand side of the real part of the largest singularity
of the Laplace transform, i.e., al > 0.
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Whenever the analytical inversion of the transform is no longer possible,
numerical evaluation is required. We use the Fourier-Euler algorithm proposed
by Abate and Whitt (1992) for this purpose.5

4.2 Case 2: Floating strike

For the sake of brevity, we restrict our attention to price dynamics (1) with
constant coe¢cients. The other cases can easily be worked out by following the
path described in the previous paragraph.
We set YT = Sn� �

P
�jSj� and consider the option payo¤ (!YT � k)+

where ! can be either 1 or �1 and both YT and k are now allowed to assume
negative values as well as positive ones. Consequently, it is more convenient to
work with the characteristic function, i.e., the Fourier transform, of the random
variable !YT

�!0;x (n;�; ) = E0

h
e
p
�1!YT

i

= v0;x
�
�; n;�!

p
�1; !

p
�1

�
: (22)

Given these quantities, we obtain an expression for the Fourier transform
of the options price with respect to k. Since the pricing function CT;!0;x (k)
is not square integrable on R, we need to include a dampening factor repre-
sented, e.g., by an exponentially decreasing function, and consider the quantity
CT;!0;x (k; a) , C

T;!
0;x (k) e

ak, where a is a suitable positive-valued constant as in
Eydeland and Geman (1995) and Carr and Madan (1999). Then, we compute
the corresponding Fourier transform as:

bcT;!0;x (; a) = e�rT
Z +1

�1
e
p
�1keak

Z +1

k

(y � k) f!YT (y) dydk

= �e�rT
�!0;x

�
n;�;  �

p
�1a

�
�
 �

p
�1a

�2 :

The standard �oating strike Asian-style option price reads as follows:

CT;!0;x (k) = �e�ake�rT 1
�

Z +1

0

e�
p
�1k �

!
0;x

�
n;�;  �

p
�1a

�
�
 �

p
�1a

�2 d (23)

= �e�ake�rT 1
�

Z +1

0

e�
p
�1k v0;x

�
�; n;!

�p
�1 + a

�
;�!

�p
�1 + a

��
�
 � a

p
�1
�2 d:

where the last equality directly follows from formula (22).
We �nally perform a numerical inversion using the fast Fourier transform

algorithm. Carr and Madan (1999) show that the Fourier transform of the option
delta and gamma can be obtained by di¤erentiating the Fourier transform of
the option price with respect to the standing spot price x.

5This algorithm has been implemented in Mathematica 5.2
R
using the following parametric

setting: Al = 18:4;m = 25; n = 15. We refer to Abate and Whitt (1992) for details on this
notation.

14



5 Numerical results

We perform a few numerical experiments on the pricing formulae derived in the
previous sections.
Our �rst test aims at assessing the discrepancy of prices stemming from the

alternative assumptions of a discrete vs. continuous monitoring rule. For barrier
options, Fusai, Abrahams, and Sgarra (2006) showed that price di¤erences can
be very large in spite of a relatively high monitoring frequency. As for Asian-
style options, we conduct a test under spot price dynamics (1), with short rate
of interest r = 0:04, instantaneous convenience yield c = 0, volatility coe¢cient
� = 0:7; and starting price x = 1. We assume that monitoring occurs over a one-
year period (T = 1) and we compute Asian-style option prices for varying strikes
and a varying number of monitoring dates. Calculations are performed using
the pricing formula (23). The continuously monitored option price is calculated
using the analytical formula for the joint moment generating function of the

pair
�
S (T ) ;

R T
0
S (u) du

�
as is reported in Lamberton and Lapeyre (1996):

vcontinuous0;x (; �) = E0

�
exp

�
�
�
S (t) + �

Z t

0

S (u) du

���
= e�A(t;;�)S0 ;

where:

A (t; ; �) =
 (�� r + c+ (�+ r � c) exp (t�)) + 2� (exp (t�)� 1)
�2 (exp (t�)� 1) + �+ r � c+ (�� r + c) exp (t�) ; (24)

and � =
q
(r � c)2 + 2��2.

Table 3 compares �oating strike Asian-style option prices obtained for a num-
ber n = 12; 25; 50; 100, and 250 of monitoring dates over the contract lifetime.
The strike price varies from a minimum value of �0:05 dollars to a maximum
value of 0:05 dollars, with a price step of 0:01 dollars. These values re�ect real-
istic di¤erences between the underlying spot price at maturity and the average
spot price since the contract outset. The last column reports prices using contin-
uous monitoring. As expected, price di¤erences between discrete and continuous
monitoring rules decrease as long as the number of monitoring dates increases.
Table 4 reports results obtained for �xed strike Asian-style options. The

number of monitoring dates is identical to that of �oating strike options, while
the strike ranges between a minimum value of 0:90 dollars to a maximum value
of 1:10 dollars in increments of 0:05 dollars. These numbers re�ect realistic
�gures for the price of the underlying commodity at the contract expiration.
Again, convergence of the discretely monitored option price to the continuously
monitored one is almost linear in the monitoring frequency (1=n), as illustrated
in Figure (3).6

Our second test aims at measuring the price di¤erences between options
prices using the simplest speci�cation of our square-root model (1) and those

6We note, however, that the speed of convergence for barrier options is even slower. In
this case, Fusai, Abrahams, and Sgarra (2006) have shown that this �gure is in the order of
1=
p
n.
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n= 1 2 n= 2 5 n= 5 0 n= 1 0 0 n= 2 5 0 c t s

k P r i c e % D i¤ P r i c e % D i¤ P r i c e % D i¤ P r i c e % D i¤ P r i c e % D i¤ P r i c e

- 0 .0 5 0 .1 6 8 9 7 - 1 .5 8 0 .1 7 0 3 3 - 0 .7 8 0 .1 7 0 9 9 - 0 .4 0 0 .1 7 1 3 3 - 0 .2 0 0 .1 7 1 5 3 - 0 .0 8 0 .1 7 1 6 7

- 0 .0 4 0 .1 6 3 2 0 - 1 .6 4 0 .1 6 4 5 6 - 0 .8 1 0 .1 6 5 2 3 - 0 .4 1 0 .1 6 5 5 7 - 0 .2 1 0 .1 6 5 7 7 - 0 .0 8 0 .1 6 5 9 1

- 0 .0 3 0 .1 5 7 5 2 - 1 .7 0 0 .1 5 8 8 9 - 0 .8 5 0 .1 5 9 5 5 - 0 .4 3 0 .1 5 9 8 9 - 0 .2 2 0 .1 6 0 1 0 - 0 .0 9 0 .1 6 0 2 4

- 0 .0 2 0 .1 5 1 9 3 - 1 .7 7 0 .1 5 3 3 0 - 0 .8 8 0 .1 5 3 9 7 - 0 .4 5 0 .1 5 4 3 1 - 0 .2 3 0 .1 5 4 5 2 - 0 .0 9 0 .1 5 4 6 6

- 0 .0 1 0 .1 4 6 4 3 - 1 .8 3 0 .1 4 7 8 0 - 0 .9 1 0 .1 4 8 4 7 - 0 .4 6 0 .1 4 8 8 1 - 0 .2 3 0 .1 4 9 0 2 - 0 .0 9 0 .1 4 9 1 6

0 0 .1 4 1 0 2 - 1 .9 1 0 .1 4 2 3 9 - 0 .9 5 0 .1 4 3 0 6 - 0 .4 8 0 .1 4 3 4 1 - 0 .2 4 0 .1 4 3 6 2 - 0 .1 0 0 .1 4 3 7 6

0 .0 1 0 .1 3 5 7 0 - 1 .9 8 0 .1 3 7 0 8 - 0 .9 9 0 .1 3 7 7 5 - 0 .5 0 0 .1 3 8 1 0 - 0 .2 5 0 .1 3 8 3 1 - 0 .1 0 0 .1 3 8 4 5

0 .0 2 0 .1 3 0 4 8 - 2 .0 6 0 .1 3 1 8 6 - 1 .0 3 0 .1 3 2 5 3 - 0 .5 2 0 .1 3 2 8 8 - 0 .2 6 0 .1 3 3 0 9 - 0 .1 1 0 .1 3 3 2 3

0 .0 3 0 .1 2 5 3 5 - 2 .1 5 0 .1 2 6 7 3 - 1 .0 7 0 .1 2 7 4 1 - 0 .5 4 0 .1 2 7 7 5 - 0 .2 7 0 .1 2 7 9 6 - 0 .1 1 0 .1 2 8 1 0

0 .0 4 0 .1 2 0 3 3 - 2 .2 3 0 .1 2 1 7 0 - 1 .1 1 0 .1 2 2 3 8 - 0 .5 7 0 .1 2 2 7 2 - 0 .2 9 0 .1 2 2 9 3 - 0 .1 2 0 .1 2 3 0 8

0 .0 5 0 .1 1 5 4 0 - 2 .3 3 0 .1 1 6 7 7 - 1 .1 6 0 .1 1 7 4 5 - 0 .5 9 0 .1 1 7 7 9 - 0 .3 0 0 .1 1 8 0 0 - 0 .1 2 0 .1 1 8 1 4

Table 3: Prices of �oating strike Asian-style options for varying strike prices K
and monitoring dates n. Column %Di¤ reports the percentage di¤erence with
respect to the continuous formula 100*(D-C)/C. Experiments are conducted
using the following parametric setting: r = 0.04, � = 0.7, x = 1, t = 1, ! = -1.

n= 1 2 n= 2 5 n= 5 0 n= 1 0 0 n= 2 5 0 c t s

k P r i c e % D i¤ P r i c e % D i¤ P r i c e % D i¤ P r i c e % D i¤ P r i c e % D i¤ P r i c e

0 .9 0 .2 1 2 7 9 - 1 .3 7 0 .2 1 4 2 8 - 0 .6 8 0 .2 1 5 0 1 - 0 .3 5 0 .2 1 5 3 8 - 0 .1 7 0 .2 1 5 6 0 - 0 .0 7 0 .2 1 5 7 5

0 .9 5 0 .1 8 6 5 9 - 1 .5 8 0 .1 8 8 1 0 - 0 .7 9 0 .1 8 8 8 3 - 0 .4 0 0 .1 8 9 2 0 - 0 .2 0 0 .1 8 9 4 3 - 0 .0 8 0 .1 8 9 5 8

1 0 .1 6 2 8 2 - 1 .8 0 0 .1 6 4 3 2 - 0 .9 0 0 .1 6 5 0 5 - 0 .4 6 0 .1 6 5 4 2 - 0 .2 3 0 .1 6 5 6 5 - 0 .0 9 0 .1 6 5 8 0

1 .0 5 0 .1 4 1 4 0 - 2 .0 3 0 .1 4 2 8 7 - 1 .0 1 0 .1 4 3 5 9 - 0 .5 1 0 .1 4 3 9 5 - 0 .2 6 0 .1 4 4 1 8 - 0 .1 0 0 .1 4 4 3 3

1 .1 0 .1 2 2 2 3 - 2 .2 7 0 .1 2 3 6 5 - 1 .1 3 0 .1 2 4 3 4 - 0 .5 7 0 .1 2 4 7 0 - 0 .2 9 0 .1 2 4 9 2 - 0 .1 2 0 .1 2 5 0 6

Table 4: Prices of �xed strike Asian-style options for varying strike prices K
and monitoring dates n. Column %Di¤ reports the percentage di¤erence with
respect to the continuous formula 100*(D-C)/C. Experiments are conducted
using the following parametric setting: r = 0.04, � = 0.7, x = 1, t = 1.
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resulting from implementing alternative numerical methods proposed in the ex-
isting literature for spot price dynamics driven by a geometric Brownian motion,
which represents the currently adopted market model. Speci�cally, we computed
�gures using the following methods:

1. Geman and Yor (1993) Laplace transform inverse;

2. Turnbull and Wakeman (1991) and Levy (1992) lognormal approximation.

Table 5 shows prices obtained for strikes ranging from a minimum value of
90 dollars to a maximum value of 110 dollars in increments of 5 dollars and
geometric Brownian motion volatilities �GBM ranging from 0:1 to 0:5 units in
increments of 0:1 units. Option values under the square-root model are obtained
by selecting a volatility coe¢cient in model (1) leading to a European-style call
option price matching the one obtained using the geometric Brownian motion
corresponding to the selected �GBM .7

We �nd that prices obtained using our square-root model accurately approx-
imate quotes stemming from the market model. This fact constitutes a major
result of our analysis since the method we provided for in the preceding section
allows us to compute Asian-style option prices in real time, whereas numerical
approximation for the geometric Brownian motion case requires intensive calcu-
lations and much greater computational time. Moreover, we �nd that our quotes
mostly lie between those obtained by the two methods used to approximate the
options price under the market model. This result is quite robust across the
examined spectrum of parameters, the only case where market model prices
exceed our quotes being the one related to deeply out-of-the-money options.
Our third test consists of assessing the importance of including information

about the currently quoted forward curve into the spot price dynamics for the
purpose of pricing Asian-style options. We apply the method detailed in section
3 to the forward price curve of Natural Gas as quoted at NYMEX on March 1,
2007, which we report in Table 6. Figure 4 shows the curve dynamics during
March 2007. Each curve is obtained by interpolating the observed quotes using
a cubic spline. The short rate � spot convenience yield discrepancy can be
assessed by setting:

e(r�c)(T�0) =
F0;T
F0;0

;

where F (0; 0) stands for the underlying spot price as obtained by curve extrap-
olation beyond the shortest quoted time to maturity. The integral appearing
in formula (12) can be computed using the Mathematica 5.2

R built-in function
NIntegrate. We obtain a value r � c = 0:230238. Since the 1-year US Swap
rate, which we adopt as a proxy for the short rate standing in the US market
on March 1, 2007, is 5:25% per annum, the corresponding net convenience yield
for gas turns out to be quite considerable.

7We consider an at-the-money call option struck at 1 Euro at time 0, with a residual
lifetime equal to 1 year.
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K �G BM O p t io n P r ic e s in t h e G BM ca s e �S R O p t io n p r i c e ( s r )

In v e r s e

L a p la c e
L o g n o rm a l

9 0 0 .1 1 5 .3 9 7 6 3 1 5 .3 9 9 0 6 0 .9 7 4 1 1 1 5 .3 9 8 9 0

9 5 0 .1 1 1 .0 9 4 1 0 1 1 .1 2 1 9 6 0 .9 8 7 1 1 1 1 .1 2 0 6 4

1 0 0 0 .1 7 .0 2 7 7 4 7 .0 3 4 8 5 0 .9 9 9 6 6 7 .0 3 0 8 6

1 0 5 0 .1 3 .6 1 2 6 3 3 .6 1 8 6 9 1 .0 1 1 8 0 3 .6 1 4 5 6

1 1 0 0 .1 1 .4 1 3 6 2 1 .4 1 0 8 0 1 .0 2 3 5 6 1 .4 1 0 7 0

9 0 0 .2 1 5 .6 4 1 7 6 1 5 .6 6 5 3 3 1 .9 4 7 6 1 1 5 .6 5 2 0 6

9 5 0 .2 1 1 .7 9 3 7 6 1 1 .8 2 6 4 4 1 .9 7 3 6 1 1 1 .8 0 7 3 5

1 0 0 0 .2 8 .4 0 8 8 4 8 .4 4 0 7 9 1 .9 9 8 7 0 8 .4 2 0 4 5

1 0 5 0 .2 5 .6 4 1 8 6 5 .6 6 1 3 3 2 .0 2 2 9 8 5 .6 4 5 7 2

1 1 0 0 .2 3 .5 5 5 6 1 3 .5 5 6 3 9 2 .0 4 6 4 9 3 .5 4 9 2 8

9 0 0 .3 1 6 .5 1 2 9 1 1 6 .5 9 0 8 2 2 .9 1 9 9 4 1 6 .5 4 2 8 1

9 5 0 .3 1 3 .1 4 6 6 9 1 3 .2 2 6 6 1 2 .9 5 8 9 1 1 3 .1 7 4 4 3

1 0 0 0 .3 1 0 .2 0 9 8 3 1 0 .2 7 8 1 4 2 .9 9 6 5 4 1 0 .2 2 8 7 3

1 0 5 0 .3 7 .7 3 8 3 0 7 .7 8 4 0 8 3 .0 3 2 9 2 7 .7 4 3 5 2

1 1 0 0 .3 5 .7 3 0 1 2 5 .7 4 8 0 0 3 .0 6 8 1 7 5 .7 1 9 9 5

9 0 0 .4 1 7 .8 0 0 1 0 1 7 .9 5 1 9 9 3 .8 9 0 5 7 1 7 .8 4 9 5 0

9 5 0 .4 1 4 .7 8 5 7 7 1 4 .9 2 9 9 9 3 .9 4 2 5 1 1 4 .8 2 6 0 9

1 0 0 0 .4 1 2 .1 3 3 2 0 1 2 .2 5 6 0 6 3 .9 9 2 6 5 1 2 .1 5 8 2 9

1 0 5 0 .4 9 .8 4 4 4 3 9 .9 3 5 9 5 4 .0 4 1 1 4 9 .8 5 0 3 7

1 1 0 0 .4 7 .9 0 5 0 1 7 .9 6 0 0 3 4 .0 8 8 1 2 7 .8 9 0 5 3

9 0 0 .5 1 9 .3 0 5 7 2 1 9 .5 5 3 9 1 4 .8 6 1 7 8 1 9 .3 7 7 2 4

9 5 0 .5 1 6 .5 5 0 5 2 1 6 .7 8 2 2 9 4 .9 2 7 3 6 1 6 .6 0 8 2 0

1 0 0 0 .5 1 4 .1 0 0 2 4 1 4 .3 0 2 3 4 4 .9 9 0 8 6 1 4 .1 3 9 0 6

1 0 5 0 .5 1 1 .9 4 6 0 0 1 2 .1 0 9 0 4 5 .0 5 2 4 9 1 1 .9 6 3 1 1

1 1 0 0 .5 1 0 .0 7 1 2 8 1 0 .1 8 9 9 7 5 .1 1 2 4 7 1 0 .0 6 5 9 9

Table 5: Prices of �xed strike Asian-style options for varying strikes K under
four alternative valuation devices: 1) Geman and Yor (1993) Laplace inverse
transform; 2) Turnbull and Wakeman (1991) and Levy (1992) lognormal ap-
proximation. Experiments are conducted using the following parametric setting:
r = 0.15, � = 0.7, x = 100, t = 1.
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Figure 3: Price of a �xed strike Asian-style option versus the monitoring fre-
quency (1=n): Experiments are conducted using the parametric setting of Table
(5) ; with K = 0:95:

D e l iv e r y

M o n th

Tra d in g

Te rm in a t io n

T im e t o m a tu r i ty

( y e a r s )

S e t t l em e n t

P r i c e (U S $ )

A p r i l 2 8 -M a r - 0 7 0 .0 7 4 0 7 .2 8 8

M ay 2 6 -A p r - 0 7 0 .1 5 3 4 7 .4 0 5

J u n e 2 9 -M ay -0 7 0 .2 4 3 8 7 .5 2

J u ly 2 7 - J u n -0 7 0 .3 2 3 3 7 .6 3 5

A u g u s t 2 7 - J u l - 0 7 0 .4 0 5 5 7 .7 3

S e p t em b e r 2 9 -A u g -0 7 0 .4 9 5 9 7 .7 8 5

O c t o b e r 2 6 -S e p - 0 7 0 .5 7 2 6 7 .8 8

N ov em b e r 2 9 -O c t - 0 7 0 .6 6 3 0 8 .4 5

D e c em b e r 2 8 -N ov -0 7 0 .7 4 5 2 9 .0 1

J a nu a r y 2 7 -D e c - 0 7 0 .8 2 4 7 9 .3

Fe b ru a r y 2 9 - J a n - 0 8 0 .9 1 5 1 9 .2 9 5

M a r ch 2 7 -Fe b -0 8 0 .9 9 4 5 9 .0 7 5

A p r i l 2 7 -M a r - 0 8 1 .0 7 2 5 7 .7 1

M ay 2 8 -A p r - 0 8 1 .1 6 0 1 7 .5 9

J u n e 2 7 -M ay -0 8 1 .2 3 9 4 7 .6 4

J u ly 2 6 - J u n -0 8 1 .3 2 1 5 7 .7 1

A u g u s t 2 9 - J u l - 0 8 1 .4 1 1 8 7 .7 7

S e p t em b e r 2 7 -A u g -0 8 1 .4 9 1 1 7 .8 2

Table 6: Forward prices on Natural Gas quoted at NYMEX on March 1, 2007.
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Figure 4: Natural gas forward curve evolution between March 1 and March 31,
2007.

Figure (5) exhibits a plot of the density function of the di¤erence Sn� �
(
P
Sj�) = (n+ 1) corresponding to � = 0:7, x = 7:1409; r � c = 0:230238; r =

0:0525, and n = 50.
Table (7) reports di¤erentials between the �oating strike Asian-style option

price computed irrespectively of the market forward curve and the one obtained
using spot dynamics �tting the gas curve under investigation. Option values
are calculated for a number n = 5; 12; 25; 50; 100, and 250 of monitoring dates
over the contract lifetime. As before, the strike price varies from a minimum
value of �0:05 dollars to a maximum value of 0:05 dollars, with a price step of
0:01 dollars.
Results clearly show that including the information embedded in the forward

quotes may have a signi�cant impact on the option price. Moreover, the price
discrepancy between the two cases increases with the monitoring frequency. We
note that the extent of this e¤ect may depend on the shape of the forward curve
as well. This evidence calls for including forward market quotes into option pric-
ing devices whenever a market forward curve displays a high degree of variability
across the time to maturity spectrum. This requirement may be particularly
compelling for commodity markets, in particular energy markets, where the
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Figure 5: Plot of the probability density function of the di¤erence Sn� �P
Sj�= (n+ 1) under the assumptions of �at and actual forward curve for the

price of gas.

seasonal character of the underlying spot price translates into a corresponding
component in the forward curve shape.
Our fourth, and �nal, test allows us to examine the e¤ect of a seasonal

historical volatility structure over the fair value of Asian-style options. We
consider the forward curve on corn as quoted on December 1, 2006 at CBOT.
Values across all delivery months are reported in Table (8), where we also in-
dicate the exact day of trading termination and the time to maturity of the
contract as expressed in year units. We compute a single annualized historical
average volatility for each month in the calendar year. Averaging occurs over
the observation period covering the years ranging from 1980 to 2006. The re-
sulting �gures are reported in the �rst row of Table 9. From these volatilities
of logarithmic returns, we derive the corresponding �gures for the volatilities
entering the square-root dynamics (1). Conversion can be performed by solving
the following equation in the unknown �SR:

�GBMx = �SR
p
x;

where the standing spot price can be obtained by extrapolating the forward
curve beyond the shortest maturity for which a quote is available, namely the
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n= 5 n= 1 2 n= 2 5

K F la t N o n F la t % D i¤ F la t N o n F la t % D i¤ F la t N o n F la t % D i¤

-0 .0 5 0 .1 4 0 3 0 8 0 .1 4 5 9 8 4 .0 4 2 3 2 0 .1 4 7 3 2 9 0 .1 5 8 9 4 8 7 .8 8 6 3 7 0 .1 5 0 3 2 4 0 .1 6 4 0 0 2 9 .0 9 8 6 7

- 0 .0 4 0 .1 3 8 0 2 2 0 .1 4 3 5 9 4 .0 3 4 1 1 0 .1 4 5 0 0 2 0 .1 5 6 4 4 4 7 .8 9 1 1 3 0 .1 4 7 9 8 1 0 .1 6 1 4 5 8 9 .1 0 7 3 2

- 0 .0 3 0 .1 3 5 7 6 2 0 .1 4 1 2 2 7 4 .0 2 5 6 9 0 .1 4 2 7 0 1 0 .1 5 3 9 6 8 7 .8 9 5 7 0 .1 4 5 6 6 3 0 .1 5 8 9 4 1 9 .1 1 5 8

- 0 .0 2 0 .1 3 3 5 2 9 0 .1 3 8 8 9 3 4 .0 1 7 0 5 0 .1 4 0 4 2 6 0 .1 5 1 5 1 9 7 .9 0 0 0 8 0 .1 4 3 3 7 1 0 .1 5 6 4 5 2 9 .1 2 4 1

- 0 .0 1 0 .1 3 1 3 2 2 0 .1 3 6 5 8 5 4 .0 0 8 1 9 0 .1 3 8 1 7 7 0 .1 4 9 0 9 8 7 .9 0 4 2 8 0 .1 4 1 1 0 4 0 .1 5 3 9 9 9 .1 3 2 2 3

0 0 .1 2 9 1 4 1 0 .1 3 4 3 0 5 3 .9 9 9 1 0 .1 3 5 9 5 3 0 .1 4 6 7 0 5 7 .9 0 8 2 9 0 .1 3 8 8 6 4 0 .1 5 1 5 5 6 9 .1 4 0 1 8

0 .0 1 0 .1 2 6 9 8 6 0 .1 3 2 0 5 2 3 .9 8 9 7 9 0 .1 3 3 7 5 5 0 .1 4 4 3 3 8 7 .9 1 2 1 2 0 .1 3 6 6 4 8 0 .1 4 9 1 4 9 9 .1 4 7 9 5

0 .0 2 0 .1 2 4 8 5 7 0 .1 2 9 8 2 6 3 .9 8 0 2 6 0 .1 3 1 5 8 3 0 .1 4 1 9 9 9 7 .9 1 5 7 4 0 .1 3 4 4 5 8 0 .1 4 6 7 6 9 9 .1 5 5 5 4

0 .0 3 0 .1 2 2 7 5 3 0 .1 2 7 6 2 7 3 .9 7 0 4 9 0 .1 2 9 4 3 6 0 .1 3 9 6 8 6 7 .9 1 9 1 8 0 .1 3 2 2 9 4 0 .1 4 4 4 1 6 9 .1 6 2 9 4

0 .0 4 0 .1 2 0 6 7 5 0 .1 2 5 4 5 5 3 .9 6 0 5 0 .1 2 7 3 1 4 0 .1 3 7 4 0 1 7 .9 2 2 4 1 0 .1 3 0 1 5 4 0 .1 4 2 0 8 9 9 .1 7 0 1 6

0 .0 5 0 .1 1 8 6 2 3 0 .1 2 3 3 0 9 3 .9 5 0 2 7 0 .1 2 5 2 1 8 0 .1 3 5 1 4 2 7 .9 2 5 4 5 0 .1 2 8 0 3 9 0 .1 3 9 7 9 9 .1 7 7 1 8

n= 5 0 n= 1 0 0 n= 2 5 0

K F la t N o n F la t % D i¤ F la t N o n F la t % D i¤ F la t N o n F la t % D i¤

-0 .0 5 0 .1 5 1 7 9 0 .1 6 6 2 0 7 9 .4 9 7 9 1 0 .1 5 2 5 4 3 0 .1 6 7 2 6 5 9 .6 5 0 8 5 0 .1 5 3 0 0 2 0 .1 6 7 8 8 5 9 .7 2 7 3 4

- 0 .0 4 0 .1 4 9 4 3 8 0 .1 6 3 6 4 6 9 .5 0 7 8 2 0 .1 5 0 1 8 7 0 .1 6 4 6 9 7 9 .6 6 1 2 3 0 .1 5 0 6 4 4 0 .1 6 5 3 1 4 9 .7 3 7 9 5

- 0 .0 3 0 .1 4 7 1 1 2 0 .1 6 1 1 1 3 9 .5 1 7 5 6 0 .1 4 7 8 5 7 0 .1 6 2 1 5 7 9 .6 7 1 4 3 0 .1 4 8 3 1 1 0 .1 6 2 7 6 9 9 .7 4 8 3 9

- 0 .0 2 0 .1 4 4 8 1 2 0 .1 5 8 6 0 8 9 .5 2 7 1 3 0 .1 4 5 5 5 3 0 .1 5 9 6 4 5 9 .6 8 1 4 7 0 .1 4 6 0 0 5 0 .1 6 0 2 5 3 9 .7 5 8 6 6

- 0 .0 1 0 .1 4 2 5 3 7 0 .1 5 6 1 3 9 .5 3 6 5 3 0 .1 4 3 2 7 4 0 .1 5 7 1 5 9 9 .6 9 1 3 4 0 .1 4 3 7 2 3 0 .1 5 7 7 6 3 9 .7 6 8 7 5

0 0 .1 4 0 2 8 8 0 .1 5 3 6 8 9 .5 4 5 7 5 0 .1 4 1 0 2 1 0 .1 5 4 7 0 1 9 .7 0 1 0 3 0 .1 4 1 4 6 7 0 .1 5 5 3 0 1 9 .7 7 8 6 8

0 .0 1 0 .1 3 8 0 6 4 0 .1 5 1 2 5 6 9 .5 5 4 8 0 .1 3 8 7 9 3 0 .1 5 2 2 7 1 9 .7 1 0 5 5 0 .1 3 9 2 3 7 0 .1 5 2 8 6 6 9 .7 8 8 4 3

0 .0 2 0 .1 3 5 8 6 6 0 .1 4 8 8 6 9 .5 6 3 6 7 0 .1 3 6 5 9 0 .1 4 9 8 6 7 9 .7 1 9 8 9 0 .1 3 7 0 3 2 0 .1 5 0 4 5 8 9 .7 9 8 0 1

0 .0 3 0 .1 3 3 6 9 3 0 .1 4 6 4 9 9 .5 7 2 3 6 0 .1 3 4 4 1 3 0 .1 4 7 4 9 9 .7 2 9 0 6 0 .1 3 4 8 5 1 0 .1 4 8 0 7 7 9 .8 0 7 4 1

0 .0 4 0 .1 3 1 5 4 5 0 .1 4 4 1 4 8 9 .5 8 0 8 6 0 .1 3 2 2 6 0 .1 4 5 1 4 9 .7 3 8 0 4 0 .1 3 2 6 9 6 0 .1 4 5 7 2 2 9 .8 1 6 6 3

0 .0 5 0 .1 2 9 4 2 1 0 .1 4 1 8 3 2 9 .5 8 9 1 8 0 .1 3 0 1 3 2 0 .1 4 2 8 1 6 9 .7 4 6 8 4 0 .1 3 0 5 6 6 0 .1 4 3 3 9 5 9 .8 2 5 6 6

Table 7: Prices of �oating strike Asian options for varying strikes K and moni-
toring dates under the assumption of non �at forward curve. Experiments are
conducted using the following parametric setting: r = 0.0525, � = 0.7, x = 100,
t = 1, r � c = 0.230238, !=-1.

D e l iv e r y

M o n th

Tra d in g

Te rm in a t io n

T im e t o m a tu r i ty

( y e a r s )

S e t t l em e n t P r i c e

( $ c e n t / b u s h e l )

D e c em b e r 1 5 -D e c - 0 6 0 .0 3 8 4 3 7 4 0

M a r ch 1 5 -M a r - 0 7 0 .2 8 4 9 3 8 7 0

M ay 1 5 -M ay -0 7 0 .4 5 2 1 3 9 1 2

J u ly 1 5 - J u l - 0 7 0 .6 1 9 2 3 9 4 7

S e p t em b e r 1 5 -S e p - 0 7 0 .7 8 9 0 3 7 2 7

D e c em b e r 1 5 -D e c - 0 7 1 .0 3 8 4 3 6 0 2

Table 8: Forward prices on Corn as quoted at CBOT on December 2, 2006.
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J a n Fe b M a r A p r M ay J u n J u l A u g S e p O c t N ov D e c

�G BM 0 .1 6 8 0 .1 4 1 0 .1 6 0 .1 6 8 0 .2 0 4 0 .2 2 7 0 .2 6 7 0 .2 2 5 0 .1 8 7 0 .1 8 4 0 .1 6 1 0 .1 3 8

�S R 1 0 .2 3 8 .5 9 9 .7 4 1 0 .2 3 1 2 .4 2 1 3 .8 2 1 6 .2 6 1 3 .7 0 1 1 .3 9 1 1 .2 0 9 .8 0 8 .4 0

Table 9: Historical volatility of corn quotes and implied square-root volatilities.

one corresponding to the December contract. (This procedure leads to a value
for x equal to 3707:88 dollars.) The set of square-root volatilities is exhibited in
the second row of Table 9. Armed with this information, we may start perform-
ing our analysis and computing Asian-style option prices for 1-year maturity
contracts using the following three methodologies:
a) Setting a �at volatility curve by selecting a constant �(a) that leads to the

same integrated denominator in formula (12) as the one resulting from using
the market (time dependent) volatility structure. This amounts to setting �(a)
such that:

�2(a)

Z T

0

1

F0;s
ds =

Z T

0

�2s
F0;s

ds:

We then obtain �(a) = 11:2131 points.
b) Setting a �at volatility curve at the level of the unique constant �(b) that

leads to an option price matching the price obtained using the time varying
volatility structure in the market. For this purpose, we consider a standard
�xed strike Asian-style option struck at-the-money under a 5-period discrete
monitoring rule. We obtain an option price equal to 178:154 dollars and a
corresponding �at volatility �(b) equal to 10:8396 points.
c) Using the market volatility structure.

Table 10 reports prices across varying levels of moneyness and number of moni-
toring dates. Speci�cally, the ratio K=x ranges from 0:9 to 1:1 in increments of
0:5 units and monitoring is allowed to occur 12; 25; 50; 100; 250, and 1000 times
over the 1-year long contract lifetime. Percentage di¤erences refer to the dis-
crepancy between the option prices obtained using either of the �at volatilities
(�(a) or �(b)) and the one resulting from using the market volatility structure.
We note the importance of price di¤erences when including the exact volatil-

ity structure observed in the market compared to the market standard of quoting
option prices using a single volatility coe¢cient. This e¤ect is particularly signif-
icant for out-of-the money options. Compared to method a), method b) provides
a better approximation of actual prices. However, its concrete implementation
requires that one know the price of the options in advance or, alternatively,
that one calculate the option price using the market volatility structure. Con-
sequently, to date, the extent of its use seems to be rather limited.

6 Conclusions

It is commonly held that pricing Asian-style options under the market model
represented by a geometric Brownian motion is a di¢cult task. First, no closed-
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K=x n �a = 1 1 .2 1 3 1 % D i¤ �b = 1 0 .8 3 9 6 % D i¤ N o n F la t Vo l . C u r v e

0 .9 1 2 4 6 0 .7 2 0 .5 9 4 5 8 .6 2 0 .1 3 4 5 8 .0 3

0 .9 5 1 2 3 1 4 .9 3 1 .4 5 3 1 1 .3 3 0 .2 9 3 1 0 .4 3

1 1 2 1 9 6 .0 8 3 .0 2 1 9 1 .3 7 0 .5 4 1 9 0 .3 4

1 .0 5 1 2 1 0 9 .7 4 5 .4 9 1 0 4 .9 3 0 .8 7 1 0 4 .0 3

1 .1 1 2 5 4 .7 1 9 .0 3 5 0 .8 0 1 .2 3 5 0 .1 8

0 .9 2 5 4 6 7 .0 1 0 .6 3 4 6 4 .8 9 0 .1 7 4 6 4 .1 0

0 .9 5 2 5 3 2 0 .9 7 1 .5 4 3 1 7 .3 4 0 .4 0 3 1 6 .0 9

1 2 5 2 0 1 .3 9 3 .2 0 1 9 6 .6 4 0 .7 7 1 9 5 .1 4

1 .0 5 2 5 1 1 3 .8 9 5 .8 3 1 0 9 .0 1 1 .2 9 1 0 7 .6 1

1 .1 2 5 5 7 .5 3 9 .6 1 5 3 .5 1 1 .9 5 5 2 .4 8

0 .9 5 0 4 7 0 .0 6 0 .6 4 4 6 7 .9 3 0 .1 9 4 6 7 .0 5

0 .9 5 5 0 3 2 3 .8 9 1 .5 8 3 2 0 .2 6 0 .4 4 3 1 8 .8 5

1 5 0 2 0 3 .9 8 3 .2 8 1 9 9 .2 1 0 .8 7 1 9 7 .5 0

1 .0 5 5 0 1 1 5 .9 2 5 .9 7 1 1 1 .0 1 1 .4 8 1 0 9 .3 9

1 .1 5 0 5 8 .9 2 9 .8 6 5 4 .8 5 2 .2 7 5 3 .6 4

0 .9 1 0 0 4 7 1 .5 7 0 .6 5 4 6 9 .4 3 0 .2 0 4 6 8 .5 1

0 .9 5 1 0 0 3 2 5 .3 5 1 .6 0 3 2 1 .7 1 0 .4 6 3 2 0 .2 2

1 1 0 0 2 0 5 .2 7 3 .3 2 2 0 0 .4 9 0 .9 2 1 9 8 .6 8

1 .0 5 1 0 0 1 1 6 .9 5 6 .0 4 1 1 2 .0 1 1 .5 7 1 1 0 .2 8

1 .1 1 0 0 5 9 .6 3 9 .9 8 5 5 .5 3 2 .4 2 5 4 .2 2

0 .9 2 5 0 4 7 2 .4 9 0 .6 6 4 7 0 .3 5 0 .2 0 4 6 9 .4 0

0 .9 5 2 5 0 3 2 6 .2 4 1 .6 1 3 2 2 .5 9 0 .4 8 3 2 1 .0 6

1 2 5 0 2 0 6 .0 6 3 .3 4 2 0 1 .2 8 0 .9 4 1 9 9 .4 0

1 .0 5 2 5 0 1 1 7 .5 7 6 .0 8 1 1 2 .6 3 1 .6 2 1 1 0 .8 3

1 .1 2 5 0 6 0 .0 6 1 0 .0 5 5 5 .9 5 2 .5 1 5 4 .5 8

0 .9 1 0 0 0 4 7 2 .9 5 0 .6 6 4 7 0 .8 1 0 .2 0 4 6 9 .8 5

0 .9 5 1 0 0 0 3 2 6 .6 8 1 .6 2 3 2 3 .0 4 0 .4 8 3 2 1 .4 8

1 1 0 0 0 2 0 6 .4 6 3 .3 5 2 0 1 .6 7 0 .9 6 1 9 9 .7 6

1 .0 5 1 0 0 0 1 1 7 .8 9 6 .1 0 1 1 2 .9 4 1 .6 5 1 1 1 .1 1

1 .1 1 0 0 0 6 0 .2 8 1 0 .0 8 5 6 .1 6 2 .5 5 5 4 .7 6

Table 10: Prices of 1-year �xed strike Asian-style options on corn under three
volatility curve assessments: a) �at volatility matching the integrated forward
weighed volatility; b) �at volatility matching a key Asian-style option price; c)
market volatility structure.
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form expression exists for the fair option value. Second, information embedded
within the standing market forward curve is neglected during the valuation
process. Finally, prices are derived irrespectively of the seasonal path exhibited
by the spot price volatility or mean reversion properties.
We propose a solution to these issues by analytically pricing discretely mon-

itored Asian-style options written on a spot price whose dynamics are driven by
a generalized square-root process. Our method is particularly useful for pricing
options in commodity markets where traders must quickly produce quotes com-
patible with the market view expressed in terms of forward prices, the seasonal
trend shown by the spot price volatility, and with a mean reversion behavior.
Extensive numerical experiments on gas and corn data suggest that price

discrepancies between �gures obtained using a more accurate pricing device
and those resulting from the market model may be very signi�cant.
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