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SUMMARY 15

In this paper, in-sample forecasting is defined as forecasting a structured density to sets where
it is unobserved. The structured density consists of one-dimensional in-sample components that
identify the density on such sets. We focus on the multiplicative density structure, which has
recently been seen as the underlying structure of non-life insurance forecasts. In non-life insur-
ance the in-sample area is defined as one triangle and the forecasting area as the triangle that 20

added to the first triangle produces a square. Recent approaches estimate two one-dimensional
components by projecting an unstructured two-dimensional density estimator onto the space of
multiplicatively separable functions. We show that time-reversal reduces the problem to two one-
dimensional problems, where the one-dimensional data are left-truncated and a one-dimensional
survival density estimator is needed. This paper then uses the local linear density smoother with 25

weighted cross-validated and do-validated bandwidth selectors. Full asymptotic theory is pro-
vided, with and without time reversal. Finite sample studies and an application to non-life insur-
ance are included.

Some key words: Aalen’s multiplicative model; Cross-validation; Do-validation; Density estimation; Local linear
kernel estimation; Survival data. 30

1. INTRODUCTION

This paper develops a dimension-reduction procedure in order to forecast an age-cohort struc-
ture. Our motivating example is taken from non-life insurance where the estimation of outstand-
ing liabilities involves an age-cohort model. In non-life insurance such a structure is called chain-
ladder: cohorts are based on the year of underwriting the insurance policy and age is the devel- 35
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opment of claims. Age-cohort and chain-ladder models have often been formulated as discrete
models aggregating observations in months, quarters or years. Martı́nez-Miranda et al. (2013)
identified the chain-ladder method as a structured histogram in the vocabulary of non-parametric
smoothing, and suggested replacing the structured histogram smoothers by continuous kernel
smoothers, which are more efficient.40

We assume that our data follow a joint distribution with independent components, one for
cohort and one for age, but are truncated if cohort plus age is greater than the calendar time of
data collection. Future observations remain unobserved, and the forecasting exercise is to pre-
dict them. Visualised, the historical data belong to a triangle and the forecasting exercise is to
predict the densities on the triangle that added to the first completes a square. We call this fore-45

casting structure in-sample forecasting, because information on the two relevant densities of the
multiplicative structure is indeed in the sample. The independence assumption for the unfiltered
data will be discussed in the next section. Our model is thus that we have independent and iden-
tically distributed truncated observations sampled from the two-dimensional random variable,
(X,Y ), with values on the triangle I = {(x, y) : x+ y ≤ T, x, y ≥ 0}, T ∈ R+. These obser-50

vations are truncated from the complete set with support on the square [0, T ]2. We wish to make
in-sample forecasts of the density with support on the second triangle, J = [0, T ]2 \ I, which
completes the square. Furthermore, for unfiltered (X,Y ), the joint density, f, has support on
the whole square, [0, T ]2 and is multiplicative, i.e., f(x, y) = f1(x)f2(y). Given this multiplica-
tive structure, the truncated observations provide in-sample information about the density in the55

forecasting triangle. Estimating only the survival functions or cumulative hazards is not enough
when integrating the forecasts considered in this paper, since J is non-rectangular.

We estimate the two multiplicative components without first having to estimate the two-
dimensional density. This is possible due to the reinterpretation of the forecasting aim as two
distinct one-dimensional right-truncated density estimation problems, which can be solved in a60

counting process framework. It is well-known that intractable right-truncation can be replaced
by more tractable left-truncation by reversing the time scale; see for example Ware & DeMets
(1976) and Lagakos et al. (1988). The time-reversal approach requires estimates of the survival
densities, for which we use the local linear survival kernel density estimator of Nielsen et al.
(2009) with cross-validated or do-validated bandwidths; see Mammen et al. (2011), Gámiz et al.65

(2013) and Gámiz et al. (2016). We introduce full asymptotic theory of the corresponding band-
width selectors with and without weighting, and with and without time reversal. Reducing the
forecasting to a one-dimensional problem enables us to introduce a new measure of forecasting
accuracy that is equivalent to an importance-weighted loss function. The bandwidths chosen by
this new measure focus on the areas of the one-dimensional functions that are most important for70

the forecast. When estimating outstanding liabilities, least information is available for the most
recent years but they are the most important ones to estimate accurately. The new approach leads
to larger bandwidths than classical goodness-of-fit loss measures. This better reflects the nature
of the underlying problem, and improves forecasting accuracy.

2. IN-SAMPLE FORECASTING AND RELATED WORK75

While we use counting process theory in this paper to reduce the number of dimensions,
the problem can also be formulated via independent stochastic variables X and Y and their
density on a triangular support; see Martı́nez-Miranda et al. (2013), Mammen et al. (2015) and
Lee et al. (2015), where in the two latter papers the triangular support is one special case. The
density components of X and Y have direct analogues in survival analysis. The density f1 of X80

measures exposure, i.e., the number of individuals at risk, while the density f2 of Y corresponds
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to duration. While classical counting process theory in survival analysis operates with observed
exposure, in-sample forecasting estimates f1 and does not need observed exposure. This has
the advantage of requiring fewer data. Simple model assumptions are often preferable when
forecasting, so in-sample forecasting might be preferable even in situations where more data, 85

including exposure, are available.
For example when reserves for outstanding liabilities are to be estimated in insurance com-

panies, there is usually no follow-up data of individuals in the portfolio available and reported
claims, categorised in different businesses and other baseline characteristics, are the only records.
The reason that insurers do not use classical biostatistical exposure data, i.e., they do not follow 90

every underwritten policy, might be because of the bad quality and complexity of such exposure
data, with many potential causes of failure which heavily affect the actual cost of a claim.

When claim numbers are considered, thenX is the underwriting date of the policy, and Y is the
time between underwriting date and the report of a claim, the reporting delay. Truncation occurs
when X + Y is smaller than the date of data collection. The mass of the unobserved, future 95

triangle, J , then corresponds to the proportion of claims underwritten in the past which are not
yet reported. The assumption of a multiplicative density means that the reporting delay does
not depend on the underwriting date. Thus, calendar time effects like court rulings, emergence
of latent claims, or changes in operational time cannot be accommodated in the model per se.
Nevertheless we restrict our discussion to the multiplicative model for several reasons. It has 100

its justification as baseline for generalisations in many directions. It also approximates the data
structure well enough in many applications. We will return to this point when discussing our
data example. The relevance of the multiplicative model also lies in the fact that it helps the
understanding of related discrete versions that are used in all non-life insurance companies; see
England & Verrall (2002). 105

The underlying model before filtering is the same in forward and backward time, namely that
the underlying sampled random variables, X and Y , are independent with joint multiplicative
density f(x, y) = f1(x)f2(y). This multiplicative structure based on partially observed indepen-
dent random variables is well known in biostatistical theory and can be checked via independence
tests of Tsai (1990), Mandel & Betensky (2007) and Addona et al. (2012). Brookmeyer & Gail 110

(1987) aimed at understanding the estimation of outstanding numbers of onset AIDS cases from
a given population. They considered prevalent cohorts, where time of origin is not known, and
discussed the resulting biases from just using the prevalent time available instead of infection
time of each observed individual. Wang (1989) works with prevalent cohort data, but where time
of origin is known, and points out that this sampling boils down to a random truncation model. 115

Both papers work in forward-moving time but could have used the filtered non-parametric den-
sity approach of this paper, see §6, had it existed.

In the in-sample forecasting application two sampling details are different, leading us to re-
verse the time and using the non-parametric density approach in reversed time. One is that less is
known than in Wang (1989), because exposure, i.e., the number of people at risk, is unobserved. 120

Another is that more is known than in Wang (1989), because all failures are observed, without
exception. In reversed time, the future numbers of failures, the past number of failures in regu-
lar time, is exactly the exposure needed for estimation. Therefore, the extra information that all
failures are observed up to a point can alleviate the challenge of unobserved exposure, and the
technique doing this is to reverse the direction of time. The most favourable approach depends on 125

the application and situation. For approaches that study reserving for outstanding liabilities and
that work with exposure in forward-moving time see Arjas (1989), Norberg (1993) and Antonio
& Plat (2014).
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3. MODEL

Consider the probability space {S,B(S), P}, where S is the square {(x, y) : 0 ≤ x, y ≤ T},130

where B(·) denotes the Borel σ-field. We are interested in estimating the density, f = dP/dλ,
where λ is the two-dimensional Lebesgue measure. We will assume that f(x, y) = f1(x)f2(y),
and that observations are only sampled on a subset of the full support of this density, f . The
truncated density is assumed to be supported on the triangle, I. In this case, we consider ob-
servations of the independent and identically distributed pairs, {(X1, Y1), . . . , (Xn, Yn)}, with135

Xi ≤ T − Yi, or equivalently Yi ≤ T −Xi, where T is the calendar time at which the data are
collected. Since the observations are truncated, and hence I-valued, the pair (X1, Y1) is not
distributed according to P , but has density f(x, y)/P (I). Both observation schemes can be
understood as random right-truncation targeting only X or Y , respectively, and so both can be
formulated in the following counting-process framework. We define two counting processes, one140

indicating the occurrence of X , and the other indicating the occurrence of Y . By reversing the
times of the counting processes, right-truncation becomes left-truncation (Lagakos et al., 1988).

We define the two time reversed counting processes as

N i
1(t) = I (T −Xi ≤ t) , N i

2(t) = I (T − Yi ≤ t) (i = 1, . . . , n),

with respect to the filtrations

F i1,t = σ

({
T −Xi ≤ s : s ≤ t

}
∪
{
Yi ≤ s : s ≤ t

}
∪N

)
,145

F i2,t = σ

({
T − Yi ≤ s : s ≤ t

}
∪
{
Xi ≤ s : s ≤ t

}
∪N

)
,

satisfying the usual conditions (Andersen et al., 1993, p. 60), and whereN = {A : A ⊆ B, B ∈
B(S), P (B) = 0}. Adding the null set, N , to the filtration guarantees its completeness. This is
a technically useful construction, but it has been argued that it is not necessary; see Jacod (1979)
and Jacod & Shiryaev (1987). We keep the assumption because we use results that rely on it.150

Both counting processes operate on a reversed timescale, so all the usual estimators derived
from these counting processes will be based on T −X and T − Y , rather than on X and Y .
To minimize any potential confusion, we will mark all functions corresponding to T −X or
T − Y with a superscript, R. The desired estimators will then be linear transformations of the
time-reversed versions.155

The advantage of this time reversal can be seen by identifying the random intensity of N i
l , λ

i
l ,

which is well-defined since X and Y have bounded densities. It holds, almost surely, that for all
t ∈ [0, T ] we have λil(t) = limh↓0 h

−1E
[
N i
l {(t+ h)−} −N i

l (t−)| Ft−
]

(l = 1, 2), see Aalen
(1978). At this point we used that our assumptions will imply that λil is piecewise continuous.
Straightforward computations lead to intensities satisfying Aalen’s (1978) multiplicative inten-160

sity model,

λil(t) = αl(t)Z
i
l (t),

with predictable processes Zi1(t) = I
(
Yi < t ≤ T −Xi

)
, Zi2(t) = I

(
Xi < t ≤ T − Yi

)
, cumu-

lative distribution functions Fl =
∫ ·
0 fl(x)dx (l = 1, 2), and hazard ratios

α1(t) = lim
h↓0

h−1pr {T −X ∈ [t, t+ h) | T −X ≥ t} =
f1(T − t)
F1(T − t)

=
fR1 (t)

SR1 (t)
, 165

α2(t) = lim
h↓0

h−1pr {T − Y ∈ [t, t+ h) | T − Y ≥ t} =
f2(T − t)
F2(T − t)

=
fR2 (t)

SR2 (t)
.
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As the hazard function, α1, does not depend on f2, and the hazard function, α2, does not depend
on f1, we can estimate f1 and f2 as one-dimensional densities.

4. LOCAL LINEAR DENSITY ESTIMATOR IN REVERSED TIME

Due to the symmetry between T −X and T − Y , all of the following results hold for both 170

f1 and f2. For clarity, therefore, we suppress the subscript l, which indicates the coordinate.
Furthermore, we will denote the exposure or risk process by Z(t) =

∑n
i=1 Z

i(t).
Following Nielsen et al. (2009), our proposed estimator of the density function, fR,

will involve a pilot estimator of the survival function, SR(t). Here, for simplicity, we
choose the Kaplan–Meier product-limit estimator, ŜR(t) =

∏
s≤t

{
1−∆Â(s)

}
, where Â(t) = 175∑n

i=1

∫ t
0 {Z(s)}−1 dN i(s) is the Aalen estimator of the integrated hazard function, A(t) =∫ t

0 α(s)ds. We define the local linear estimator f̂Rh,K(t) of fR(t) as the minimizer θ̂0 in the
equation(

θ̂0
θ̂1

)
= arg min

θ0,θ1∈R

n∑
i=1

[∫
Kh(t− s) {θ0 + θ1(t− s)}2 Zi(s)W (s)ds

− 2

∫
Kh(t− s) {θ0 + θ1(t− s)} ŜR(s)Zi(s)W (s)dN i(s)

]
. (1) 180

Here and below, an integral
∫

with no limits denotes integration over the whole support, i.e.,∫ T
0 . In addition, for kernel K and bandwidth h, Kh(t) = h−1K(t/h). The definition of the local

linear estimator as the minimizer of (1) can be motivated by the fact that the sum on the right
hand side of (1) equals the limit of

n∑
i=1

∫ [{
1

ε

∫ s+ε

s
ŜR(u)dN i(u)− θ0 − θ1(t− s)

}2

− ξ(ε)

]
Kh(t− s)Zi(s)W (s) ds, 185

for ε converging to zero. Here, ξ(ε) = {ε−1
∫ s+ε
s ŜR(u)dN i(u)}2 is a vertical shift subtracted

to make the expression well-defined. Because ξ(ε) does not depend on (θ0, θ1), θ̂0 is defined
by a local weighted least squares criterion. The function W is an arbitrary predictable weight
function on which the pointwise first order asymptotics will not depend. There exist two popular
weightings: the natural unit weighting, W (s) = 1, and the Ramlau–Hansen weighting, W (s) = 190

{n/Z(s)}I{Z(s) > 0}. The latter becomes the classical kernel density estimator in the simple
unfiltered case. However, in the framework of filtered observations the natural unit weighting,
W (s) = 1, tends to be more robust (Nielsen et al., 2009), so we use it. For this, the solution of
(1) (Nielsen et al., 2009; Gámiz et al., 2013) is

f̂Rh,K(t) = n−1
n∑
i=1

∫
Kt,h(t− s)ŜR(s)dN i(s), (2) 195

where

Kt,h(t− s) =
a2(t)− a1(t)(t− s)
a0(t)a2(t)− {a1(t)}2

Kh(t− s),

aj(t) = n−1
∫
Kh(t− s)(t− s)jZ(s)ds (j = 0, 1, 2).
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If K is a second-order kernel, then n−1
∫
Kt,h(t− s)Z(s)ds = 1, n−1

∫
Kt,h(t− s)(t−

s)Z(s)ds = 0, n−1
∫
Kt,h(t− s)(t− s)2Z(s)ds > 0, so that Kt,h can be interpreted as a200

second-order kernel with respect to the measure, µ, where dµ(s) = n−1Z(s)ds. This is essential
in understanding the pointwise asymptotics of the local linear estimator which, as we will see,
coincides with the kernel estimator

∑n
i=1

∫
Kh(t− s)ŜR(s){Z1(s)}−1dN i(s). The stochastic

character of the local linear kernel allows for the automatic adjustment near boundary regions;
see also Fan & Gijbels (1996), Nielsen (1998) and Nielsen et al. (2009).205

We introduce the following notation. For every kernel, K, let

µj(K) =

∫
sjK(s)ds, R(K) =

∫
K2(s)ds, K

∗
(u) =

µ2(K)− µ1(K)u

µ2(K)− {µ1(K)}2
K(u).

We make the following assumptions.

Condition 1. The bandwidth h = h(n) satisfies h→ 0 and n1/4h→∞ for n→∞.

Condition 2. The densities f1 and f2 are strictly positive and twice continuously differen-
tiable.210

Condition 3. The kernel K is symmetric, has bounded support and has finite second moment.

Conditions 2 and 3 are standard in smoothing theory. In contrast to the unfiltered case, Con-
dition 1 assumes more than just the bandwidth h converging to zero. This is required, otherwise
the estimation error of the survival function would determine the first-order asymptotic proper-
ties of the bias, since n−1/2/h2 → 0 would not hold. We write f̂h,K(t) = f̂Rh,K(T − t) , for the215

local linear estimator of the density f . The key in obtaining the pointwise limit distribution of
f̂h,K(t)− f(t) is to split the estimation error into a sum of a stable part and a martingale part,

BR(t) = fR,∗h,K(t)− fR(t), V R(t) = f̂Rh,K(t)− fR,∗h,K(t),

where fR,∗h,K(t) = n−1
∑n

i=1

∫
Kt,h(t− s)Zi(s)ŜR(s)α(s) ds. The estimation error can then be

described as

f̂h,K(t)− f(t) = BR(T − t) + V R(T − t) = B(t) + V (t).

PROPOSITION 1. Under Conditions 1–3, for t ∈ (0, T ),220

(nh)1/2
{
f̂l,h,K(t)− fl(t)−Bl(t)

}
→ N

{
0, σ2l (t)

}
(l = 1, 2), n→∞,

in distribution, where Bl(t) = 1
2µ2(K

∗
)f

′′
l (t)h2 + o(h2), σ2l (t) = limn→∞ nh 〈Vl〉t =

R(K
∗
)fl(t)Fl(t)γl(t)

−1, γl(t) = pr(Z1
l (t) = 1).

Proposition 1 is proved in the Supplementary Material.

5. BANDWIDTH SELECTION IN REVERSED TIME225

5·1. Cross-validation and do-validation
For a kernel estimator, the bandwidth is a positive scalar parameter controlling the smooth-

ing degree. Data-driven cross-validation in density estimation goes back to Rudemo (1982) and
Bowman (1984). Nowadays, a slightly modified version (Hall, 1983) is used intended to min-
imize the integrated squared error. By adding a general weighting, w, and the exposure, Z, 230

which acknowledges the filtered observations, the aim is to find the minimizer of the integrated



In-sample forecasting with local linear survival densities 7

squared error ∆K(h) =
∫ {

f̂Rh,K(t)− fR(t)
}2
Z(t)w(t) dt, which has the same minimizer as∫

{f̂Rh,K(t)}2Z(t)w(t) dt− 2
∫
f̂Rh,K(t)fR(t)Z(t)w(t) dt. Only the second integral of this term

needs to be estimated. For the survival density estimator defined in §4, Nielsen et al. (2009)
propose choosing the bandwidth estimator, ĥKCV, as the minimizer of 235

Q̂K,w(h) =

∫ {
f̂Rh,K(t)

}2
Z(t)w(t) dt− 2

n∑
i=1

∫
f̂
R,[i]
h,K (t)ŜR(t)w(t) dN i(t), (3)

where f̂R,[i]h,K (t) = n−1
∑

j 6=i
∫
Kt,h(t− s)ŜR(s) dN j(s). This can be seen as a generalization

of classical cross-validation.
Over the last 20 years, many methods have been developed to improve cross-validation;

see Heidenreich et al. (2013). One of the strongest bandwidth selectors of this review is so-
called one-sided cross-validation (Hart & Yi, 1998; Martı́nez-Miranda et al., 2009). Under mild 240

regularity conditions, there exists an asymptotically optimal bandwidth. However, this band-
width is infeasible in practice, since it depends on the unknown quantities f, γ; see (8) be-
low. One-sided cross-validation uses the fact that the ratio of asymptotically optimal band-
widths of two estimators with different kernels, K and L, is a feasible factor, ρ(K,L) =
{R(K)µ22(L)/µ22(K)R(L)}1/5, which depends only on the two kernels; see (8) and (9). The 245

authors replace the kernel K used for the kernel estimator in (2), by its right-sided version
L = KR = 2K(·)I(· ≥ 0) when minimizing (3) and multiply the resulting cross-validation
bandwidth by the feasible factor, ρ(K,KR), to derive a bandwidth for a kernel estimator with
kernel, K. Hence, one firstly performs cross-validation with a kernel KR in order to derive a
bandwidth estimate. After correction with the factor ρ(K,KR), the bandwidth is then used in 250

conjunction with the original kernel K to derive an estimator of the density. Such a construc-
tion makes sense if cross-validation for a one-sided kernel estimator works better than cross-
validating with the original kernel K. One can generalize this idea by defining indirect cross-
validation as a method where a kernel, L, can be arbitrarily chosen. We denote such bandwidth
estimator by hLICV = ρ(K,L)hLCV. 255

Savchuk et al. (2010) propose an indirect cross-validation procedure where one chooses a
linear combination of two Gaussian kernels as kernel, L. Mammen et al. (2011) introduce the
do-validation method, which performs indirect cross-validation twice by using two one-sided
kernels, L1 = KL = 2K(·)I(· ≤ 0) and L2 = KR, as indirect kernels in (3). The do-validation
bandwidth is the average of the two resulting bandwidths, hDO = 0.5(hKL

ICV + hKR
ICV). Cross- 260

validation for kernels KL and KR works better than for K because the asymmetry of the kernels
KL and KR leads to larger optimal bandwidths. An empirical study in favour of do-validation in
our survival setting has been performed in Gámiz et al. (2013). Asymptotic theory for weighted
and unweighted cross-validation and do-validation, with and without time reversal, is developed
in §6 in our general survival density framework. Below we discuss how the weighting, w, in (3) 265

can be chosen when the aim is to estimate outstanding loss liabilities.

5·2. Weighting for application in claims reserving
In Gámiz et al. (2013), standard cross-validation is defined as the minimizer of (3) withw(t) =

1. Hence, standard cross-validation can be formulated as an in-sample technique, which aims to
estimate the optimal bandwidth for the estimator calculated from the given sample. However, the 270

situation in the forecasting problem motivating this paper is different, since our interest focuses
on the unobserved region.
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In this section, we illustrate how to choose a reasonable weighting scheme to estimate the
outstanding liabilities for a non-life insurance company. The most relevant data for this relate
to the most recent time-periods, for which only a small number of data are available. This is a275

well-known challenge for actuaries, who generally tackle it by using expert opinion and manual
adjustments to the data. Bornhuetter & Ferguson (1972), Mack (2008) and Alai et al. (2010) give
a flavour of the Bornhutter–Ferguson method used by actuaries. Our smoothing methodology,
based on continuous data, could be used as an alternative to these less rigorous approaches, and
so replace expert opinion and manual adjustments by using information from relevant neighbour-280

hoods according to an optimal smoothing criteria.
Unfortunately, the trivial weighting, w = 1, implies that the recent years only have small

influence on the size of the bandwidth, due to the lack of sufficient data. In contrast, we
want the weighting, w(t), to depend on the estimated size of the liabilities at t, in order to
give greatest weight to the most recent period. Assume that T is an integer indicating for in-285

stance months or years, then for a period, p = 1, . . . , T , the reserve, R(p), is given as R(p) =
n
∫ p
p−1 f1(s)S2(T − s) ds/

∫
I f(x, y) dxdy, which is proportional to

∫ p
p−1 f1(s)F

R
2 (s) ds.

Hence if this is the quantity of interest, for short periods, we propose the following weighted
integrated squared error to be the optimality criteria for estimating f1,

∆1,K(h) = n−1
∫ {

f1(s)F
R
2 (s)− f̂1,h,K(s)F̂R2 (s)

}2
ds290

= n−1
∫ {

fR1 (s)S2(s)− f̂R1,h,K(s)Ŝ2(s)
}2

ds. (4)

The estimator Ŝ2 converges to S2 uniformly with rate n−1/2 (Andersen et al., 1993, p. 261),
which is faster than the non-parametric convergence rate of the density; see Proposition 1. Thus,
we can substitute S2(s) by its estimator Ŝ2(s) = 1− ŜR2 (T − s), and define

∆̃1,K(h) = n−1
∫ {

fR1 (s)− f̂R1,h,K(s)
}2 {

Ŝ2(s)
}2

ds.295

But, since f1 and Ŝ2 do not depend on h, minimizing ∆̃1,K in h is equivalent to minimizing

QK(h) = ∆̃1,K(h)−
∫ {

fR1 (t)Ŝ2(t)
}2

dt

=

∫ {
f̂R1,h,K(t)

}{
Ŝ2(t)

}2
dt− 2

∫
fR1 (t)f̂R1,h,K(t)

{
Ŝ2(t)

}2
dt.

Therefore, we choose the weight w1(t) = Ŝ2(t)
2/Z1(t) in (3), and the cross-validation estimator

of QK(h) becomes300

Q̂K,w1(h) =

∫ {
f̂R1,h,K(t)

}2 {
Ŝ2(t)

}2
dt

− 2
n∑
i=1

∫
f̂
R,[i]
1,h,K(t)ŜR1 (t)

{
Ŝ2(t)

}2
{Z1(t)}−1 dN i(t). (5)

By symmetry, the weighting for f2 can be derived in a similar fashion, with w2(t) =

Ŝ1(t)
2/Z2(t).
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6. ASYMPTOTICS FOR WEIGHTED COMBINATIONS OF INDIRECT CROSS-VALIDATION 305

In this section we formulate the asymptotic theory of the bandwidth selectors in the original
time direction. This gives statisticians using cross-validation or do-validation with the local linear
density estimator of Nielsen et al. (2009); as in Gámiz et al. (2013), the asymptotic theory needed
to support their approach. We then provide the theory for the reversed time direction.

We first briefly describe the general model in the original time direction (Nielsen et al., 2009; 310

Gámiz et al., 2013). When observing n individuals, let Ni be a {0, 1}-valued counting process,
which observes the failures of the ith individual in the time interval, [0, T ]. We assume that
Ni is adapted to a filtration, Ft, which satisfies the usual conditions, see §3. We also observe
the {0, 1}-valued predictable process, Zi, which equals unity when the ith individual is at risk.
It is assumed that Aalen’s multiplicative intensity model, λi(t) = α(t)Zi(t), is satisfied. This 315

formulation contains the case of a longitudinal study with left-truncation and right-censoring.
In this case, we observe triplets (Yi, Xi, δi) (i = 1, . . . , n) where Yi is the time at which an
individual enters the study, Xi is the time he/she leaves the study and δi is binary and equals 1 if
death is the reason for leaving the study. Hence, Yi ≤ Xi, and the counting process formulation
would be Ni(t) = I(Xi ≤ t)δi and Zi(t) = I(Yi ≤ t < Xi). 320

The local linear survival density estimator in the original time direction is then defined as
f̂(t) = n−1

∑n
i=1

∫
Kt,h(t− s)Ŝ(s) dNi(s), where Ŝ(s) is the Kaplan–Meier estimator of

the survival function. The integrated squared error, ∆K(h), and the cross-validation criterion,
Q̂K,w(h), then become

∆K(h) = n−1
n∑
i=1

∫ {
f̂(t)− f(t)

}2
w(t)Zi(t) dt, (6) 325

Q̂K,w(h) =
n∑
i=1

∫ {
f̂(t)

}2
Zi(t)w(t) dt− 2

n∑
i=1

∫
f̂ [i](t)Ŝ(t)w(t) dNi(t), (7)

where f̂ [i](t) = n−1
∑

j 6=i
∫
Kt,h(t− s)Ŝ(s) dNj(s).

We will derive the asymptotic properties of weighted combinations of indirect cross-
validation bandwidths and in particular of the do-validation approach. In Lemma 1
of the Supplementary Material, we prove that the integrated squared error in (6) 330

is uniformly asymptotically equivalent to MK(h) = (nh)−1R(K
∗
)
∫
f(t)S(t)w(t)dt+

h4µ22(K
∗
)
∫
{f ′′(t)/2}2γ(t)w(t)dt, which leads to the optimal deterministic bandwidth selec-

tor

hMISE = C0n
−1/5, C0 =

{
R(K

∗
)

µ22(K
∗
)

∫
f(t)S(t)w(t)dt∫
f ′′(t)2γ(t)w(t)dt

}1/5

, (8)

where γ(t) = n−1E{Z(t)}. We define hISE as the minimizer of (7) over the interval I∗n = 335

[a∗1n
−1/5, a∗2n

−1/5], where the constants a∗2 > a∗1 > 0 are chosen such that a∗1 < C0 < a∗2.
We will study the asymptotic properties of the weighted combinations of indirect cross-

validation selectors introduced in §5·1,

ĥICV =

J∑
j=1

mjρjh
Lj

CV, ρj = ρ(Lj) =

{
R(K)µ22(Lj)

µ22(K)R(Lj)

}1/5

, (9)
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where Lj are arbitrary kernels and mj are weights with
∑J

j=1mj = 1. For K symmetric, J =340

2, L1 = KL, L2 = KR, and m1 = m2 = 0.5 we get the do-validation bandwidth estimator. We
make the following assumptions.

Condition 4. Let Z =
∑n

i=1 Zi. The expected relative exposure function,
γ(t) = n−1E{Z(t)} is strictly positive on the support of w, is twice con-
tinuously differentiable, and sups∈[0,T ] |Z(s)/n− γ(s)| = oP

{
(log n)−1

}
,345

sups,t∈[0,T ],|t−s|≤CKh |{Z(t)− Z(s)} /n− {γ(t)− γ(s)}| = oP
{

(nh)−1/2
}

, where the
constant CK is defined in Condition 5.

Condition 5. The kernels, K and Lj (j = 1, ..., J), are compactly supported, i.e., the support
lies within [−CK , CK ] for some constant, CK > 0. The kernels are continuous on IR\{0} and
have one-sided derivatives that are Hölder continuous on IR− = {x : x < 0} and IR+ = {x :350

x > 0}. Thus, there exist constants c and δ such that |g(x)− g(y)| ≤ c|x− y|δ for x, y < 0 or
x, y > 0 with g equal to K ′ or L′j (j = 1, ..., J). The left and right-sided derivatives differ at
most on a finite set. The kernel K is symmetric.

Condition 6. It holds that f ∈ C2([0, T ]). The second derivative of f is Hölder continuous
with exponent δ > 0 and f is strictly positive.355

Condition 7. There exists a function w̃ ∈ C1([0, T ]), with supt∈[0,T ] |w̃(t)− w(t)| = oP (1).

Condition 5 is a weak standard condition on kernels. Condition 6 differs from standard
smoothness conditions only by the mild additional assumption that the second derivative of
the density function fulfils a Hölder condition. Condition 4 is also rather weak. In the special
framework considered in §1–4, we have for l = 1 that Zi(t) = I(Yi < t ≤ T −Xi) = I(Yi <360

t) + I(Xi ≤ T − t)− 1. This gives the stochastic expansions of Condition 4 by using uniform
n−1/2-convergence of the empirical distribution function. For longitudinal data sets, as described
at the beginning of §6, and other examples, one can use exponential inequalities for empirical
processes to check Condition 4.

THEOREM 1. Under Conditions 4–7, the bandwidth selector ĥICV of the local linear survival365

density estimator in the original time direction satisfies

n3/10
(
ĥICV − hMISE

)
→ N

(
0, σ21

)
, n3/10

(
ĥICV − hISE

)
→ N

(
0, σ22

)
, n→∞,

where

σ21 = S1

∫ 
J∑
j=1

mj
R(K)

R(L̄j)
(HLj −GLj )(ρju)


2

du,

σ22 = S1

∫ 
J∑
j=1

mj
R(K)

R(L̄j)
(HLj −GLj )(ρju)−HK(u)


2

du+ S2, 370

S1 =
2

25

∫
S2(t)f2(t)w̃2(t)dt

R7/5(K)µ
6/5
2 (K)

{∫
f ′′(t)2γ(t)w̃(t) dt

}3/5 {∫
f(t)S(t)w̃(t) dt

}7/5 ,
S2 =

4

25

∫
f ′′(t)2S(t)f(t)w̃2(t)γ(t)dt−

∫ {∫ T
t f ′′(u)f(u)w̃(u)γ(u)du

}2
α(t)γ−1(t)dt

R2/5(K)µ
6/5
2 (K)

{∫
f(t)S(t)w̃(t)dt

}2/5 {∫
f ′′(t)2γ(t)w̃(t)dt

}8/5 ,
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Table 1. The factor ΨK in (10) as comparison of asymptotic variances among bandwidth selec-
tion methods.

Method Epanechnikov Quartic Sextic
Do-validation 2.19 1.89 2.36
Cross-validation 7.42 5.87 6.99
Plug-in 0.72 0.83 1.18

and GK(u) = I(u 6= 0)
{
K
∗∗

(u)−K∗∗(−u)
}

, and

HK(u) = I(u 6= 0)
∫
K
∗
(v)
{
K
∗∗

(u+ v)−K∗∗(−u+ v)
}

dv, with

K
∗∗

(u) = − µ2(K)− µ1(K)u

µ2(K)− {µ1(K)}2
{K(u) + uK ′(u)}+

µ1(K)u

µ2(K)− {µ1(K)}2
K(u). 375

Theorem 1 is proved in the Supplementary Material. The theorem states that the relative differ-
ence between the bandwidths hCV, hMISE and hISE is in probability of order n−1/10. This can
be explained intuitively by the fact that a bounded interval contains O(n1/5) non-overlapping
subintervals of length h, and the kernel estimators are thus asymptotically independent if their
argument differs by a magnitude of order O(n−1/5). The rate n−1/10 = (n−1/5)1/2 can then be 380

explained by a central limit theorem.
The result generalises the asymptotic properties of do-validation established by Mammen et al.

(2011) in the unfiltered case. If the observations, X1, . . . , Xn, are unfiltered, i.e., Zi(t) = I(t ≤
Xi), then the Kaplan–Meier estimator becomes Ŝ(t) = n−1

∑
i Zi(t), which implies that γ(t) =

S(t). Then, by choosing the weighting w(t) = Ŝ(t)−1, the integrated squared error (6) and the 385

cross-validation criterion (7) are identical to the unfiltered case and, thus, Theorem 1 is Theorem
1 in Mammen et al. (2011).

For a fixed kernelK and different choices of weighted indirect kernels (mj , Lj), the variances,
σ22 , only differ in the feasible factor

ΨK
ICV (m1, . . . ,mJ , L1, . . . , LJ) =

∫ 
J∑
j=1

mj
R(K)

R(L̄j)
(HLj −GLj )(ρju)−HK(u)


2

du.

(10)

390

The asymptotic variance of a plug-in estimation error, (hMISE − hISE), is obtained by replac-
ing the factor ΨK

ICV in σ22 by ΨK
MISE =

∫
HK(u)2 du. Plug-in estimators are those derived by

estimating the infeasible quantities of hMISE, see (8), and achieve the same asymptotic limit
as hMISE under appropriate conditions. Their implementation in practice is not straightforward
and involves pilot estimators. The values of ΨK can be used to compare the asymptotic per- 395

formance of different methods. Table 1 shows these values for do-validation, cross-validation
and the plug-in method using the Epanechnikov, quartic and sextic kernels. Once the asymptotic
properties in the original time direction are derived, it is straightforward to derive a similar result
in the reversed time direction.

COROLLARY 1. Under Conditions 4–7, the bandwidth selector, ĥICV, of the local linear sur-400

vival density estimator in the reversed time direction satisfies

n3/10
(
ĥICV − hMISE

)
→ N

(
0, σ21

)
, n3/10

(
ĥICV − hISE

)
→ N

(
0, σ22

)
, n→∞,
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Fig. 1. Development factors of the first six quarters for in-
dividual underwriting quarters.
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where

σ21 = S1

∫ 
J∑
j=1

mj
R(K)

R(L̄j)
(HLj −GLj )(ρju)


2

du,

σ22 = S1

∫ 
J∑
j=1

mj
R(K)

R(L̄j)
(HLj −GLj )(ρju)−HK(u)


2

du+ S2,405

S1 =
2

25

R−7/5(K)
∫
F 4(t)α2(T − t)w̃2(T − t)dt

µ
6/5
2 (K)

{∫
f ′′(t)2γ(T − t)w̃(T − t) dt

}3/5 {∫
f(t)F (t)w̃(T − t) dt

}7/5 ,
S2 =

4

25

[ ∫
f ′′(t)2F (t)f(t)w̃2(T − t)γ(T − t)dt

R2/5(K)µ
6/5
2 (K)

{∫
f ′′(t)2γ(T − t)w̃(T − t)dt

}8/5 {∫
f(t)F (t)w̃(T − t)dt

}2/5
−

∫ {∫ T
t f ′′(u)f(u)w̃(T − u)γ(T − u)du

}2
α(t)γ−1(t)dt

R2/5(K)µ
6/5
2 (K)

{∫
f ′′(t)2γ(T − t)w̃(T − t)dt

}8/5 {∫
f(t)F (t)w̃(T − t)dt

}2/5
]
.

7. ILLUSTRATION410

We now analyse a data set of reported and outstanding claims from a motor business in Cyprus.
All the calculations in this and the next section have been performed with R (R Development
Core Team, 2016). The data consist of n = 58180 claims reported between 2004 and 2013. The
data are {(X1, Y1), . . . , (Xn, Yn)}, where Xi denotes the underwriting date of claim i, and Yi
the reporting delay in days. The data exist on a triangle, with Xi + Yi ≤ 31 December 2013.415

Our aim is to forecast the number of future claims from contracts underwritten in the past which
have not yet been reported. It is implicitly assumed that the triangle is fully run off, such that
the maximum reporting delay is ten years. This is reasonable, see Figure 2, since f2 has a strong
decay already after one year. According to the theory, we use a multiplicative structured density,
f(x, y) = f1(x)f2(y), where the components f1 and f2 are the underwriting date density and420

the development time density, respectively.
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For justification of this assumption, we performed several tests, which all indicated that
the assumption might be violated. We then did a more pragmatic step which is motivated
from actuarial practice. We transformed the data into a triangle with dimension 3653× 3653,
Nx,y =

∑n
i=1 I

(
Xi = x, Yi = y

)
, (x, y) ∈ {1, . . . , 3653}2, and then aggregated the data into 425

a quarterly triangle, (NQ
r,s), with dimension 40× 40, which is the form usually available in a re-

serving department; see the Supplementary Material. For s = 1, . . . , 6, we calculated the quanti-
ties α(r, s) =

∑s+1
l=1 N

Q
r,l/
∑s

l=1N
Q
r,l, known as development factors in actuarial science (Kuang

et al., 2009). The values of α(r, s) are displayed in Figure 1. If the multiplicativity assumption
is satisfied, then α(r, s) is approximately equal to {

∑s+1
l=1 f1(xr)f2(yl)}/{

∑s
l=1 f1(xr)f2(yl)} 430

which does not depend on r. Here, xr lies in the rth quarter and yl in the lth quarter. Hence, the
points in each plot should lie around horizontal lines.

Only considering the first four plots, one could argue that non-constancy is caused by the
stochastic nature of the observations. However, there seems to be a negative drift in the 5th
and 6th plots. Non-constancy is caused in particular by the first seven underwriting quarters, 435

which correspond to the first seven points in each plot. Re-evaluating the first four plots, one
can also spot the drift there. When the values are subtracted by one, the relative drift size in
the different plots seems of similar magnitude. This indicates that the data do indeed not satisfy
the independence assumption, even though this is hard to see due to larger noise in the early
development quarters. A pragmatic solution would be to throw away the data of the first seven 440

underwriting quarters, as is often done by actuaries when using the chain-ladder method. We
preferred to keep the whole data set because few data are available after the fourth development
quarter. A better strategy might be to look for extensions of our model where the reporting delay
density f2 depends on calendar time. Additional seasonal effects are considered in Lee et al.
(2015). Other calendar time effects will often involve the need of extrapolation of a time series; 445

see also Kuang et al. (2008) for the discrete-time case. Accounting for the drift seen in the data
example leads only to a slight change of the total number of forecasted claim numbers but to
larger differences in the forecasted delay times.

We have calculated the local linear density estimators of the two underlying multiplicative den-
sities, f1 and f2, using the Epanechnikov kernel and weighted cross-validated and do-validated 450

bandwidth selectors. For the density f1, cross-validation chose a bandwidth of 408 days and do-
validation a bandwidth of 1,860 days, while, for f2, the minimizer of the cross- and do-validation
criteria were 15 days and 72 days, respectively. Figure 2 shows the estimated densities. The left
plot indicates that there is no trend in the amount of underwritten policies. In the right plot,
consistent with the policy duration of one year and our experience of other motor insurance, we 455

find that most of the claims are reported within 1.4 years. There is a sharp increase and decrease
at the beginning and at the end of the first year, respectively, and a near-uniform development
in between. It seems plausible that boundary and bias correction techniques would be useful in
future analyses. One could for example consider multiplicative bias correction (Nielsen et al.,
2009) or asymmetric kernels (Hirukawa & Sakudo, 2014). 460

In this application, we encounter the usual problem with standard cross-validation, which can
pick bandwidths that are much too small. Do-validation seems to have estimated a reasonable
bandwidth.

The number of outstanding claims for the future quarters, obtained by integrating the multi-
plicative estimator over diagonals in the unobserved part, are shown in Table 2. As a benchmark, 465

we have calculated the total reserve using the standard chain-ladder method by aggregating the
data on an quarterly basis. The chain-ladder method is the most widely used reserving method in
practice, and can be interpreted as a Poisson maximum likelihood estimator with multiplicative
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Fig. 2. Estimated underwriting and development densities
in the real data application: Cross-validation (dashed), do-

validation (solid).
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Table 2. Number of claims forecasts in the real data application in quarters; 1 = 2014Q1, 39 =
2022 Q3.

Future quarter: 1 2 3 4 5 6 7 8 9 10 11 – 39 Total
Cross-validation 1027 733 465 201 15 5 3 2 1 1 1 2452

Do-validation 970 684 422 166 14 5 3 2 1 1 1 2270
Chain-ladder 948 651 387 148 12 5 3 2 1 1 1 2160

mean structure (Kuang et al., 2009). It predicts a smaller number than the continuous approaches.
Under a Poisson approximation with an approximated standard deviation of 48 we get significant470

differences between the predicted future claims.

8. SIMULATION STUDY

We simulated the two do-validated densities from the application section, shown in Figure
2, assuming the multiplicative structure f(x, y) = f1(x)f2(y). These models have been chosen
to illustrate realistic situations in claims reserving. Furthermore, for computational reasons, we475

simulated data by aggregating the occurrence of claims in bin sizes of three days; see the Sup-
plementary Material. We consider four sample sizes corresponding to 0.5, 1.0, 1.5 and 2.0 times
the sample size, n = 58180, from the application.

For each sample size, we generated 500 samples and have solved the forecasting problem using
the methods described in this paper. Since the data are generated in discrete time, the methods480

were applied using the discrete expressions in the Supplementary Material. The performance of
the methods for each simulated data set was evaluated using the discrete approximation of the
integrated squared error.

The local linear estimators were calculated using the Epanechnikov kernel with four differ-
ent bandwidth choices. Firstly the infeasible integrated squared error optimal bandwidth which485

changes in each simulated sample and secondly the mean of those integrated squared error op-
timal bandwidths of the 500 simulated samples for every run. These two infeasible choices
are compared to the two data-driven bandwidths, weighted cross-validation and weighted do-
validation.

Table 3 shows that weighted cross-validation and do-validation perform reasonably well.490

The results support the asymptotic theory ranking cross-validation as more volatile than do-
validation. For the development density, f2, note that, for larger sample sizes, there is nearly no
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Table 3. Summary of the integrated squared errors multiplied by 105, along the 500 simulated
samples. Four different bandwidths: optimal bandwidth (ISE), averaged optimal out of the 500
samples (MISE), cross-validation (CV), do-validation (DO).

f1 f2
n ISE MISE CV DO ISE MISE CV DO
29090 Median 0.84 2.45 5.87 6.49 1.40 1.44 1.57 1.50

Mean 1.50 3.31 18.40 17.65 1.49 1.53 1.66 1.58
SD 1.72 2.39 33.07 39.64 0.59 0.60 0.68 0.60

58180 Median 0.56 2.29 4.65 4.47 0.84 0.86 0.91 0.87
Mean 1.12 2.81 11.24 7.21 0.87 0.89 0.95 0.89
SD 1.30 1.58 17.27 9.09 0.29 0.29 0.34 0.29

87270 Median 0.52 2.42 4.04 3.74 0.62 0.63 0.67 0.65
Mean 0.99 2.71 7.49 5.29 0.64 0.65 0.69 0.66
SD 1.14 1.24 11.55 5.68 0.20 0.20 0.22 0.20

116360 Median 0.43 2.35 3.42 3.74 0.49 0.51 0.53 0.53
Mean 0.89 2.64 5.97 6.15 0.51 0.53 0.55 0.54
SD 1.06 1.08 8.54 9.00 0.15 0.15 0.17 0.15

difference between the optimal infeasible methods and the two validated bandwidth selectors. In
any event, the feasible approaches seem to be doing very well at picking appropriate bandwidths.

We also simulated the development of the claims according to Table 2. Let Rp be the 495

true reserve for the future period p and R̂p its estimator. Then, the error was calculated as
{
∑

(Rp − R̂p)2}1/2. Figure 3 shows box plots of the errors in the future count development,
obtained from the 500 simulated samples. For comparison, we calculated estimates based on the
chain-ladder method, with data aggregated in years, quarters, and months, respectively. Chain-
ladder modelling is competitive for yearly numbers, but breaks down for more detailed quarterly, 500

monthly, or daily numbers. It is not included in Table 3.
Our simulations suggest that the do-validation estimate in the application of the previous sec-

tion, Table 2, is more likely to be nearly correct than the other two estimates. This is supported
by the smaller standard deviation of do-validation compared to cross-validation for the sample-
size n = 58180, Table 3, and by the better performance of the cross-validated and do-validated505

density approaches in quarterly aggregated data, Figure 3.

9. CONCLUDING REMARKS

This paper produces a simpler alternative to the in-sample forecasting approach of Mammen
et al. (2015) and Lee et al. (2015). This is done by reversing the time, and it works because all
failures are observed until some calendar time. Obviously the simple multiplicative structure of510

the model could be questioned, see England & Verrall (2002) for some actuarial discussion on
the short-comings of the multiplicative chain-ladder model. One possible generalisation of our
model would be to let the development density depend on calendar time. Another generalisa-
tion would be to include covariates, as has been done e.g. by Wells (1994) for counting process
intensities. An example would be to incorporate claim severities. This could be done by extend-515

ing the counting process set-up of this paper to the marked point processes approach (Norberg,
1993). This could also help to generalise the recent double chain-ladder technique of Verrall et al.
(2010), Martı́nez-Miranda et al. (2011) and Martı́nez-Miranda et al. (2012) to continuous time.
In this paper we developed detailed asymptotic theory for the estimation of the density f(x, y).
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Fig. 3. Prediction errors of simulated monthly (right panel),
quarterly (middle panel) and yearly (left panel) data along
the 500 simulated samples. Sample size is n = 58180.
Three different methods: Chain-ladder method (CLM), lo-
cal linear density estimator with cross-validation (CV) and

do-validation (DO) bandwidth.
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Discussions of plug-in estimators of integrals of the density over triangles and/or diagonals need520

further theory.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes proofs of Proposition 1 and
Theorem 1 and a discussion of discrete approximations of our model.
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