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Localising temperature risk

Wolfgang Karl Härdle∗, Brenda López Cabrera†, Ostap Okhrin ‡, Weining Wang§.

April 15, 2016

Abstract

On the temperature derivative market, modelling temperature volatility is an im-

portant issue for pricing and hedging. In order to apply the pricing tools of �nancial

mathematics, one needs to isolate a Gaussian risk factor. A conventional model for

temperature dynamics is a stochastic model with seasonality and intertemporal auto-

correlation. Empirical work based on seasonality and autocorrelation correction reveals

that the obtained residuals are heteroscedastic with a periodic pattern. The object

of this research is to estimate this heteroscedastic function so that, after scale nor-

malisation, a pure standardised Gaussian variable appears. Earlier works investigated
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temperature risk in di�erent locations and showed that neither parametric component

functions nor a local linear smoother with constant smoothing parameter are �exible

enough to generally describe the variance process well. Therefore, we consider a local

adaptive modelling approach to �nd, at each time point, an optimal smoothing param-

eter to locally estimate the seasonality and volatility. Our approach provides a more

�exible and accurate �tting procedure for localised temperature risk by achieving nearly

normal risk factors. We also employ our model to forecast the temperature in di�erent

cities and compare it to a model developed in Campbell and Diebold (2005).

Keywords: Weather derivatives, localising temperature residuals, seasonality, local model

selection

JEL classi�cation: G19, G29, G22, N23, N53, Q59

1 Introduction

The pricing of contingent claims based on stochastic dynamics, for example, stocks or FX

rates, is well known in �nancial engineering. An elegant approach to such a pricing task

is based on self-�nancing replication arguments. An essential element of this approach is

the tradeability of the underlying. This however does not apply to weather derivatives,

contingent on temperature or rain, since the underlying is not tradeable. In this context,

the proposed pricing techniques are based on either equilibrium ideas (Horst and Mueller

(2007)) or econometric modelling of the underlying dynamics Campbell and Diebold (2005)

and Benth, Benth and Koekebakker (2007) followed by risk neutral pricing.

The equilibrium approach relies on assumptions about preferences (with explicitly known

functional forms) though. In this study we prefer a phenomenological approach since the

underlying (temperature) we consider is of a varying local nature and our analysis aims at

understanding the pricing at di�erent locations and di�erent time points around the world.
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A time series approach has been taken by Benth et al. (2007), who corrects for seasonality (in

mean), then for intertemporal correlation and �nally as in Campbell and Diebold (2005), for

seasonal variations. After these manipulations, a Gaussian risk factor needs to be isolated

in order to apply continuous time pricing techniques, Karatzas and Shreve (2001).

Empirical studies following this econometrical route show evidence that the resulting tem-

perature risk factor deviates severely from Gaussianity, which in turn challenges the pricing

tools, Benth, Härdle and López Cabrera (2011). In particular, for Asian cities, like, for

example, Kaohsiung (Taiwan), one observes very distinctive non-normality in the form of

clearly visible heavy tails caused by extended volatility in peak seasons. This is visible from

Figure 1 where a log density plot reveals a non-normal shoulder structure (kurtosis= 3.22,

skewness= −0.08, JB= 128.74).
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Figure 1: Kernel density estimates (left panel), log kernel density estimates (middle panel)
and QQ-plots (right panel) of normal densities (grey lines) and Kaohsiung standardised
residuals (black line)

The econometric analysis we apply follows Benth et al. (2007) where temperature is de-

composed into a seasonality term and a stochastic part with seasonal variance. The �tted

seasonality trend and seasonal variance are approximated with truncated Fourier series (and

an additional GARCH term).
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The upper panel of Figure 2 displays the seasonality and deseasonalised residuals over two

years in Kaohsiung. The lower panel RHS displays the empirical and smoothed seasonal

variance function, while the lower panel LHS shows the smoothed seasonal variance function

over years. The Fourier series expansion fails though in the volatility peak seasons. Even

incorporating an asymmetry term for the dip of temperature in winter does not improve

the closeness to normality. One may of course pursue �ne tuning the Fourier method with

more and more periodic terms but this will increase the number of parameters; we therefore

propose a local parametric approach. The mean and the seasonality function estimated with

local linear regression using the quartic kernel are also shown in Figure 2. We observe high

variance in winter and early summer and low variance in spring and late summer.

The scale correction of the obtained residuals (after seasonal and intertemporal �tting) is

apparently not identical over a year. A very structured volatility pattern up to April is

followed by a moderately constant period until an increasing peak starting in September.

This motivates our research to localise temperature risk. The local smoothness of the seasonal

variance function is of course not only a matter of one location (here Kaohsiung) but varies

also over the di�erent cities around the world that we are analysing in this study. Our study

is local in a double sense: local in time and space. We use adaptive methods to localise

the underlying dynamics and with that being able to achieve Gaussian risk factors. This

will justify the pricing via standard tools that are based on Gaussian risk drivers. The

localisation in time is based on adjusting the smoothing parameter. For a general framework

on local parametric approximation we refer to Spokoiny (2009). As a result we obtain better

approximations to normality and therefore less biased prices.

This paper is structured as follows. Section 2 describes the localising approach. In section

3, we present the data and conduct the analysis to di�erent cities. Section 4 presents a

forecasting exercise and Section 5 is devoted to an application where the pricing of weather

derivative contract types is presented. Section 6 concludes the paper. All quotations of

currency in this paper will be in USD unless otherwise stated and therefore we will omit the
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explicit notion of the currency. All the computations were carried out in Matlab version 7.6

and R. The temperature data for di�erent cities in US, Europe and Asia were obtained from

the National Climatic Data Center (NCDC), the Deutscher Wetterdienst (DWD), Bloomberg

Professional Service and the Japanese Meteorological Agency (JMA). All data is converted

to Celsius degrees. Weather derivative data from CME was extracted from Bloomberg. To

simplify notation, dates are denoted using a yyyymmdd format.
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Figure 2: Upper panel: Kaohsiung daily average temperature (grey line), Fourier truncated
(dotted grey line) and local linear seasonality function (black line), residuals in lower part.
Lower left panel: truncated Fourier seasonal variation (σ̂2

t ) over years. Lower right panel:
Kaohsiung empirical (black line), truncated Fourier (dotted grey line) and local linear (grey
line) seasonal variance (σ̂2

t ) function.
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2 Model

Although the temperature data is usually given in a discrete scale, temperature itself develops

continuously over time. Thus, a continuous model for the futures price dynamics can be

clearly formulated. We propose, as also suggested in Benth et al. (2007) and Härdle and

López Cabrera (2012), a mean reverted Ornstein-Uhlenbeck process for the modeling of

detrended temperature variations in continuous time CAR(L):

dXt = AXtdt+ eLσtdBt, (1)

where σ2
t > 0 is a bounded deterministic seasonal variation,Xt ∈ RL(detrended temperature)

for L ≥ 1 denotes a vectorial Ornstein-Uhlenbeck process, ek a kth unit vector in RL for

k = 1, . . . , L, Bt a Brownian motion, and an L× L-matrix A:

A =



0 1 0 . . . 0 0

0 0 1 . . . 0 0

...
. . . 0

...

0 . . . . . . 0 0 1

−αL −αL−1 . . . −α2 −α1


.

To bring the continuous time model in (1) to data, we consider a discretized version of it. The

details of the discretization can be found in the Appendix. Let us �rst re�ne our notation

from t to (t, j), with t = 1, . . . , τ = 365 days, j = 0, . . . , J years. The discrete time series
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model for calibration is given as:

X365j+t = Tt,j − Λt,

X365j+t =
L∑
l=1

βljX365j+t−l + εt,j,

εt,j = σtet,j,

et,j ∼ N(0, 1),

ε̂t,j = X365j+t −
L∑
l=1

β̂ljX365j+t−l, (2)

where Tt,j is the temperature at day t in year j, Λt denotes the seasonality e�ect and σt

the seasonal variance. We adopt the model in (2) and estimate Λt, σt nonparametricly using

adaptive methods proposed later in Section 2.1. Motivation for using this model can be

found in Campbell and Diebold (2005) (CD), who proposes the model, see their equations

(1), (1a), (1b), (1c).

Tt = Trendt + Seasonalityt +
L∑
l=1

ρt−lTt−l + σtεt,

Trendt =
M∑
m=0

βmt
m,

Seasonalityt =
P∑
p=1

[
δc,p cos

{
2πp

d(t)

365

}
+ δs,p sin

{
2πp

d(t)

365

}]
,

σ2
t =

Q∑
q=1

[
γc,q cos

{
2πq

d(t)

365

}
+ γs,q sin

{
2πq

d(t)

365

}]
+

R∑
r=1

{αr(σt−rεt−r)2 +
S∑
s=1

βsσ
2
t−s}.

In all the comparisons below, we follow the setting proposed by Campbell and Diebold (2005)

with L = 25,M = 1, P = 3, Q = 3, R = 1, and S = 1. The CD model is also based on a

seasonal autoregressive process, but it is quite di�erent from our model in (2). Instead of

regressing the deseasonalized temperature on the lagged deseasonalized temperature as in (2),

CD model regresses the present's deseasonalized temperature on the temperature in previous

days. The trend function thus cannot be interpreted as �seasonal function� but a seasonal
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component. Also CD model suggests an additive structure instead of a multiplicative one

for the seasonality and GARCH e�ect in the temperature volatility. Please refer to Benth

and Benth (2012) for a detailed discussion of the di�erences between those two models.

We will use the CD model as a benchmark model for further analysis. Later studies, e.g.,

Benth et al. (2007) and Härdle and López Cabrera (2012), have provided evidence that the

parameters βlj are likely to be j independent and hence estimated consistently from a global

autoregressive process model AR(Lj) with Lj = L. Also, Benth et al. (2007) adopt the

parametrization of Λt and σt as follows:

Λt = a+ bt+

L1∑
l=1

cl cos

{
2π(t− dl)
l · 365

}
, (3)

σ2
t,FTSG = c10 +

L2∑
l=1

{
c2l cos

(
2lπt

365

)
+ c2l+1 sin

(
2lπt

365

)}
+ α1(σt−1ηt−1)2 + β1σ

2
t−1, (4)

ηt ∼ iid(0, 1).

An alternative path to model Λt and σt is to use a nonparametric method: the local linear

regression, where the seasonality Λs and σs are approximated with a Local Linear Regression

(LLR) estimator:

arg min
e,f

365∑
t=1

{
T̄t − es − fs(t− s)

}2
K

(
t− s
h

)
, (5)

arg min
g,v

365∑
t=1

{
ε̂2
t − gs − vs(t− s)

}2
K

(
t− s
h

)
, (6)

where T̄t is the mean (over years) of daily averages temperatures, ε̂2
t the squared residual

process (after seasonal and intertemporal �tting), h the bandwidth and K(·) is a kernel.

Note, that due to the spherical character of the data, the kernel weights in (5) and (6) may

be calculated from �wrapped around observations� thereby avoiding boundary bias. The

estimates Λ̂s, σ̂
2
s are given by the minimisers ês, ĝs of (5) and (6).

8



The seasonal trend function Λt and the seasonal variance function σ2
t a�ect, of course, the

Gaussianity of the resulting normalised residuals. The commonly used approaches 1. trun-

cated Fourier series, and 2. local polynomial regression (with �xed bandwidth) are rather

restrictive and do not �t the data well since they do not necessarily yield normal risk factors.

These observations motivated us to consider a more �exible approach. The main idea is

to �t a local parametric model for the trend and variance with adaptively chosen window

sizes. Speci�cally, we use kernel smoothing and employ an adaptive technique to choose the

bandwidth over days. Other examples of this technique can be found in Cízek, Härdle and

Spokoiny (2009) and Chen, Härdle and Pigorsch (2010).

It is worth noting that when we bring our model to the data, one can choose to estimate the

mean function year by year as Λ̂t,j or take the average over years as Λ̂t, this is later referred

as the separately estimated mean and the jointly estimated mean methods respectively.

Regarding the estimate σ̂t, an aggregated approach is developed to tackle the problem of

losing information when considering estimates at the individual level or averaging mean

(variance) functions over time. This approach considers the minimum variance between the

aggregation of yearly local function estimates and an optimal local estimate θo. Once the

sets of local functions have been identi�ed, the aggregated local function can be de�ned as

the weighted average of all the observations in a given time set. Formally, if θ̂j(t) is the

localised estimation of the variance function σ2 at time t of year j, the aggregated local

function is given by:

θ̂ω(t) =
J∑
j=1

ωj θ̂
j(t). (7)

With this aggregation step across J , we give the same weight to all observations, even to

observations that were unimportant at the yearly level. Then a reasonable optimised estimate
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will be:

arg min
ω

J∑
j=1

365∑
t=1

{θ̂ω(t)− θ̂oj (t)}2 subject to ΣJ
j=1ωj = 1;ωj > 0, j = 1, . . . , J, (8)

where the weights are assumed to be exogenous and nonstochastic, and θ̂oj is de�ned as

one of the following: 1 (Locave), θ̂oj (t) = J−1
∑J

j=1 σ̂
2
j (t), the average of seasonal empirical

variances over years, 2, (Locsep) θ̂oj (t) = σ̂2
j (t), the yearly empirical variances, 3, one of above

two approaches with maximised p-values over a year. One may interpret this normalisation

of weights as an optimisation with respect to di�erent frequencies (yearly, daily). In the

next subsection we describe the localisation procedures for Λt and σt, which are going to be

elements of estimation methods applied to the temperature data (our summary of the �nal

estimation methods can be found in Table 3).

2.1 Adaptive estimation

In this subsection we introduce adaptive procedures adopted for �exible estimation of Λt and

σt. The time series Tt,j are approximated at a �xed time point s ∈ [1, 365]. Our goal is to �nd

a local window that possesses certain optimality properties, to be de�ned below. Speci�cally,

for a speci�ed weight sequence, we conduct a sequential likelihood ratio test (LRT) to choose

an appropriate bandwidth. Di�erent procedures of estimating seasonality and volatility are

studied. Suppose that the object to be approximated is the seasonal variance θ(t) = {σ2
t }

(Λt can be estimated similarly). A weighted maximum likelihood approach is given by:

θ̃k(s)
def
= arg max

θ
L{W k(s), θ}

= arg min
θ

365∑
t=1

J∑
j=0

{log(2πθ)/2 + ε̂2
t,j/2θ}w(s, t, hk), (9)

with the �localising scheme� W k(s) = {w(s, 1, hk), w(s, 2, hk), . . . , w(s, 365, hk)}>, where
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w(s, t, hk) = h−1
k K{(s − t)/hk}, k = 1, . . . , K, h1 < h2 < h3 < . . . < hK a prescribed

sequence of bandwidths, and K(u) = 15/16(1− u2)2I(|u| ≤ 1) (quartic kernel).

De�ne con�dence sets with critical values (Critical Values) zk to level α:

Eα,k = {θ : L(W k, θ̃k, θ) ≤ zk}, (10)

where the likelihood ratio is de�ned as

L(W `, θ̃k, θ)
def
= L(W `, θ̃k)− L(W `, θ). (11)

Equipped with con�dence sets (10), we launch the Local Model Selection (LMS) algorithm:

Step 1. Fix a point s ∈ {1, 2, . . . , 365}.

Step 2. Start with the smallest interval h1: θ̂1 = θ̃1

Step 3. For k ≥ 2, θ̃k is accepted and θ̂k = θ̃k if θ̃k−1 was accepted and θ̃k ∈ Eα,l,∀` =

1, . . . , k − 1, i.e.

L(W k, θ̃`, θ̃k) ≤ z`,∀` = 1, . . . , k − 1.

Otherwise, set θ̂k = θ̂k−1, where θ̂k is the latest accepted after �rst k steps.

Step 4. De�ne k̂ as the kth step we stopped, and θ̂` = θ̃k̂, ` ≥ k.

The Critical Values z` used in the sequential test above are computed based on the following

algorithm:.

Step 1. Consider �rst z1 and let z2 = z3 = . . . = zK−1 =∞. This leads to the estimates θ̂k(z1)
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and the value z1 is selected as the minimal one for which

sup
θ∗
E θ∗|L{W k, θ̃k, θ̂k(z1)}|r ≤ αrr

K − 1
, k = 2, . . . , K. (12)

Step 2. Suppose z1, . . . , zk−1 have been �xed, and set zk = . . . = zK−1 = ∞. With estimate

θ̂m(z1, . . . , zk) for m = k + 1, . . . , K. select zk as the minimal value which ful�lls

sup
θ∗
E θ∗|L{Wm, θ̃m, θ̂m(z1, . . . , zk)}|r ≤

kαrr
K − 1

(13)

for m = k + 1, . . . , K.

Inequality (12) describes the impact of the k Critical Value to the risk, while the factor

kα
K−1

in (13) ensures that every zk has the same impact. The values of (α, r, h1, . . . , hK) are

prespeci�ed hyper-parameters for which robustness and sensitivity issues will be discussed

in Section 3.

To be more speci�c, the explicit solution of (9) is in fact a Nadaraya-Watson estimator:

θ̃k(s) =
∑
t,j

ε̂2
t,jw(s, t, hk)/

∑
t,j

w(s, t, hk)

=
∑
t

ε̂2
tw(s, t, hk)/

∑
t

w(s, t, hk),

with

ε̂2
t

def
= (J + 1)−1

J∑
j=0

ε̂2
t,j.

From a smoothing perspective we are in a comfortable situation here since the boundary

bias is not an issue, as we are dealing with a periodic function θ(t) = θ(t + 365). We use

mirrored observations: assume hK < 365/2, then the observation set, for example for the
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seasonal variance, is extended to ε̂2
−364, ε̂

2
−363, . . . , ε̂

2
0, ε̂

2
1, . . . , ε̂

2
730, where

ε̂2
t

def
= ε̂2

365+t,−364 ≤ t ≤ 0,

ε̂2
t

def
= ε̂2

t−365, 366 ≤ t ≤ 730.

Since the location s is �xed, we drop s for simplicity of notation.

The theoretical background for the adaptation procedure can be found in the Appendix.

3 Empirical analysis

We conduct an empirical analysis of temperature patterns for di�erent cities. The main data

set contains the daily average temperatures for di�erent cities in Europe, Asia, and the US

for the period 1900-2011: Atlanta, Beijing, Berlin, Essen, Houston, Kaohsiung, New York,

Osaka, Portland, Taipei, and Tokyo. However as di�erent cities have di�erent data history,

for a wider study composed of 1000 cities, a history longer than �ve years cannot be ful�lled.

Moreover, the normality results and forecast performance would be worse for longer histories.

We therefore use only up to �ve years' subsamples. For the sake of brevity, we present, from

now on, only the results from four cities: Berlin, Kaohsiung, New York, Tokyo, and detail

the other results in the supplementary material. The four cities are from di�erent countries

and are quite representative of di�erent types of weather relevant to the interest of weather

derivative analysis. Berlin, New York and Tokyo are cities with weather derivatives that are

frequently traded, and Kaohsiung is a coasted city with atypical temperature patterns.

We �rst check seasonality, intertemporal correlation, and seasonal variation. Table 1 provides

the coe�cients of the Fourier truncated seasonal function (3) for some cities for di�erent time

periods. The coe�cient a can be seen as the average temperature, the coe�cient b as an

indicator for a possible trend within a year. The latter coe�cients are stable even when the

13



City Period â b̂ ĉ1 d̂1 ĉ2 d̂2 ĉ3 d̂3
Berlin (19480101�20080527) 9.2173 0.0000 9.8932 -157.9123 0.2247 261.2850 0.1591 -127.7303

(19730101�20080527) 9.3050 0.0001 10.0070 -161.2493 0.4601 -66.0530 -0.3723 -416.4776
(19730101�20080527) 9.3050 0.0001 10.0070 -161.2493 0.4601 -66.0530 -0.3723 -416.4776
(19830101�20080527) 9.4581 0.0001 10.0969 -161.7129 0.5205 -51.9929 0.3734 42.0874
(19930101�20080527) 9.5923 0.0002 10.1995 -162.9774 0.6564 -37.1548 0.4241 41.9970
(20030101�20080527) 9.6948 0.0007 10.1954 -162.3343 0.5554 -43.2293 0.3269 1.5998

Kaohsiung (19730101�20081231) 24.2289 0.0001 0.9157 -145.6337 -4.0603 -78.1426 -1.0505 10.6041
(19730101�19821231) 24.4413 0.0001 2.1112 -129.1218 -3.3887 -91.1782 -0.8733 20.0342
(19830101�19921231) 25.0616 0.0003 2.0181 -135.0527 -2.8400 -89.3952 -1.0128 20.4010
(19930101�20021231) 25.3227 0.0003 3.9154 -165.7407 -0.7405 -51.4230 -1.1056 19.7340

New York (19490101�20081204) 53.1473 0.0001 18.6810 -143.4051 -3.3872 271.5072 -0.4203 -16.3125
(19730101�20081204) 53.6992 0.0001 18.0092 -148.4124 -3.5236 279.6876 -0.4756 -21.8090
(19730101�19821204) 53.6037 -0.0000 17.7446 -155.2453 -3.7769 289.7932 -0.8326 -4.2257
(19830101�19921204) 54.8740 -0.0003 17.6924 -152.7461 -3.4245 284.6412 -0.4933 -218.9204
(19930101�20021204) 53.8050 0.0003 17.6942 -153.3997 -3.4246 285.7958 0.5753 -315.2792
(20030101�20081204) 52.9177 0.0012 17.8425 -151.2977 -3.8837 287.2022 -0.1290 -216.7298

Tokyo (19730101�20081231) 15.7415 0.0001 8.9171 -162.3055 -2.5521 -7.8982 -0.7155 -15.0956
(19730101�19821231) 15.8109 0.0001 9.2855 -162.6268 -1.9157 -16.4305 -0.5907 -13.4789
(19830101�19921231) 15.4391 0.0004 9.4022 -162.5191 -2.0254 -4.8526 -0.8139 -19.4540
(19930101�20021231) 16.4284 0.0001 8.8176 -162.2136 -2.1893 -17.7745 -0.7846 -22.2583
(20030101�20081231) 16.4567 0.0001 8.5504 -162.0298 -2.3157 -18.3324 -0.6843 -16.5381

Table 1: Seasonality estimates Λ̂t of daily average temperature. All coe�cients are non-zero
at 1% signi�cance level.

estimation is done in a window length of 10 years. In the sense of capturing volatility peak

seasons, the right panel of Figure 3 visualises the power of capturing volatility peak seasons

by the seasonal local smoother (5) using the quartic kernel over the estimates modeled under

Fourier truncated series (3).

After removing the local linear seasonal mean (5) from the daily average temperatures (Xt =

Tt − Λt,LLR), we check that Xt is a stationary process with the Augmented Dickey-Fuller

(ADF) and the KPSS tests. The analysis of the partial autocorrelations and the Akaike

Information criterion (AIC) suggest that an AR(3) model �ts the temperature evolution

well. Table 2 presents the results of the stationarity tests. The temperature data and the

smoothed seasonal functions are plotted on the left panel in Figure 3. To show the pattern

of the squared residuals after seasonal and intertemporal �tting (ε̂2
t,j), we plot the averaged

square residuals over years and show the empirical curves on the right panel in Figure 3.

Besides, we have also plotted in Figure 3 the smoothed curves by using the Fourier method
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Figure 3: The empirical (grey line), the Fourier truncated (dotted grey line), and the local
linear (black line) seasonal mean (left panel) and variance component (right panel) using
quartic kernel and bandwidth h = 4.49.
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City Period ADF KPSS

Atlanta 19480101�20081204 -55.55+ 0.21***
Beijing 19730101�20090831 -30.75+ 0.16***
Berlin 19480101�20080527 -40.94+ 0.13**
Essen 19700101�20090731 -23.87+ 0.11*
Houston 19700101�20081204 -38.17+ 0.05*
Kaohsiung 19730101�20091210 -37.96+ 0.05*
New York 19490101�20081204 -56.88+ 0.08*
Osaka 19730101�20090604 -18.65+ 0.09*
Portland 19480101�20081204 -45.13+ 0.05*
Taipei 19920101�20090806 -32.82+ 0.09*
Tokyo 19730101�20090831 -25.93+ 0.06*

Table 2: ADF and KPSS-Statistics for the detrended daily average temperature time series
for di�erent cities. '+' corresponds to a signi�cance level of 0.01 for ADF test, and '*', '**'
and '***' corresponds to signi�cance levels of 0.1, 0.05 and 0.01 respectively for KPSS test.

and the �xed bandwidth local linear method. Furthermore, we check the normality of the

�nal residuals and present the results in the Supplementary Material Tables 1�3 (see there

the Fourier method). All seasonal variance estimators lead to residuals that are far from

being normally distributed. These facts are of course not an ideal platform for risk neutral

pricing (based on standard stochastic �nancial models). The heavytailedness, as seen in

Figure 1, may be attributed to an unsatisfactory extraction of the heteroscedasticity (or

mean) function. As a solution we employ a localisation scheme.

The adjustment in the smoothing parameter h will provide the localisation in time. The

bandwidth sequences are selected from six candidates: (1, 2, 3, 4, 5, 6, 7), (1, 2, 3, 5, 7, 10, 13),

(3, 5, 7, 9, 11, 13, 15), (3, 5, 8, 12, 17, 23, 30), (5, 7, 10, 14, 19, 25, 32), and (7, 9, 11, 14, 17, 10, 24).

These candidates are chosen according to the lowest Anderson�Darling (AD) statistic. The

best candidate for the bandwidth sequence is the one which yields a residual distribution clos-

est to the normal one. Smoothing the selected bandwidths gives another adaptive estimator,

implemented, but not discussed here, due to space limitations.

The Critical Values as calibrated from (12) and (13) are given in Figure 4. The left hand

side provides Critical Values simulated from a sample of 10000 observations for a quartic

kernel for both mean with θ∗ = 0 and variance with θ∗ = 1, r = 0.5 and di�erent values of

16



signi�cance level α. The Critical Values for di�erent bandwidth sequences are displayed on

the right hand side of Figure 4. The Critical Values, as one observes, are relatively robust

to the choice of r and α.

5 10 15 20 25 30

0.
00
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30
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10
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0.
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Figure 4: Simulated Critical Values for likelihood of seasonal variance (9) with θ∗ = 1,
r = 0.5, number of simulation runs = 10000 with α = 0.3 (dotted), 0.5 (dashed), 0.7 (solid)
for the bandwidth sequence (3, 5, 8, 12, 17, 23, 30) on the left plot and with α = 0.3 and for
sequences (3, 5, 7, 9, 11, 13, 15) (solid), (3, 5, 8, 12, 17, 23, 30) (dashed), (5, 7, 10, 14, 19, 25, 32)
(dotted), and (7, 9, 11, 14, 17, 10, 24) (dot-dashed) on the right plot.

A one year period is considered in the �rst place for demonstration purposes, while later we

show how the results change with di�erent time periods. Figures 5, 6, 7, and 8 present the

general results for the di�erent cities under di�erent adaptive localising schemes for seasonal

mean (Me) and seasonal variance (Va): with �xed bandwidth curve (�), adaptive bandwidth

curve (ad), and truncated Fourier (Fourier) for di�erent time intervals. The seasonal mean

is estimated jointly over the years, using α = 0.7 and power level r = 0.5.

The upper panel of each variance plot in Figures 5�8 shows the sequence of bandwidths; the

bottom panel displays variance estimation with �xed bandwidth (dashed line), the Fourier

truncated method (dotted line), and adaptive bandwidth (solid black line). In all countries,

one observes signi�cant di�erences between the estimates. In particular, in cities like Kaoh-

siung and New York, one observes more variation of the seasonal variance curves during peak

seasons (winter and summer times). The triangles and circles in the bottom panel of each

variance plot help us trace the source of the non-normality over time, since they correspond

17
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(b) Variance, 2007

Figure 5: Estimation of mean and variance for Berlin. In both �gure sequence of bandwidths
(upper panel), averaged observations (solid grey line), nonparametric function estimation
with �xed bandwidth (dashed grey line), adaptive bandwidth (solid black line) and truncated
Fourier (dotted line) (bottom panel of each �gure). Circles and triangles in each bottom panel
for variance represents the 10 smallest and the 10 largest outliers respectively.
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(b) Variance, 2008

Figure 6: Estimation of mean and variance for Kaohsiung. In both �gure sequence of
bandwidths (upper panel), averaged observations (solid grey line), nonparametric function
estimation with �xed bandwidth (dashed grey line), adaptive bandwidth (solid black line)
and truncated Fourier (dotted line) (bottom panel of each �gure). Circles and triangles
in each bottom panel for variance represents the 10 smallest and the 10 largest outliers
respectively.
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(b) Variance, 2007

Figure 7: Estimation of mean and variance for New York. In both �gure sequence of band-
widths (upper panel), averaged observations (solid grey line), nonparametric function esti-
mation with �xed bandwidth (dashed grey line), adaptive bandwidth (solid black line) and
truncated Fourier (dotted line) (bottom panel of each �gure). Circles and triangles in each
bottom panel for variance represents the 10 smallest and the 10 largest outliers respectively.
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Figure 8: Estimation of mean and variance for Tokyo. In both �gure sequence of bandwidths
(upper panel), averaged observations (solid grey line), nonparametric function estimation
with �xed bandwidth (dashed grey line), adaptive bandwidth (solid black line) and truncated
Fourier (dotted line) (bottom panel of each �gure). Circles and triangles in each bottom panel
for variance represents the 10 smallest and the 10 largest outliers respectively.

21



Method Explanation

JoMe adMe adVa Jointly estimated mean, adaptive bandwidth mean adaptive bandwidth variance
JoMe �Me �Va Jointly estimated mean, �xed bandwidth mean �xed bandwidth variance
SeMe adMe adVa Separately estimated mean, adaptive bandwidth mean adaptive bandwidth variance
SeMe �Me �Va Separately estimated mean, �xed bandwidth mean �xed bandwidth variance
Locave Aggregated approach with average of yearly empirical variance as the target
Locsep Aggregated approach with each year's empirical variance as the target
Locmax The optimal between Locave and Locsep (minimize the p value)
Fourier Method with Fourier series �tting for mean and variance
CD Method adopted by Campbell and Diebold (2005)

Table 3: Summary of methods

to ten dots of the upper and lower tails of the QQ-plots of square residuals respectively (see

Figure 9 for the Berlin results). The top plots of Figures 5�8 show the mean case. Unlike

the seasonal variance function, we do not observe a big variation of smoothness in the mean

function. One can see that in all cities, the bandwidths vary over the yearly cycle with a

slight degree of non homogeneity for Kaoshiung.

An approach to cope with the non normality brought in by more observations is to estimate

mean functions year by year (SeMe), and then aggregate the residuals for variance estimation.

We therefore estimate the joint/separate seasonal mean (JoMe/SeMe) and seasonal variance

(Va) curves with a �xed bandwidth curve (�) and an adaptive bandwidth curve (ad). (A

summary of the estimation methods can be found in Table 3.) The average over years

acts as a smoother when we consider more years. The estimated AR(L) parameters for

di�erent cities using a joint/separate mean (JoMe/SeMe) with di�erent bandwidth curves

are illustrated in Table 4. The results again show that an AR(3) �ts the stylised facts of

temperature well.

Kolmogorov�Smirnov (KS), Jarques�Bera (JB) and AD normality tests are taken to test

the normality of the corrected residuals (after seasonal mean and variance). For each city,

a rejection at 0.05 level is counted as 1 (else 0). The rejection rates over all the cities

under di�erent estimation techniques are displayed in Table 5. The results compare di�erent

periods (1 − 5 years) for the robustness of our methods. (Considering data histories longer

than 5 years would not give us a better forecast performance and normality test results.)
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Figure 9: QQ-plot for standardised residuals from Berlin using di�erent methods for the
data from 2005-2007 (3 years). Please see Table 3 for a summary of methods.
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Method KS JB AD

1
Y
ea
r JoMe adMe adVa 0.000 0.174 0.164

JoMe �Me �Va 0.006 0.200 0.270
Fourier 0.049 0.378 0.327
CD 0.086 0.499 0.426 KS JB AD

2
Y
ea
rs

JoMe adMe adVa 1.000 0.224 0.202

3
Y
ea
rs

0.968 0.354 0.367
JoMe �Me �Va 0.998 0.431 0.390 0.869 0.571 0.533
SeMe adMe adVa 1.000 0.073 0.043 1.000 0.044 0.072

SeMe �Me �Va 1.000 0.305 0.261 0.976 0.358 0.367
Locave 0.001 0.057 0.072 0.004 0.082 0.118
Locsep 0.001 0.057 0.072 0.004 0.082 0.118
Locmax 0.010 0.051 0.034 0.024 0.074 0.080
Fourier 0.109 0.516 0.472 0.180 0.685 0.599
CD 1.000 0.715 0.642 1.000 0.828 0.769

4
Y
ea
rs

JoMe adMe adVa 0.767 0.480 0.478

5
Y
ea
rs

0.585 0.547 0.539
JoMe �Me �Va 0.608 0.646 0.618 0.483 0.702 0.669
SeMe adMe adVa 0.975 0.064 0.090 0.747 0.081 0.124

SeMe �Me �Va 0.778 0.468 0.433 0.463 0.546 0.506
Locave 0.007 0.129 0.155 0.009 0.174 0.210
Locsep 0.007 0.129 0.155 0.009 0.174 0.210
Locmax 0.029 0.135 0.111 0.031 0.157 0.145
Fourier 0.256 0.766 0.677 0.305 0.816 0.740
CD 1.000 0.880 0.801 1.000 0.916 0.832

Table 5: Rejection rates of the normality at 5% level for 1000 cities with di�erent history,
methods of estimation and normality tests. Tests for normality are Kolmogorov�Smirnov
(KS), Jarque�Bera (JB) and AD. Methods used: joint/separate mean (JoMe/SeMe) with
�xed/adaptive (�/ad) bandwidth for the mean/variance (Me/Va), Locave, Locsep, Locmax,
truncated Fourier (Fourier) and CD model. Highlighted in italic are models with the smallest
rejection rate for each goodness-of-�t (GoF) test and each history.
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A higher rejection rate would indicate a poorer performance of the relevant method. To

make our conclusion more general, we add 988 more cities, which are selected all around

the world resulting in a total of 1000 cities, see Figures 10-11. The additional data is taken

from NCDC Climate Data Online from 2007 − 2012. We observe a superior performance

of adaptive methods over the CD method and a truncated Fourier. The JoMe adMe adVa

method with one year of history leads to the rejection rate up to of 0.174 which is more than

twice smaller than using other methods. Considering more years of history, the rejection

rate of the CD method comes close to 1.0 based on all tests and the rejection rate for

the truncated Fourier based on the KS test is around 0.25 and based on two other tests,

approaches 0.8. In contrary to CD and the truncated Fourier, rejection rates from all the

adaptive methods are below 0.2 for all three tests. Moreover, one observes the rejection rate

below 0.01 for the KS test for all years of history using the Locave and Locsep methods.

SeMe adMe adVa method keeps the rejection rate for 3-5 years of history and JB and AD

tests below 0.13. The Locmax procedure has a very stable performance over all the tests

and all the history, with rejection rates being bounded by 0.16. Maps with marked locations

on which the analysis has been performed using the period of �ve years of history and most

conservative tests namely JB and AD are presented in Figures 10-11. Cities marked in blue

are those, where the normality at a 5% level cannot be rejected using JB (Figure 10) and

AD (Figure 11) tests, otherwise cities are marked in red. One clearly sees dominance of blue

marked cities in the Locmax method (in both �gures top left map) and the dominance of

red marked cities in the other subplots. More detailed results for only 12 original cities can

be found in the Supplementary Material.
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4 Forecast and comparison

In this section we compare the forecasting accuracy of the proposed models to the CD model.

CD mentions that their point forecasts are always at least as good as the persistence and

climatological forecasts, although not so good as the judgementally adjusted NWP forecast

produced by EarthSat for a horizon of eight days. Therefore, a good performance of the

technique presented here could potentially suggest that our time series model is relevant for

weather derivatives.

In Figures 12 and 13 we compare the out-of-sample forecast performance between �ve meth-

ods, namely SeMe adMe adVo, Locmax, JoMe adMe adVo, truncated Fourier and CD. The

comparison is provided at di�erent time horizons (1, . . . , 150 days) for Berlin, Kaohsiung,

New York and Tokyo using 2 (Figure 12) and 3 (Figure 13) years of history. These �gures

contain information both on point forecast and interval forecast. The top panel of each plot

shows the absolute deviation of the forecasted temperature from the true one, averaged over

10000 simulation paths. This may be considered as the quality of the point forecast. In these

terms, as we see in most cities and over all time horizons, we have at least one localising

method better than the CD method. The lower panel of each plot shows the averaged width

of the point-wise con�dence interval based on 10000 sample paths. These curves represent

the e�ciency of the models. Although the truncated Fourier series method also looks quite

competitive in the point forecast, it usually has a very wide con�dence interval, which is a

sign of low e�ciency. Other methods in this context are strictly better. The middle panel

shows the coverage of the true temperature by the con�dence interval, where larger values

represent higher quality. In terms of interval forecast, we can see that from Figure 12 and 13

for most cities, we have at least one model which has better coverage with moderate width

of con�dence intervals. Moreover, we do not see outperforming behavior of the CD method

over proposed adaptive techniques in almost all 12 cities. As a conclusion, we do not claim

strict superiority over the CD method in forecasting, but conclude, that both methods are
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quite competitive.

5 A temperature pricing example

Based on a model for the daily temperature evolution, futures and European options written

on temperature indices traded at the Chicago Mercantile Exchange (CME) can be calibrated.

Temperature futures are contracts written on di�erent temperature indices measured over

speci�ed periods [τ1, τ2] such as weeks, months, or quarters of a year. Temperature futures

allow one party to pro�t if the realized index value is greater than a predetermined strike

level and the other party bene�ts if the index value is below. The owner of a call (put)

option written on futures F (t, τ1, τ2) with exercise time t ≤ τ1 and measurement period

[τ1, τ2] will receive max {F (t, τ1, τ2)−K, 0} (max {K − F (t, τ1, τ2), 0}), where K denotes the

strike level. In other words, in exchange for the payment of the premium, the call (put)

option gives the buyer a payo� based upon the di�erence between the realized index value

and the strike level.

The most common temperature indices I(τ1, τ2) are: Heating Degree Day (HDD), Cool-

ing Degree Day (CDD), Cumulative Averages Temperatures (CAT) or Average Accumula-

tive Temperatures (AAT). The CAT index takes the accumulated average temperature over

[τ1, τ2]:

CAT (τ1, τ2) =

∫ τ2

τ1

Tudu,

where Tu = (Tu,max + Tu,min)/2 denotes the daily average temperature. The measurement

period is usually de�ned in months or season. The HDD index measures the cumulative

amount of average temperature below a threshold (typically 18◦C or 65◦F) over a period

[τ1, τ2]:
∫ τ2
τ1

max(c − Tu, 0)du. Similarly, the CDD index accumulates max(Tu − c, 0). At

CME, CAT/CDD futures are traded for European cities, CDD/HDD for US, Canadian, and
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Figure 12: h = 1, . . . , 150 days (X axis) ahead forecast for Berlin, Kaohsiung, New York and
Tokyo (left to right, top to bottom); averaged absolute error (Y axis, upper panel), averaged
coverage days (Y axis, middle panel), averaged width of the con�dence 95% intervals (Y
axis, lower panel), SeMe adMe adVo (solid black), Locmax (dashed grey), JoMe adMe adVo
(dotted black), truncated Fourier (solid grey), CD (dashed black), �tted using 2 years of
historical data and 10000 samples. 31
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Figure 13: h = 1, . . . , 150 days (X axis) ahead forecast for Berlin, Kaohsiung, New York and
Tokyo (left to right, top to bottom); averaged absolute error (Y axis, upper panel), averaged
coverage days (Y axis, middle panel), averaged width of the con�dence 95% intervals (Y
axis, lower panel), SeMe adMe adVo (solid black), Locmax (dashed grey), JoMe adMe adVo
(dotted black), truncated Fourier (solid grey), CD (dashed black), �tted using 3 years of
historical data and 10000 samples. 32



Australian cities, and AAT for Japanese cities. Note that these temperature indices are the

underlying and not the temperature itself. The options at CME are cash settled, i.e., the

owner of a future receives 20 times the Degree Day Index at the end of the measurement

period, in return for a �xed price. At time t, CME trades di�erent contracts i = 1, . . . , N

with measurement period 0 ≤ t ≤ τ i1 < τ i2 (usually the length between τ i1 and τ i2 is one

month). For example, a contract with i = 7 is six months ahead from the trading day t. For

the US and Europe CAT/CDD/HDD futures, N is usually equal to 7 (April�November or

November�April), while for Asia, N = 12 (January�December).

Recall that we adopt the CAR(L) model in (1) for the detrended temperature time series,

and the autoregressive process AR(L) in (2) can be seen as a discretely sampled continuous

time process (CAR(L)) (1) driven by one dimensional Brownian motion. The detailed

demonstration can be found in the Appendix 7.2.

The fact that temperature's random factor is close to the normal distribution, as disclosed

in the analysis of the residuals before, motivates the use of a Brownian motion as the noise

in the Ornstein-Uhlenbeck process. Moreover ACF-plots of the squared residuals presented

in the Supplementary Material demonstrate the success of the localizing method to explain

deterministic variations in temperature data. They do not show signs of stochastic volatility:

the squared residuals do not have an exponentially decaying ACF. This contradicts results

found in Benth and Benth (2011) and Benth and Benth (2012) and suggests to us that the

non-Gaussian shocks found in the literature are the result of model mis-speci�cation. The

continuous analogue of the CD model is however di�cult to estimate. Thus the model in

(1) is simpler than CD's one and provides a better �t to the data.

The temperature futures price is the risk adjusted index, given today's �ltration Ft

FI(t, τ1, τ2) = E
Q [I(τ1, τ2)|Ft] , (14)

with I(τ1, τ2) being one of the indices CAT, HDD or CDD. The expectation is computed
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under a risk neutral pricing probability Q and is equivalent to the physical measure P under

which the discounted temperature index is a Q-martingale. To evaluate (14), we need to

know the temperature index dynamics under Q. We restrict the class of pricing probabilities

to those that can be parametrized via Q = Qλ, where equivalent changes of measures are

simply associated with changes of drift. Thus, in the modelling of the dynamics of futures

prices written on temperature indices, it is natural to de�ne a parameter measuring the

market price of risk (MPR) λt, which can be calibrated from traded (CAT/CDD/HDD)

derivative type contracts. The temperature dynamics in (1) under Qλ become:

dXt = (AXt + eLσtλt)dt+ eLσtdB
λ
t , (15)

where Bλ
t is a Brownian motion for any time before the end of the trading time and a

martingale under Qλ. Then, for 0 ≤ t ≤ τ1 < τ2, the explicit form of an CAT futures price

is given by:

FCAT (t, τ1, τ2,Λt, σt, λt) = E
Qλ

[∫ τ2

τ1

Tudu|Ft
]

=

∫ τ2

τ1

Λudu+ at,τ1,τ2Xt +

∫ τ1

t

λuσuat,τ1,τ2eLdu

+

∫ τ2

τ1

λuσue
>
1 A

−1 [exp {A(τ2 − u)} − IL] eLdu, (16)

with at,τ1,τ2 = e>1 A
−1 [exp {A(τ2 − t)} − exp {A(τ1 − t)}] and IL the L× L identity matrix.

Similarly one can compute the price dynamics of CDD and HDD, see Benth et al. (2007).

The CAR model (1) provides the analytical formula (16). Note that all constituents except

λt in the left and right side of (16) are known or estimable (Λt and σt are out-of-sample

estimates as in the previous section), hence the calibration of the MPR from market data

turns out to be an inverse problem in terms of λt.

Assuming that the parametrization of the MPR is of a constant form for each observed

contract (λu = λt,τ i1,τ i2 in (16) for u ∈ [τ1, τ2]), one can calibrate the MPR for every combina-
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tion of (t, τ i1, τ
i
2), i = 1, . . . , N contracts, by inverting the pricing formulae in (16) with the

observed CME market prices at time t, (Ft,i,CME) with respect to λ as:

λ̂t,τ i1,τ i2 = arg min
λ
|FCAT (t, τ i1, τ

i
2, Λ̂t, σ̂t, λ)− Ft,i,CME|. (17)

We name λ̂t,τ i1,τ i2 as implied MPR. For �xed time t, assuming that λt remains the same for

di�erent contracts with di�erent maturities, to evaluate the estimation of λ̂t for a particular

contract i, the observed price Ft,i,CME for this contract can be excluded for the estimation.

We have then the cross validated estimation by leaving one contract out:

λ̂t,τ i1,τ i2,CV = arg min
λ

N∑
j=1;j 6=i

{FCAT (t, τ j1 , τ
j
2 , Λ̂t, σ̂t, λ)− Ft,j,CME}2. (18)

Other speci�cations of the MPR for temperature derivatives have been explored in Härdle

and López Cabrera (2012), where the authors argue that a constant MPR is su�cient for

pricing purposes. This might be compared with complete markets, where the MPR is minus

the Sharp ratio (µt − r)/σFt , where µt and σFt denote the mean and standard deviation of

traded futures, and r is the risk free interest rate. From now on, pricing follows (16) with

an MPR from (17), (18) and with Λt and σt estimated via the localisation techniques.

Observe that calibrations in (17), (18) are only valid if a weather derivative market exists,

like e.g. for Berlin and Tokyo. In order to price temperature derivatives for regions with no

weather derivative markets, like Kaohsiung, one can use the implied MPR of traded futures of

a neighbouring market, e.g. Tokyo AAT futures. Thus, by �nding a relationship between the

MPR and the seasonal variance one can use this as a proxy to price over the counter (OTC)

AAT futures for Kaohsiung. This is acceptable since the stylized facts of temperature in

Tokyo reveal similarities to that of Kaohsiung. However generally, we are aware of arbitrage

opportunities across the two di�erent markets, therefore this approach cannot be generalized

for every second weather derivative markets. Considering that the MPR is a risk premium
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per unit of volatility, one can project the implied MPR on the state variables related to

volatility. An insight into Tokyo's AAT futures, which can be employed for the Kaohsiung

case, can be achieved by regressing the averaged implied MPR (17) against the variation:

λ̂τ i1,τ i2 = 4.08− 2.19σ̂2
τ i1,τ

i
2

+ 0.28σ̂4
τ i1,τ

i
2
,

where λ̂τ i1,τ i2
def
= (τ i2−τ i1)−1

∑τ i2
t=τ i1

λ̂t,τ i1,τ i2 , σ̂
2
τ i1,τ

i
2

def
= (τ i2−τ i1)−1

∑τ i2
t=τ i1

σ̂2
t , σ̂

4
τ i1,τ

i
2

def
= (τ i2−τ i1)−1

∑τ i2
t=τ i1

σ̂4
t

and R2
adj = 0.71. Plugging the corresponding σ̂2

t , σ̂
4
t values for Kaohsiung into this equation

let us price such a non CME traded weather derivative via (16).

We compare the prices obtained with localisation procedures ('localised' prices) for Λt and

σt (SeMe adMe adVo (AdaptBW), Locmax) with prices estimated under �xed bandwidth

(SeMe �Me �Vo (FixedBW)) and truncated Fourier series.

To judge the performance of the models, we compute the root mean squared errors (RMSE)

between the market prices Ft,i,CME (benchmark) and the estimated out-of-sample model

prices

FI(t, τ
i
1, τ

i
2, Λ̂t, σ̂t, λ̂t−1,τ i1,τ

i
2,CV

) (i = 1, . . . , N):

RMSE(τ i1, τ
i
2) =

√
|T|−1

∑
t∈T

{
FI(t, τ i1, τ

i
2, Λ̂t, σ̂t, λ̂t−1,τ i1,τ

i
2,CV

)− Ft,i,CME

}2

,

in Table 6, where T is the set of days when the contract i with the measurement period

(τ i1, τ
i
2) was traded. The results show smaller RMSE when futures prices are estimated

via localisation techniques, which in general outperforms the prices based on the truncated

Fourier series (Benth). This suggests that our calibrated MPR embeds information on the

risk and uncertainty in the market, which is helpful in analyzing market risk. Also, as

mentioned before, this information may help to price OTC derivatives in the same market.

These results provide insight on pricing related to the stylized facts (seasonal e�ect, inter-
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temporal correlation, etc.) of weather data. The role of the terms in the CAT futures price

formally con�rms this. To illustrate this point, consider, for example, the purchase of a May

CAT contract for Berlin on 20070427, which starts measurement at time τ1 = 20070501 and

�nished at τ2 = 20070531. Setting a constant MPR (for example λ = 0.20), the �rst term

of (16) is equal to 431.060, the second, third and fourth terms lead to 11.531, 0.8690 and

13.5390 respectively. The seasonal e�ect in mean Λt plays an important role in the level

of the futures price, as it explains almost 94% of the price which is 457. Observe that the

seasonal volatility σt also contributes to the CAT futures price since it enters in the second

term (hidden in Xt) and in the last two terms of the CAT pricing formulae. Therefore, as we

get closer to the measurement period, temperature variations given by the seasonal variance

(σ2
t ) will contribute to the futures prices and clearly display the Samuelson e�ect that is

typical in mean-reverting markets: at any given time, seasonal volatility decreases with time

to delivery.

6 Conclusions

We show that temperature risk stochastics are closer to Gaussian when applying adaptive

statistical methods for seasonal mean and seasonal variance. This suggests to us that the

non-Gaussian shocks found in the literature are truly a result of misspeci�cation. We found

that the localisation method performs well, and it is robust to the speci�cation given for Λt

or σt. Moreover intertemporal correlations demonstrate the success of the localizing methods

to explain deterministic variations in temperature data. We also observed that the proposed

method outperforms the standard estimation methods in most of the cases. Our results

provide important insights into how weather is priced at the CME and how the observed

prices conform with the stylized facts of weather data. Finally, our adaptive technique on

localising temperature risk is both an excellent temperature modeling tool as well as a novel

and more market driven pricer.
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RMSE between models' prices and FCME

λ̂t−1,CV

Type MP n AdaptBW FixedBW Locmax Fourier

Berlin-CAT 200704 230 2.868 2.617 2.876 9.665
Berlin-CAT 200705 6 79.802 84.078 79.169 126.8
Berlin-CAT 200706 58 2.033 3.078 2.662 68.262
Berlin-CAT 200707 79 31.774 46.633 32.565 45.125
Berlin-CAT 200709 121 25.17 39.337 25.485 26.773
Essen-CAT 200804 74 75.676 75.686 75.676 76.519
Essen-CAT 200805 100 21.871 21.845 21.871 22.628
Essen-CAT 200806 79 7.225 7.131 7.225 19.15
Essen-CAT 200807 140 59.392 59.47 59.392 62.318
Essen-CAT 200808 164 73.511 73.548 73.511 74.469
Essen-CAT 200809 181 6.885 6.837 6.885 12.932

London-CAT 200805 100 43.06 32.377 40.505 58.495
London-CAT 200806 40 1.461 2.56 2.709 6.063
London-CAT 200807 142 2.467 2.824 4.745 9.81
London-CAT 200808 163 27.333 27.204 26.88 31.23
London-CAT 200809 184 36.201 37.255 37.941 41.861
Tokyo-AAT 200903 18 4.922 1.354 8.418 26.287
Tokyo-AAT 200904 18 28.967 29.401 56.975 76.489
Tokyo-AAT 200905 18 58.553 54.353 90.269 77.8
Tokyo-AAT 200906 18 49.993 52.228 52.678 16.35

Tokyo-AAT 200907 18 24.093 27.72 21.954 42.34

Table 6: RMSE between the weather futures listed at CME and estimated weather futures
FI(t, τ

i
1, τ

i
2, Λ̂t, σ̂t, λ̂t−1) with λ̂t−1 = λ̂t−1,CV . τ i1 and τ i2 are the �rst and the last day of

the measurement period (MP, yyyymm) respectively. Prices are estimated under di�erent
estimations schemes (Λ̂t, σ̂t under AdaptBW, FixedBW, Locmax and truncated Fourier). n
corresponds to the number of trading days for a given MP.
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7 Appendix

7.1 Theoretical Background

We now brie�y introduce the theoretical background for the adaptation procedure. For

` < k, the accuracy of the estimation is measured by the �tted likelihood ratio (LR):

L(W `, θ̃`, θ̃k)
def
= L(W `, θ̃`)− L(W `, θ̃k). (19)

For the Gaussian risk factor situation the variance σ2
t (or trend Λt) estimation is carried out

within an exponential family framework, so the LR can be written in a closed form:

L(W k, θ̃k, θ
∗)

def
= NkK(θ̃k, θ

∗)

= −{log(θ̃k/θ
∗) + 1− θ∗/θ̃k}/2, (20)

where Nk = J
∑365

t=1 w(s, t, hk) and K(θ̃k, θ
∗) is the Kullback-Leibler divergence (21) between

two normal distributions with variances θ̃k and θ∗. Note that (20) is the divergence for

exactly this case. For trend Λt estimation, it has to be replaced by (θ̃k − θ∗)2/(2σ2).

Recall that the Kullback-Leibler divergence of two distributions with densities p(x) and q(x)

is

K{p(x), q(x)} def
= E p(.) log

p(x)

q(x)
. (21)

To guarantee the feasibility of the tests, we need moment bounds and con�dence sets for the

LR that will guarantee that the MLE is concentrated in the level set of the likelihood ratio

process (indexed by the number of observations) around the true parameter, see Polzehl and

Spokoiny (2006) and Mercurio and Spokoiny (2004). Below we state a result along this line

for the variance (a similar bound can be derived for the mean).
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Theorem 7.1 [Spokoiny (2009)] Assuming that θ(t) = θ∗ for any t ∈ [1, 365], then for z > 0

and k ∈ 1, . . . , K, r > 0, denote by Pθ∗(.) the measure corresponding to (9). We obtain

Pθ∗

{
L(W k, θ̃k, θ

∗) > z
}
≤ 2 exp (−z) (22)

and a risk bound for a power loss function:

E θ∗ |L(W k, θ̃k, θ
∗)|r ≤ rr, (23)

where rr = 2r
∫
z≥0

zr−1 exp(−z)dz. This polynomial bound applies to all localising schemes

W k simultaneously.

The risk bound (23) allows us to de�ne likelihood based con�dence sets since together

with (22) it tells us that the likelihood process is stochastically bounded. The con�dence

sets are therefore de�ned with critical values zk to level α as shown in (10).

The LMS algorithm is illustrated in Figure 14. For every estimate θ̃k the corresponding

con�dence set is shown. If the horizontal line originating in θ̃k does not cross all the preceding

intervals then the selection algorithm terminates.

CS

1 2 3 k*+1
Stop

Figure 14: Illustration of the LMS

A further integrated approach is to consider an iterative algorithm, which iterates between
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estimating the seasonal component and the variance θ(t) = {Λt, σ
2
t }. This algorithm can

further cope with heteroscedasticity in the corrected residuals after seasonality in mean and

variance components. The procedure is:

Step 1. Estimate β̂ in an initial Λ0
t using a truncated Fourier series or any other deterministic

function;

Step 2. For �xed Λ̂s,ν = {Λ̂′s,ν , Λ̂
′′
s,ν}>, s = {1, . . . , 365} from last step ν, and �xed β̂, get σ̂2

s,ν+1

by

σ̂2
s,ν+1 = arg min

σ2

365∑
t=1

J∑
j=0

[{T365j+t − Λ̂
′

s,ν − Λ̂
′′

s,ν(t− s)

−
L∑
l=1

β̂lX365j+t−l}2/2σ2 + log(2πσ2)/2]w(s, t, h′k);

Step 3. For �xed σ̂2
s,ν+1 and β̂, we estimate Λ̂s,ν+1, s = {1, . . . , 365} via another local adaptive

procedure:

Λ̂s,ν+1 = arg min
{Λ′,Λ′′}>

365∑
t=1

J∑
j=0

{
T365j+t − Λ′ − Λ′′(t− s)−

L∑
l=1

β̂lX365j+t−l

}2

w(s, t, h′k)/2σ̂
2
s,ν+1,

where {h′1, h′2, h′3, . . . , h′K′} is a sequence of bandwidths;

Step 4. Repeat steps 2 and 3 until both |Λ̂t,ν+1 − Λ̂t,ν | < π1 and |σ̂2
t,ν+1 − σ̂2

t,ν | < π2 for some

constants π1 and π2.

Our empirical implementation suggests that one iteration is enough. The LMS methods

require Critical Values zk, which de�ne the signi�cance for the LR statistics L(W `, θ̃`, θ̃k) or

alternatively the length of the con�dence interval (see (22)) at each step. As can be seen

from above, the Critical Values are calibrated from the �propagation condition� below which

ensures a desired level of type one error. To be more speci�c, for every step k, de�ne θ̂k as

the �survived estimator� after the kth step (if the estimator is not rejected up to step k, then
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θ̂k = θ̃k, else if the estimator has been rejected at step l < k, then θ̂k = θ̃l). Measure the

closeness of θ̃k and θ̂k by

E θ∗|L(W k, θ̃k, θ̂k)|r ≤ αrr (24)

for k = 1, . . . , K with rr the parametric risk bound in (23) and α a control parameter

corresponding to the type one error. In fact

E θ∗ |L(W k, θ̃k, θ̂k)|r → Pθ∗(θ̃k 6= θ̂k)

for r → 0, therefore α can be interpreted as a false alarm probability.

More precisely, if step k is accepted as described in Figure 14, then θ̃k = θ̂k and a non-zero

loss Eθ∗ L(W k, θ̃k, θ̂k) can only occur if the estimator has been rejected before or at step k,

which under the homogeneous parametric model case, is denoted as a �false alarm�.

A risk bound for a constant model (θ(t) = θ∗) has been given in (24). In order to expand

this to a nonparametric θ(t), the �Small Modeling Bias (SMB)� condition is employed:

∆(θ)
def
=

365∑
t=1

K{θ(t), θ} I{w(s, t, hk) > 0} ≤ ∆,∀k < k∗, (25)

where k∗ is the maximum k satisfying (25), also called �oracle�. Consequently the estimation

risk for θ(t) is described for k ≤ k∗ by the �propagation� property:

E θ(·) log{1 + |L(W k, θ̃k, θ̂k)|r/rr} ≤ ∆ + α. (26)

An estimate for the oracle k∗ is given via the adaptive estimate θ̂k̂. The estimate θ̂k̂ behaves

similarly to the oracle estimate θ̃k∗ since it is �stable� in the sense that even if the described

selection scheme (12), (13) overshoots k∗, the resulting estimate θ̂k̂ is still close to the oracle

θ̃k∗ . In fact the attained quality of estimation during �propagation� is not lost at further
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steps:

L(W k∗ , θ̃k∗ , θ̂k̂) I{k̂ > k∗} ≤ zk∗

In other words, θ̂k̂ lies in the con�dence set of θ̃k∗ . A combination of the propagation and

stability property leads to the �oracle� property:

E θ(·) log
{

1 +
|L(W k∗ , θ̃k∗ , θ)|r

rr

}
≤ ∆ + 1,

E θ(·) log
{

1 +
|L(W k∗ , θ̃k∗ , θ̂k̂)|r

rr

}
≤ ∆ + α + log

{
1 +

zk∗

rr

}
,

for θ with ∆(W k, θ) ≤ ∆ and k ≤ k∗. These bounds show that the risk of estimating

adaptively is composed into three parts: the SMB, the false alarm rate, and a small term

corresponding to the risk of overshooting.

7.2 Discretization

We now prove the connection of the discrete AR(3) model in (2) and the CAR(3) model

in (1) is proved by deriving an analytical link between Xk(t) and the lagged deseasonalised

temperatures up to time t−L. Xk(t+L) is approximated by Euler discretization. For example,

the step length to be ∆, and observation number to be N(∆), for L = 3∆, let et
def
= Bt+∆−Bt

and a time step of length one ∆t
def
= (t + ∆) − t = ∆, X1(t+3∆) is obtained by iteratively
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substituting X3(t) from the following discretization:

X1(t+∆) −X1(t) = X2(t)∆

X2(t+∆) −X2(t) = X3(t)∆

X3(t+∆) −X3(t) = −α3(∆)X1(t)∆− α2(∆)X2(t)∆− α1(∆)X3(t)∆ + σt(∆)et

. . .

X1(t+3∆) −X1(t+2∆) = X2(t+2∆)∆

X2(t+3∆) −X2(t+2∆) = X3(t+2∆)∆

X3(t+3∆) −X3(t+2∆) = −α3(∆)X1(t+2∆)∆− α2(∆)X2(t+2∆)∆− α1(∆)X3(t+2∆)∆

+ σt+2∆(∆)et+2∆. (27)

Rearranging the above equations, we have a AR(3) discrete time model that is linked to (2):

X1(t+3∆) = {3− α1(∆)}︸ ︷︷ ︸
β1(∆)

X1(t+2∆) + {2α1(∆)− α2(∆)− 3}︸ ︷︷ ︸
β2(∆)

X1(t+∆)

+ {−α1(∆) + α2(∆)− α3(∆) + 1}︸ ︷︷ ︸
β3(∆)

X1(t) + σt+2∆(∆)et. (28)

Let us de�ne Γ(∆)
def
= {α1(∆), α2(∆), α3(∆), σt(∆)}>. According to Pedersen (1995), Broze,

Scaillet and Zakoian (1998), under some regularity assumption, the estimated parameter in

discrete time Γ̂(∆) converge to the continuous time parameter Γ as ∆→ 0:

lim
∆→0

lim
N(∆)→∞

|Γ̂(∆)− Γ| = 0 a.s.

The continuous time process (1) is Markov and therefore allows standard applications of

pricing tools. The last three columns of Table 4 display the CAR(3) parameters α̂(1). Note

that in (1) changes in the deseasonalized temperature are regressed against the deseasonalized

temperatures itself. This leads to the fact, that the temperature tends toward a seasonal
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function, which is not the case in the CD model.
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