
Zachos, K. & Maiden, N. (2008). Inventing Requirements from Software: An Empirical Investigation

with Web Services. Proceedings of the 16th IEEE International Requirements Engineering

Conference, pp. 145-154. doi: 10.1109/RE.2008.39

City Research Online

Original citation: Zachos, K. & Maiden, N. (2008). Inventing Requirements from Software: An

Empirical Investigation with Web Services. Proceedings of the 16th IEEE International

Requirements Engineering Conference, pp. 145-154. doi: 10.1109/RE.2008.39

Permanent City Research Online URL: http://openaccess.city.ac.uk/15204/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/76981883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Inventing Requirements from Software: An Empirical Investigation

with Web Services

Konstantinos Zachos & Neil Maiden

City University London, Centre for HCI Design

London EC1V 0HB, UK

k.zachos@soi.city.ac.uk, n.a.m.maiden@city.ac.uk

Abstract
Service-centric software systems offer new opportuni-

ties for requirements processes. This paper reports a

new tool designed to increase the completeness of sys-

tem requirements using information about designs and

implementations of web services. It presents an algo-

rithm for retrieving web services in domains that are

analogical to a current requirements problem, to sup-

port creative thinking about requirements for that

problem. It describes how the algorithm parses and

analogically matches natural language descriptions of

system requirements and web service descriptions. The

paper also reports 2 evaluations of the tool that dem-

onstrate improvements to specifications of require-

ments for a system in the automotive domain.

1. Requirements Engineering with Web

Services

Service-centric systems discover, compose, invoke

and monitor web services – software operations pub-

lished by third-party providers independent of where

the service is executed [19]. We conjecture that the

increasing availability of web services from third-party

providers can change requirements processes for ser-

vice-centric systems. Stakeholders and analysts can

retrieve relevant web services early in the process then

discover new requirements by reviewing and working

backwards from designs and implementations of these

services based on what might be possible.

In the EU-funded SeCSE Integrated Project we

have researched new tools and techniques to increase

requirements completeness from retrieved web servic-

es. Evaluations with industrial partners already re-

vealed that reviewing retrieved services can lead ana-

lysts to specify previously undiscovered requirements

that they ranked as more novel compared with re-

quirements discovered with established use case walk-

through [21]. In this paper we report new results from

the next phase, in which we investigated whether re-

trieving web service designs and implementations from

domains analogical to the current problem could sup-

port effective creative thinking about requirements.

Requirements engineering is a creative process in

which stakeholders and analysts work together to

create ideas expressed as system requirements [8].

However stakeholders on their own struggle to create

requirements because most lack the knowledge of pos-

sible design spaces necessary to specify system re-

quirements [12]. Therefore Robertson argues [12], ana-

lysts need to explore design spaces to invent system

requirements with stakeholders.

Previously we ran creativity workshops in which

stakeholders collaborated with analysts and designers

to invent requirements using creativity techniques. Al-

though successful in terms of the numbers and impact

of the requirements generated [8, 9], workshops in-

volved up to 20 stakeholders, analysts and designers

for 2 days. Therefore alternative, more accessible

sources of design knowledge for stakeholders and ana-

lysts were sought.

One such source is public registries of web services.

Because web software services are accessed via the

Internet, analysts can access and exploit them directly.

And as service-centric computing grows the volume

and range of available web services will increase [4],

thus providing new and potentially large sources of

design knowledge to be exploited. However, how can

we exploit these web services? We have already shown

that analysts can use web service designs and imple-

mentations to discover new and more novel require-

ments within an automotive domain [21]. In this paper

we report new results that reveal that analysts can in-

vent requirements from web services across domains

for which these services were implemented through

analogical reasoning. We know that analysts can rea-

son analogically about requirements [7], but can it

happen with analogical web services?

In section 2 we report AnTiQue (Analogy Tracker in

Service Queries), a new software module to retrieve

web services in domains analogical to a problem. We

developed AnTiQue to answer 2 research questions:

Q1: Can AnTiQue automatically retrieve web services

from domains analogical to a specified problem?

Q2: Can analysts reason with analogical services re-

trieved by AnTiQue to invent previously unspeci-

fied requirements ranked as more novel?

Section 3 describes AnTiQue. Sections 4 and 5 report

results from a multi-phase evaluation study that pro-

vided data with which to answer the 2 questions. Sec-

tion 6 uses this data to answer the 2 research questions.

The paper ends with future research directions.

2. SeCSE’s Requirements Process and

Service Discovery Environment

SeCSE supports an iterative requirements process

for service-centric systems [2]. Analysts form service

queries from requirements specifications to retrieve

web services compliant with the requirements. De-

scriptions of retrieved services are presented to ana-

lysts who use them to refine and complete require-

ments to enable more accurate service retrieval, and so

on. Analysts rarely express requirements at the correct

levels of abstraction and granularity to retrieve all rele-

vant web services immediately, so relevance feedback

from retrieved services also enables analysts to specify

new requirements and re-express current ones to in-

crease the likelihood of discovering new web services.

To ensure industrial uptake SeCSE’s requirements

process uses established techniques based on structured

natural language. Analysts specify service-centric sys-

tem behaviour with UML use case specifications and

required system properties in a testable form with

VOLERE shells [13]. The process extends the Rational

Unified Process (RUP) without mandating additional

specification or service retrieval activities [22].

To support SeCSE’s requirements process we im-

plemented the SeCSE service discovery environment.

The original environment had 3 modules: (i) service

registries; (ii) UCaRE, a module to describe require-

ments and generate service queries, and; (iii) EDDiE,

the service discovery engine. To provide new support

for requirements invention we replaced one of these

modules – EDDiE – with a new one called AnTiQue.

AnTiQue retrieves web services from domains that are

analogical to the current domain.

2.1 The Service Registries

The environment discovers web services from regis-

tries that link to service implementations that applica-

tions invoke and facets that specify different aspects of

services. Current registries such as UDDI are inade-

quate for retrieving services using criteria such as qual-

ity of service and exception handling. Therefore

SeCSE has defined 7 facets of a service including sig-

nature, description and quality-of-service [15] that de-

scribe information about web services using XML data

structures. Service discovery in SeCSE uses the de-

scription and quality-of-service facets to retrieve web

services. Figure 1 shows part of the service description

facet of one web service from the reported evaluations.

SeCSE’s service registries are implemented using eX-

ist, an Open Source native XML database featuring

index-based XQuery processing, automatic indexing.

A tourist in London wants to find the nearest underground station. The tourist
uses his mobile phone to find the location of the nearest stations. The tourist uses
an application to request the names of the nearest stations. The application
retrieves the names of the 3 nearest stations, and their distances from the tour-
ist's location.

Figure 1. Part of the specification of the Find
Nearby Station web service from the evaluation

2.2 The UCaRE Requirement Component

Analysts express requirements for new applications

using UCaRE, a web-based .NET application depicted

in Figure 2. UCaRE supports tight integration of use

case and requirements specifications – a requirement

expressed using VOLERE can describe a system-wide

requirement, a requirement on the behavior specified in

one use case, or a requirement on behavior expressed

in one use case action.

An analyst manages requirements and use cases

through a web client. UCaRE allows analysts to create

service queries from use case and requirements specifi-

cations. At the start of the requirements process ana-

lysts work with stakeholders to develop simple use

case précis that describe the required behaviour of the

service-centric system. Figure 3 shows a typical précis

in UCaRE, defining what a driver might want from an

in-car car parking booking system. In the second

stage, the analyst selects elements of the specification

to include in a service query.

Figure 2. Example use case and requirement speci-
fication specified in UCaRE

A driver is driving his car. The driver needs to find a space in a car park close to
his destination. The driver activates FIAT`s car park booking service. The car
park booking service finds the car park nearest to that destination. The service
will check if there is a space in that car park, and if so it books the space.

Figure 3. The use case précis for the car park book-
ing system, which is used to formulate queries with
which to discover services

In the original environment analysts can manipulate

specified use cases and requirements to generate ser-

vice queries that are fired at service registries with

EDDiE to retrieve web services from the same domain

as the current problem. This service discovery engine

[22] implements advanced term disambiguation and

query expansion algorithms to add different terms with

similar meanings to the query using the WordNet on-

line lexicon, thus increasing the number of web servic-

es retrieved from the registries. Analysts can then re-

ject retrieved web services prior to specifying new re-

quirements from the retained ones.

To support cross-domain analogical invention of re-

quirements we replaced EDDiE with AnTiQue, a new

module for analogical service discovery.

3. The AnTiQue Module

The purpose of AnTiQue is to retrieve designs and

implementations of web services that service providers

designed for domains that are analogical to the current

requirement problem. AnTiQue’s design seeks to solve

2 research problems: (i) match incomplete and am-

biguous natural language descriptions of requirements

and web services from different parties using different

lexical terms; (ii) compute complex analogical matches

between descriptions without a priori classification of

the described domains.

For example, car drivers use a service-centric sys-

tem to locate and book parking spaces at their destina-

tions. We have already shown that analysts can use

SeCSE’s Service Discovery Environment to retrieve

and use design information about retrieved web ser-

vices in the same domain – car parking – to inform

requirements specification [21]. Analogical service

retrieval can increase the number of web services that

are useful to the requirements process by retrieving

services from other domains, for example services that

find and book cinema tickets, locate and reserve hotel

rooms, and select and reserve places at a summer

school. The design and implementation of each web

service might have features that, through analogical

reasoning, can trigger discovery of new requirements

on the car park booking system. For example, just as a

hotel reservation system allows customers to book

rooms of different sizes, an analogical requirement is to

allow the driver to reserve different sizes of parking

spaces for different vehicle sizes. AnTiQue seeks to

leverage these new sources of design knowledge in a

requirements process.

Analogical retrieval in AnTiQue uses a similarity

model called the Structure Mapping Theory (SMT) [1],

which seeks to transfer a network of related facts rather

than unrelated one [1] from a source (a web service) to

a target domain (the requirements problem). An-

TiQue’s implementation of the SMT parses and

represents natural language statements from use case

and requirement-based service queries as predicates in

the form of prepositional networks of nodes (objects)

and edges (predicate values). It represents 2 kinds of

predicate. Attributional predicates state properties of

objects in the form PredicateValue(Object). Relational

predicates express relations between objects in the

form PredicateValue(Object1, Object2). For instance

the car is red becomes red(car) and the driver drives

the car becomes drive(driver, car). According to the

SMT an analogy is a comparison in which relational

predicates, but few or no attributional predicates, can

be mapped from a source to a target.

For example analogical inferences about reserving a

car park space from a mapping with booking a cinema

ticket concern the shared relational structures, in that a

customer books a cinema ticket (book(customer, cine-

ma ticket)), just as a driver books a car park space

(book(driver, car park space)) but not the attribute

similarities. On the other hand, a literal similarity

statement is a comparison in which a large number of

attributional and relational predicates are mapped from

a source to a target. For example the attributional pre-

dicates customer(person) and driver(person) indicate

some level of literal similarity.

Figure 4 depicts AnTiQue’s 5 components. In the

first a service query generated by an analyst is divided

into sentences, then part-of-speech tagged, shallow

parsed to identify sentence constituents (noun groups,

verbs…) and chunked in noun phrases. In the second

the algorithm applies a set of rules and heuristics to

identify predicates in each sentence structure. Natural

language sentences are presented as predicates in the

form PredicateValue(Object1, Object2). In the third

the algorithm expands each predicate with additional

predicate values that have similar meaning according

to verb classes found in VerbNet to increase the likeli-

hood of a match with a web service description. For

example the predicate value find (taken from the predi-

cate find(x,y)) is in the same verb class as locate which

is also included in the predicate list (as locate(x,y)).

The fourth component matches all expanded predicates

to a similar set of predicates (pre-processed using the

first 2 components) that describe each candidate web

service from the service description facet in the SeCSE

service registry. It uses XQuery text-searching func-

tions to discover an initial set of web service descrip-

tions that satisfy global search constraints. The fifth

component applies semantic and dependency-based

similarity measures to refine the candidate service set.

AnTiQue returns an ordered set of analogical services

based on the match score with the service query.

Figure 4. Internal structure of AnTiQue

The components use WordNet, VerbNet, and the

Dependency Thesaurus to compute attributional and

relational similarities. WordNet is a lexical database

inspired by psycholinguistic theories of human lexical

memory [20]. Its word senses and definitions provide

the data with which to disambiguate terms in SeCSE

service queries. Its semantic relations link terms to

other terms with similar meanings with which to make

service queries more complete. For example a service

query with the term car is expanded with other terms

with similar meaning, such as automobile and vehicle,

to increase matches with web service descriptions.

VerbNet [3] is a domain independent verb lexicon.

It organizes terms into verb classes that refine Levin

[5] classes and add sub-classes to achieve syntactic and

semantic coherence among members of a verb class.

AnTiQue uses it to expand service query predicate

values with different members from the same verb

class. For example, service queries with the verb book

are expanded with other verbs with similar meaning

such as reserve and order.

The Dependency Thesaurus supports dependency-

based word similarity matching to detect similar words

from text corpora. Lin [6] used a 64-million word cor-

pus to compute pair-wise similarities between all of the

nouns, verbs, adjectives and adverbs in the corpus us-

ing a similarity measure. Given an input word the De-

pendency Thesaurus can retrieve similar words and

group them automatically into clusters. AnTiQue used

the Dependency Thesaurus to compute the relational

similarity between 2 sets of predicates.

In the remainder of this section we demonstrate the

AnTiQue components using text from the example web

service and use case descriptions in Figures 1 and 3.

3.1 The Natural Language Processing Parser

This component prepares the structured natural lan-

guage (NL) service query for predicate parsing and

expansion. In the first step the text is split into sen-

tences. In the second a part-of-speech tagging process

is applied that marks up the words in each sentence as

corresponding to a particular lexical category (part-of-

speech) using its definition and context. In the third

step the algorithm applies a NL processing technique

called shallow parsing that attempts to provide some

machine understanding of the structure of a sentence

without parsing it fully into a parsed tree form. The

output is a division of the text's sentences into a series

of words that, together, constitute a grammatical unit.

In our example the tagged sentence the driver needs to

find a space in a car park close to his destination is

shown in Figure 5. Tags that follow a word with a for-

ward slash (e.g. driver/NN) correspond to lexical cate-

gories including noun, verb, adjective and adverb. For

example, the NN tag means “noun singular or mass",

DT means “determinant” and VBZ means “verb, pre-

sent tense, 3rd person singular”. Tags attached to each

chunk (e.g. [The/DT driver/NN]NP) correspond to

phrasal categories. For instance, the NP tag denotes a

“noun phrase”, VP a “verb phrase”, S a “simple de-

clarative clause”, PP a “prepositional phrase” and

ADVP a “adverb phrase”.

[The/DT driver/NN]NP [needs/VBZ]VP [to/TO]S [find/VB]VP [a/DT
space/NN]NP [in/IN]PP [a/DT car_park/NN]NP [close/RB]ADVP [to/TO]PP
[his/PRP$ destination/NN] NP.

Figure 5. The sentence the driver needs to find a
space in a car park close to his destination after per-
forming part-of-speech tagging and chunking

The component then decomposes each sentence into

its phrasal categories used in the next component to

identify predicates in each sentence structure.

3.2 The Predicate Parser

This component automatically identifies predicate

structures within each annotated NL sentence based on

syntax structure rules and lexical extraction heuristics.

Syntax structure rules break down a pre-processed NL

sentence into sequences of phrasal categories where

each sequence contains 2 or more phrasal categories.

Lexical extraction heuristics are applied on each identi-

fied sequence of phrasal categories to extract its lexical

content used to generate one or more predicates.

Firstly the algorithm applies 21 syntax structure

rules. Each rule consists of a phrasal category sequence

of the form Ri [Bj], meaning that the rule Ri consists

of a phrasal category sequence B1, B2,…, Bj. For exam-

ple the rule R4 [NP, VP, S, VP, NP] reads: rule R1

consists of a NP followed by a VP, a S, a VP, and a NP,

where NP, VP and S mean a noun phrase, a verb

phrase and a simple declarative clause respectively.

The method takes a phrasal category list as input and

returns a list containing each discovered syntax struc-

ture rule and its starting point in the corresponding

phrasal category list, e.g. {(R1,3), (R5,1)}. In our ex-

ample, the input for the pre-processed sentence shown

in Figure 5 corresponds to a list Input = (NP, VP, S,

VP, NP, PP, NP, ADVP, PP, NP). Starting from the

first list position the method recursively checks

whether there exists a sequence within the phrasal

category list that matches one of the syntax structure

rules. The output after applying the algorithm on list

Input is a list of only one matched syntax structure

rule, i.e. Output = {(R4,1)}.

Secondly the algorithm applies lexical extraction

heuristics on a syntax structure rule-tagged sentence to

extract content words for generating one or more

predicates. For each identified syntax structure rule in a

sentence the algorithm: (1) determines the position of

both noun and verb phrases within the phrasal category

sequence; (2) applies the heuristics to extract the con-

tent words (verbs and nouns) from each phrase cate-

gory; (3) converts each verb and noun to its morpho-

logical root (e.g. driving to drive); and (4) generates

the corresponding predicate p in the form Predicate-

Value(Object1, Object2) where PredicateValue is the

verb and Object1 and Object2 the nouns. To illustrate

this the algorithm identified rule R4+ for our example

sentence in Figure 5. According to one heuristic {R4+}

corresponds to the following phrasal category sequence

[NP, VP, S, VP, NP]. Therefore the algorithm deter-

mines the position of both noun and verb phrases

within this sequence, i.e. noun phrases in {NP,1} and

{NP,5} and verb phrases in {VP,2} and {VP,4}. Lexical

extraction heuristics are applied to extract the content

words from each phrase category, i.e. {NP,1} driver,

{NP,5} space, {VP,2} need, and {VP,4} find.

Returning to our example, the algorithm generates two

predicates for the sentence the driver needs to find a

space in a car park close to his destination, namely

need(driver,space) and find(driver,space).

3.3 The Predicate Expansion Component

Word mismatches are a problem in web service re-

trieval because analysts and service providers use dif-

ferent terms to describe use cases, requirements and

web services [17]. In AnTiQue service queries are ex-

panded using words with similar meaning. AnTiQue

uses ontological information from VerbNet to extract

semantically related verbs for verbs in each predicate.

AnTiQue's predicate expansion component uses

members of (sub-)classes as potential expansion terms.

All VerbNet (sub-)classes are organised so that there is

syntactic and semantic coherence among members. For

example the verb book as in arrange for and reserve in

advance is one of 24 members of the get class. The list

of members includes buy, call, order, reserve, etc.

Thus VerbNet provides 23 verbs as potential expan-

sions for the verb book. We constrain use of expansion

to verb members that achieve a threshold on the degree

of attributional similarity computed by applying a

WordNet-based similarity measurement [16]. Given 2

sets of NL text, T1 and T2, the measurement deter-

mines how similar the meaning of T1 and T2 is scored

between 0 and 1. For example, when considering the

verb book, the algorithm computes the degree of at-

tributional similarity between book and each co-

member within the get class. In our example the ac-

cepted verbs such as reserve, order and call but not

reach and find are used to generate additional predi-

cates such as call(x), thus increasing the likelihood of

retrieving relevant web service descriptions.

3.4 The Predicate Matcher

3.4.1 Coarse-grained Matching
Having generated a list of expanded predicates

from the initial service query, all original and expanded

predicate values are transformed into one or more

XQueries that are fired at the web service registries.

Prior to executing the XQueries we pre-process all web

services in the registries using the Natural Language

Processing and Predicate Parser components and store

them locally. The XQueries include functions to match

each original and expanded predicate value to equiva-

lent representations of candidate web services.

SeCSE’s service description facet in Figure 1 is

structured using typed attributes such as service goal,

service actors and short service description that service

providers populate with relevant descriptions. An-

TiQue uses these typed attributes to restrict term

matching to equivalent typed attributes of service que-

ries based on the structure of the original use case and

requirement specification. Types in the query include

use case goals, use case actors and use case précis,

and the Predicate Matcher matches expanded predicate

values from the use case précis to predicate values in

the short service description.

3.4.2 Fine-grained Matching
The Predicate Matcher applies semantic and de-

pendency-based similarity measures to assess the qual-

ity of the candidate web service set. It computes rela-

tional similarity between the service query and each

web service retrieved during coarse-grain matching. To

compute relational similarities that indicate analogical

matches between service and query predicate argu-

ments the Predicate Matcher uses the Dependency

Thesaurus to select web services that are relationally

similar to mapped predicates in the service query.

In our example the web service Find Nearby Sta-

tion, which finds the location of nearby underground

stations, is one candidate service retrieved during

coarse-grained matching. The algorithm receives as

inputs a pre-processed sentence list for a query (e.g. the

précis) and service element (e.g. the short service de-

scription). It compares each predicate in the pre-

processed query element sentence list Pred(j)Query with

each predicate in the pre-processed service element

sentence list Pred(k)Service to calculate the relevant

match value, where

Pred(j)Query = PredValQuery(Arg1Query; Arg2Query)

and

Pred(k)Service = PredValService (Arg1Service; Arg2Service).

The following conditions must be met in order to ac-

cept a match between the predicate pair:

1. PredValService exists in list of expanded predicate

values of PredValQuery;

2. Arg1Query and Arg1Service (or Arg2Query and Arg2Service

respectively) are not the same;

3. Arg1Service (or Arg2Service) exists in the Dependency

Thesaurus result set when using Arg1Query (or

Arg2Query) as the query to the Thesaurus;

4. the resulting attributional similarity value from

step 3 is below a specified threshold.

If all conditions are met, PredService is added to the list

of matched predicates for the current web service. If

not the algorithm rejects PredService and considers the

next list item.

AnTiQue queries the Dependency Thesaurus to re-

trieve a list of dependent terms. Terms are grouped

automatically according to their dependency-based

similarity degree. Firstly the algorithm checks whether

the service predicate argument exists in this list. If so,

it uses the semantic similarity component to further

refine and assess the quality of the service predicate

with regards to relational similarity.

Using this 2-step process AnTiQue returns an or-

dered set of analogical services based on the match

score with the service query. In our example consider

Pred(j)Query = find(driver,space) extracted from the ex-

ample sentence the driver needs to find a space in a

car park close to his destination, and Pred(k)Service =

find(tourist,station) extracted from the sentence a tour-

ist in London wants to find the nearest underground

station taken from the specification of the Find Nearby

Station web service in Figure 1. In this example all 4

conditions are met:

1. Condition 1 is met since both predicate values are

the same;

2. Condition 2 is met since driver and tourist as well

as space and station are not the same;

3. Condition 3 is also met since tourist is similar

based on dependencies to driver, and station is de-

pendency similar to space (according to the De-

pendency Thesaurus);

4. Condition 4 is met since the attributional similarity

value of driver and tourist is 0.25, for space and

station 0.33 – both below the specified threshold.

Hence, the predicate find(tourist,station) is added to

the list of matched predicates.

The next 2 sections report results from 2 evaluations

of AnTiQue. We conducted these evaluations to seek

answers to the 2 research questions about the precision,

recall and usefulness of AnTiQue.

4. AnTiQue’s Precision and Recall

The purpose of the first evaluation was to undertake

a summative evaluation of the precision and recall of

AnTiQue’s algorithm and answer research question Q1

and explore whether AnTiQue could automatically

retrieve analogical web services. The first evaluation

was, in turn, divided into 2 studies – a human assess-

ment of web services analogical to a specified use case,

then an automatic assessment of the precision and re-

call of AnTiQue to retrieve analogical web services.

4.1 Similarity Classification of Web Service

Descriptions

We used human judgment to determine which web

services from a pre-selected set were analogical to car

park booking, and which services were not analogical

but similar to it in other ways. Firstly an expert in simi-

larity research applied definitions for 4 different kinds

of similarity – literal similarity, analogy, mere appear-

ance and anomaly [1] – to generate 5 web service de-

scriptions for each type of similarity to car park book-

ing. One analogical web service reserves hotel rooms,

a literally similar service locates points of interest for a

car driver and a service that plans walking routes for

pedestrians has appearance similarities unlikely to lead

to effective reuse of the service. We then conducted a

controlled study with 20 human judges – computer

science researchers – who categorized the randomly

ordered 20 web service descriptions based on similari-

ties with car park booking. The categorizations, which

judges made along continuous similarity scales, pro-

vided mean similarity values types for each web ser-

vice for the judge group as whole, from which the re-

sults were generated.

Table 1 reports results. The judge group and simi-

larity researcher agreed on the type of similarity for 16

of the 20 web services. Both identified 4 of the web

services – for cinema booking, hotel reservation, flight

booking and train seat reservation – as analogical to

car park booking. However, unlike the researcher, the

judge group categorized the 5
th

 analogical web service

for summer school booking as an anomaly. The judge

group and researcher also agreed on the categorizations

of the 5 literally similar services and the 5 anomalous

services that had no similarities with car park booking.

In contrast the judge group and researcher only agreed

that 2 of the 5 web services – plan a walking route and

compute journey distance time – had mere appearance

similarities with car park booking.

Analog-

ical
Literally
similar

Mere appear-
ance

Ano-
ma-
lies

Similarity researcher 5 5 5 5
Human judge group 4 5 2 5

Table 1. Totals of web services categorized by the
similarity researcher and judge group by similarity
type

These human judgments about the types of similari-

ty between 16/20 web services and car park booking

provided the baseline with which to assess AnTiQue.

We investigated whether AnTiQue could retrieve the

web services judged as analogical and not retrieve the

web services judged as not analogical with car park use

booking. To do this we measured the precision and

recall of AnTiQue during service retrieval.

4.2 Evaluating the Precision and Recall of

AnTiQue

We fired one query containing the use case précis in

Figure 3 at the SeCSE service registry containing 215

existing web services in domains such as flight book-

ing and the 20 web service descriptions judged by the

judge group. AnTiQue retrieved 9 of the 235 services

as analogical with car park booking. Totals of web

services retrieved by similarity type are in Table 2.

Totals of web
services

Literally
similar

Ana-
logi-
cal

Mere appear-
ance

Ano-
ma-
lies

Unclas-
sified

In Registry 5 4 2 5 219

Retrieved 0 4 1 0 4

Table 2. Totals of web services retrieved by AnTi-

Que by similarity type

 AnTiQue retrieved all 4 web services categorized

as analogical by the judge group. It also retrieved the

5
th

 service classified as analogical by the researcher but

not the group, recorded as 1 of the 4 unclassified ser-

vices in Table 2. Two other unclassified web services

retrieved – Find Nearby Station and Find Nearby

Tourist Location – had been part of the original 215

web services published previously. The similarity re-

searcher agreed that both were also analogical with car

park booking because of high relational and low at-

tributional similarity between the generated predicates.

Both services supported users to find locations whilst

moving, similar to car park booking, but in syntacti-

cally different domains.

The 4
th

 unclassified web service called Fiat vehicle

purchasing and one mere appearance web service

called plan a walking route retrieved were not analogi-

cal with car park booking.

Results were used to compute precision and recall

scores for the query. Recall was defined as:
Total retrieved analogical services /

Total classified analogical services*100

AnTiQue retrieved all 4 analogical services, so the

recall score was 100%. Precision was defined as:
Total retrieved analogical services /

Total discovered services*100

AnTiQue retrieved all 4 analogical services and 2 addi-

tional analogical services already published. Therefore

the precision score was 66.6%.

 Whilst the precision and recall scores for AnTiQue

in the evaluation were good, the ordering of the re-

trieved web services on match scores was not. An-

TiQue retrieved the web service Fiat Vehicle Purchas-

ing with the highest match value, in spite of being

categorized as similar to car park booking by mere

appearance. The web service retrieved information

about available vehicles in a region that the person then

uses to produce a short-list.

We investigated the mappings between the rela-

tional predicates in the car park booking and Fiat vehi-

cle purchasing descriptions computed by AnTiQue in

Table 3. Similarities between the relational predicates

(driver,space) and (person,information) computed us-

ing the verb find were consistent with the analogical

match, as were similarities between the predicates

(driver,*) and (person,*) computed using the verb acti-

vate. AnTiQue computed a third mapping between the

relational predicates (driver,*) and (vehicle,*) also

using the verb find shown in Table 3. However this

mapping was inconsistent with the analogical match

because driver is the operator of a vehicle and had a

high degree of attributional similarity with vehicle. The

mapping was therefore generated because condition 4

of fine-grained matching by the Predicate Matcher

(section 3.4.2) computed a score (0.17) below the

threshold for attributional similarity. This example

highlights one potential limitation of computing the

attributional similarity using WordNet-based similarity

measures.

Target Predicates Source PRedicates Match Value

find(driver,space) find(person,information) 2.36
activate(driver,*) find(person,*) 1.5

find(driver,*) find(vehicle,*) 1.82

Table 3. Matched predicates for Fiat Vehicle Pur-

chasing service, where * indicates corresponding

arguments that did not match

With overall confidence in the precision and recall

of AnTiQue established, we investigated how analysts

were able to discover requirements using retrieved ana-

logical and literally similar web services to answer

research question Q2 – can analysts use analogical

services to discover requirements that they rank as

more novel than requirements discovered from use

case walkthroughs and literally similar web services?

5. Discovering Novel Requirements

Four analysts from Fiat in Torino specified re-

quirements on the car park booking system in 2 phases:

(i) in a use case walkthrough; (ii) in a walkthrough of

web services retrieved by EDDiE and AnTiQue. Both

walkthroughs took place in one workshop ran by the

authors, one of whom facilitated the walkthroughs

while the other operated UCaRE, EDDiE and AnTiQue

on behalf of the analysts.

Each phase lasted 1 hour. In the first the facilitator

walked the analysts through the use case précis then

normal course to discover requirements for the car park

booking system that the scribe documented in UCaRE.

The walkthrough continued until the analysts were

unable to discover more requirements. The result was a

list of requirements Requsecase. The scribe then generated

a service query from the use case précis and searched

the service registry described in section 4.2 using An-

TiQue and EDDiE. AnTiQue retrieved 10 web services

from which we retained the top 4 analogical ones Sana-

log, to use in the workshop. EDDiE retrieved 15 web

services of which we retained the top 4 literally similar

ones, SlitSim. We retained only the top web services to

remain within the time available for the workshop.

In the second phase UCaRE presented the 8 re-

trieved web services in one list shown in Figure 6 that

alternated analogical and literally similar services to

avoid bias. The facilitator then walked the analysts

through each web service to discover additional car

park booking requirements that the scribe documented

in UCaRE. The result was a list of requirements, Reqser-

vices. We defined requirements discovered using analog-

ical services as Reqanalog and requirements discovered

using literally similar services as ReqlitSim.

After the workshop the 4 analysts independently

completed a questionnaire that rated each of the re-

quirements in Reqanalog and ReqlitSim for appropriateness

to car park booking on a simple 1-7 Likert scale.

5.1 Assessing Requirements Novelty

To assess the specified requirements for novelty in

the car park booking domain we equated novelty to

dissimilarity [11]. Requirements that score low similar-

ities to requirements identified as prototypical of the

domain were identified to be dissimilar and hence

more novel. We identified 4 values of Prot with which

to undertake a more sophisticated analysis of require-

ments novelty: (i) the requirements discovered from

the first phase Requsecase generated by the analysts with-

out any influence from the retrieved web services; (ii)

the use case attributes that described the essential char-

acteristics of car park booking; (iii) the use case normal

course description of the important actions of the driv-

er and service-centric system when booking a car park

space; (iv) all of the text in (i), (ii) and (iii).

We defined

DSI = Domain-specific Information

and

Prot = DSI + Requsecase

that is, the union of the domain-specific information

and the requirements elicited prior to service discovery

constitutes the target class of artefacts. We used a simi-

larity measure to match both requirement result sets

with Prot to compute the novelty score:

SimlitSim = Similarity(Prot,ReqlitSim) ε [0,1]

Simanalog = Similarity(Prot,Reqanalog) ε [0,1]

If the result is SimlitSim > Simanalog then we show that

analogical services trigger the discovery of more novel

requirements. To compute similarity we compared both

requirement sets Reqanalog and ReqlitSim with Prot using

the WordNet-based semantic similarity measure [16]

described in Section 3.

Figure 6. Retrieved service descriptions in UCaRE

5.2 Workshop Results

The analysts specified 61 requirements during the

workshop. They specified 35 in the first phase and 26

in the second phase, 16 of which were generated from

analogical web services Reqanalog, and 10 from literally

similar web services ReqlitSim.

Figure 7 shows relative similarities between Prot

and ReqlitSim (SimlitSim) and between Prot and Reqanalog

(Simanalog). Each column depicts the average similarity

scores, converted into percentages, for requirements

discovered from analogical and literally similar web

services compared to the 4 different Prot values. Re-

sults revealed that the similarity between Prot and Req-

litSim was, on average, higher than the similarity between

Prot and Reqanalog. Therefore we can conclude that is

SimlitSim > Simanalog, and hence analogical web services

triggered specification of some more novel require-

ments than did literally similar services.

Figure 7. Similarity scores (in %) for requirements

ReqlitSim and Reqanalog compared to 4 values of Prot.

Table 4 shows the average ratings per analyst of ap-

propriateness of the 26 Reqanalog and ReqlitSim require-

ments specified in the second phase. Average ratings

for the analysts show that Reqanalog (4.5) were perceived

as less appropriate to the target system than were Reqlit-

Sim (4.9), but this difference was insignificant.

Analyst A1 A2 A3 A4

Requirements discovered from
literally similar web services

5 5.3 5.6 3.8

Requirements discovered from
analogical web services

4.56 5.25 4.25 4.13

Table 4. Average appropriateness ratings of re-

quirements generated by each of the 4 analysts A1-

A4 during the second phase, on a scale 1-7

6. Research Questions Revisited

We used results from the AnTiQue evaluations to

answer the 2 research questions. The answer to the first

question Q1 – can AnTiQue automatically retrieve web

services from domains analogical to a specified prob-

lem – is yes, at least for the reported query and regis-

try. From the natural language car park booking use

case specification AnTiQue retrieved analogical web

services also expressed in natural language with a re-

call score of 100% and precision score of 66.6% from a

registry of 235 web service descriptions. However An-

TiQue’s fine-grain ordering of retrieved services on

analogical match scores did incorrectly rank one non-

analogical web service with the highest score.

The answer to the second question Q2 - can ana-

lysts reason with analogical services retrieved by An-

TiQue to invent requirements ranked as more novel –

was also yes, for the workshop. Analysts specified a

greater number of requirements when reviewing web

services for analogical domains than when reviewing

web services that were literally similar to car park

booking. Post-workshop analyses revealed that re-

quirements specified when reviewing the analogical

web services were more dissimilar to requirements and

use cases specified prior to service retrieval with

EDDiE and AnTiQue, and hence more novel according

to the definition used. The absence of a significant dif-

ference in appropriateness rankings indicated that in-

creased novelty did not come at the expense of the de-

creased usefulness of the requirements.

The results also provide evidence for the SeCSE it-

erative requirements process outlined in Section 2. The

requirements generated from both analogical and liter-

ally similar web services indicated that analysts were

able to discover new requirements by reviewing and

working backwards from designs and implementations

of services based on what might be possible.

Clearly there are threats to results validity. One

threat to the conclusion validity of the evaluation re-

sults is the sample size – 1 service query from 1 use

case specification fired at 1 registry and applied in 1

workshop. However the current small body of research

into requirements techniques for service-centric sys-

tems (e.g. [14]) and the absence of any research into

analogical services to encourage creative thinking led

us to run a formative-predictive evaluation to generate

a first set of results to explore AnTiQue’s feasibility

then provide a framework and focus for more subse-

quent rigorous evaluation.

A threat to the internal validity of the workshop re-

sults is the unintended bias from verbal guidance given

by the facilitator and requirements writing undertaken

by the scribe. Prior to the workshop the 4 analysts had

experience with EDDiE but AnTiQue and its capabili-

ties were unfamiliar, and research question Q2 was not

made public. In contrast, whilst the facilitator used a

protocol to guide interaction with the analysts both he

and the scribe were aware of the research question, so

implicit bias when guiding and documenting the ana-

lyst’s work cannot be excluded.

Finally, one threat to the external validity of the re-

sults might have been the choice of domain. The re-

sults have external validity if we can generalize them

outside of car park booking and analogies with it to

other domains, so that available services might be re-

trieved analogically. We are unaware of research into

problem domains for service-centric systems, but ear-

lier requirements research of problem frames and do-

main models [18] indicates that widespread analogical

reuse across domains is feasible.

7. Future Research on AnTiQue

The results provide a framework for future design

and evaluation of AnTiQue. We plan to validate the

results reported in this paper with larger-scale precision

and recall experiments to learn whether AnTiQue can

retrieve analogical web services across domains with

different types of service query extracted from more

than one use case specification. To do this we need to

revise the Predicate Matcher’s fine-grain matching

algorithm to reduce the likelihood of incorrect attribute

similarities leading to the retrieval of non-analogical

web services. One option is to compute different

attribute similarity measures with which to validate the

WordNet-based similarity measure. We are also re-

viewing how the tools present analogical web services

to stakeholders shown in Figure 6. Evidence from cog-

nitive science [1] suggests that highlighted mappings

between elements of text might not be as effective as

showing graphical representations of mappings when

transferring a analogical knowledge across 2 domains.

AnTiQue’s success has implications for the SeCSE

requirements process [2], in particular when to com-

bine the use of AnTiQue and EDDiE to discover web

services with different types of similarity to specify the

requirements for a service-centric system.

Finally we are also interested to investigate whether

analysts can work backwards to discover requirements

from designs and implementations of software and

design artifacts other than web services. Examples in-

clude commercial software documentation and reverse

engineered specifications. We recently trialed UCaRE

and EDDiE to support requirements reuse in a UK po-

licing domain, and plan to report results shortly.

8. Acknowledgements

The research reported in this paper is supported by

the EU-funded 511680 SeCSE Integrated Project.

9. References

[1] Gentner D., 1983, ‘Structure-mapping: A theoretical

framework for analogy’, Cognitive Science, 7, 155-170.

[2] Jones S.V., Maiden N.A.M., Zachos K. & Zhu X., 2005,

‘How Service-Centric Systems Change the Require-

ments Process’, Proceedings REFSQ’2005 Workshop,

CAiSE’2005, 13-14 June 2005, Porto, Portugal.

[3] Kipper K., Dang H.T., & Palmer M., 2000, ‘Class-based

construction of a verb lexicon’, AAAI-2000 Seventeenth

National Conference on Artificial Intelligence, Austin,

TX, USA.

[4] Leavitt, N., 2004, ‘Are Web Services finally ready to

Deliver?’, IEEE Computer, 37, 1418.

[5] Levin B., 1993, ‘English Verb Classes and Alternations:

A Preliminary Investigation’, University Chicago Press.

[6] Lin D., 1998, ‘Automatic retrieval and clustering of

similar words’, In COLINGACL, 768-774.

[7] Maiden N.A.M. & Sutcliffe A., 1992, ‘Exploiting reus-

able specifications through analogy’, Communications

of the ACM, 35, 55-64.

[8] Maiden N.A.M., Gizikis A. & Robertson S., 2004, ‘Pro-

voking creativity: Imagine what your requirements

could be like’, IEEE Software, 21, 68–75.

[9] Maiden N.A.M., Ncube C. & Robertson S., 2007, ‘Can

Requirements Be Creative? Experiences with an En-

hanced Air Space Management System’, Proceedings

28th International Conference on Software Engineering,

ACM Press, 632-641.

[10] Nuseibeh B. & Easterbrook S., 2000, ‘Requirements

Engineering: A Roadmap’, Proceedings IEEE Interna-

tional Conference on Software Engineering (ICSE-

2000), 4-11 June 2000, Limerick, Ireland, ACM Press.

[11] Ritchie G., 2001, ‘Assessing Creativity’, Proceedings

AISB-01 Symposium AI and Creativity in Arts and

Science.

[12] Robertson J., 2005, ‘Requirements analysts must also be

inventors’, IEEE Software, 22, 48–50.

[13] Robertson S. & Robertson J., 1999, ‘Mastering the Re-

quirements Process’, Addison-Wesley-Longman, Red-

wood City.

[14] Rolland C., Kaabi R.S., Kraiem N., 2007, ‘On ISOA:

Intentional Services-Oriented Architecture’, Proceed-

ings CAiSE’2007, 13-15 June 2007, Trondheim, Nor-

way, 158-172.

[15] Sawyer P., Hutchinson J., Walkerdine J. & Sommerville

I., 2005, ‘Faceted Service Specification’, Proceedings

SOCCER (Service-Oriented Computing: Consequences

for Engineering Requirements) Workshop, at RE’05

Conference, Paris, August 2005.

[16] Simpson T. & Dao T., 2005, ‘Wordnet-based semantic

similarity measurement’, codepro-

ject.com/cs/library/semanticsimilaritywordnet.asp.

[17] Singhal A. & Pereira F., 1999, ‘Document expansion for

speech retrieval’, In Proceedings of ACM SIGIR, 3441,

Berkeley, CA, USA.

[18] Sutcliffe A.G. & Maiden N.A.M., 1998, 'The Domain

Theory for Requirements Engineering, IEEE Transac-

tions on Software Engineering, 24(3), 174-196

[19] Tetlow P., Pan J., Oberle D., Wallace E., Uschold M. &

Kendall E., 2005, ‘Ontology Driven Architectures and

Potential Uses of the Semantic Web in Software Engi-

neering’, W3C (2005).

[20] WordNet 2005, Version 2.1,

http://www.cogsci.princeton.edu/wn.

[21] Zachos K., Maiden N., Zhu X., & Jones S., 2006, ‘Does

Service Discovery Enhance Requirements Specifica-

tion? A Preliminary Empirical Investigation’, Proceed-

ings SOCCER (Service-Oriented Computing: Conse-

quences for Engineering Requirements) Workshop, a t

RE’06 Conference, Minneapolis, September 2006.

[22] Zachos K., Maiden N.A.M., Zhu X. and Jones S.V.,

2005, ‘Discovering Web Services to Specify More

Complete System Requirements’, Proceedings

CAiSE’2007, 13-15 June 2007, Trondheim, Norway.

