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Abstract  

Neuroimaging studies have consistently shown that working memory (WM) tasks engage a 

distributed neural network that primarily includes the dorsolateral prefrontal (DLPFC), the 

parietal (PAR) and the anterior cingulate cortices (ACC). The current challenge is to provide a 

mechanistic account of the changes observed in regional activity. To achieve this we 

characterised neuroplastic responses in effective connectivity between these regions at 

increasing WM loads using Dynamic Causal Modeling of functional magnetic resonance 

imaging data obtained from healthy individuals during a verbal n–back task. Our data 

demonstrate that increasing memory load was associated with (a) right-hemisphere 

dominance, (b) increasing forward (i.e. posterior to anterior) effective connectivity within 

the WM network, and (c) reduction in individual variability in WM network architecture 

resulting in the right-hemisphere forward model reaching an exceedance probability of 99% 

in the most demanding condition. Our results provide direct empirical support that task 

difficulty, in our case WM load, is a significant moderator of short-term plasticity, 

complementing existing theories of task-related reduction in variability in neural networks.  
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Working memory (WM) refers to the ability to maintain, update and manipulate 

goal-relevant information (Baddeley, 1992). WM tasks consistently recruit cortical regions 

within the dorsolateral prefrontal cortex (DLPFC,  Brodmann Area 9/46), the parietal cortex 

(PAR, BA7/40) and the dorsal anterior cingulate cortex (ACC, BA32) (Fletcher and Henson, 

2001; Wager and Smith, 2003; Nee et al., 2013). Within this network, there is evidence for 

relative functional specialisation according to process; the DLPFC has been intimately linked 

to encoding, setting attentional priorities and manipulating information (D' Esposito et al., 

2000; Narayanan et al., 2005), the PAR has been associated with maintaining attentional 

focus and storing information (Jonides et al., 1998; Guerin and Miller, 2011) and the ACC has 

been implicated in error detection and performance adjustment (Carter et al., 1999). 

Regional activation within this network responds to WM load (i.e. the total demand on 

maintenance, updating and manipulation processes) (Braver et al., 1997; Callicott et al., 

1999; Owen et al., 1999; Volle et al., 2008) and may be sensitive to content being left-

lateralised for verbal and right-lateralised for spatial and object information (Fletcher and 

Henson, 2001; Wager and Smith, 2003; Nee et al., 2013). 

However, measures of regional engagement are not sufficient to characterise the 

dynamic architecture of the WM network. To date, attempts to model inter-regional 

relationships within the WM network have been based on minimizing the discrepancy 

between observed and implied correlations between regional activations (Honey et al., 

2002; Narayanan et al., 2005; Axmacher et al., 2008; Esslinger et al., 2012). Although useful, 

this approach provides limited information about specific mechanisms through which 

neuronal circuits respond to WM demands (Ramnani et al., 2004; Kim et al., 2007). Of 

particular relevance is the potential role of short-term plasticity given the confluence of 
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evidence that abnormalities in short-term plasticity underlie WM impairment across a 

range of conditions from normal aging (Sala-Llonch et al., 2012) to the major mental 

disorders (Cramer et al., 2011). Short-term plasticity is conceptualized in many ways, but as 

used here it refers to altered functional coupling within cortical circuits as a function of 

experience and in response to external and internal cues (Salinas & Sejnowski, 2001; 

Stephan et al., 2009). Dynamic Causal Modeling (DCM; Friston et al., 2003) currently 

represents one of the most plausible methods for estimating the effective strength of 

connections among neuronal ensembles and their context-dependent (e.g. experimental) 

modulation (Stephan et al., 2010).   

The aim of the current study was to probe the neural network that underlies 

cognitive control in verbal WM and to determine the role of WM load on short-term 

plasticity within this network. To achieve this we combined Statistical Parametric Mapping 

(SPM; www.fil.ion.ucl.ac.uk/spm) with Dynamic Causal Modeling of functional magnetic 

resonance imaging (fMRI) data derived from forty healthy adults performing the verbal n-

back task. This task involves maintenance and updating of information at increasing levels of 

memory load and has been previously shown to engage robustly the DLPFC, PAR and ACC 

(Wager and Smith, 2003; Owen et al., 2005). DCM analysis of individual responses to this 

task allowed us to estimate the strength, laterality and directionality of the effective 

functional coupling between these key nodes of the WM network and, crucially how these 

connection strengths were modulated by memory load. 
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Material and Methods 

Participants 

Forty healthy right-handed adults were recruited via advertisement in the local press 

and were included if they (i) had no personal lifetime history of mental disorders or 

substance use as assessed following personal interview using the Structured Interview for 

DSM-IV-TR Axis I Disorders, non-patient edition (First et al., 2002), (ii) had no history of head 

injury or medical disorders and (iii) did not take any prescribed medication. An estimate of 

current intellectual function (IQ) was obtained using the Wechsler Adult Intelligence Scale – 

Revised (WAIS-R; Wechsler, 1981). The sample details are shown in Table 1. The study was 

approved by the Ethics Committee of the Institute of Psychiatry and the South London and 

Maudsley National Health Service Trust. Written informed consent was obtained from all 

participants.  

Experimental design 

The n-back task was employed in a block design incorporating alternating 

experimental and baseline conditions. A series of letters in yellow font were displayed on a 

blue screen for two seconds each. The 0-back condition was used as baseline to control for 

task engagement and vigilance. In the 0-back condition participants were instructed to 

respond by button press whenever the target letter “X” was displayed on screen. In the 

experimental conditions (1, 2, 3-back), the target letter was defined as any letter that was 

identical to the one presented 1, 2, or 3 trials back. There were 18 epochs in all, each lasting 

30 seconds, comprising 14 letters with a ratio of target to non-target letters ranging from 

2:12 to 4:10 per epoch. The entire experiment lasted 9 minutes and included a total of 49 

target and 203 non-target stimuli. To avoid any systematic order effects the conditions were 
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pseudo-randomised. Performance was evaluated in terms of reaction time to target letters 

and accuracy (% correct responses).  

Image acquisition 

Gradient echo planar magnetic resonance (MR) images were acquired using a 1.5-

Tesla GE Neuro-optimised Signa MR system (General Electric, Milwaukee, WI, USA) fitted 

with 40 mT/m highspeed gradients, at the Maudsley Hospital, London. Foam padding and a 

forehead strap were used to limit head motion. A quadrature birdcage head coil was used 

for radio frequency (RF) transmission and reception. A total of 180 T2*-weighted MR brain 

volumes depicting blood-oxygen-level-dependent (BOLD) contrast were acquired at each of 

36 near-axial, non-contiguous planes parallel to the inter-commissural (AC-PC) plane; 

repetition time (TR) = 3000ms, echo time (TE) = 40ms, slice thickness = 3mm, voxel 

dimensions = 3.75 x 3.75 x 3.30mm,  matrix size = 64 * 64, flip angle=90°. Prior to each 

acquisition sequence, four dummy data acquisition scans were performed to allow the 

scanner to reach a steady state in T1 contrast. 

During the same session, a high-resolution T1-weighted structural image was 

acquired in the axial plane (inversion recovery prepared, spoiled gradient-echo sequence; 

TR = 18ms, TE = 5.1 ms, TI = 450 ms, slice thickness = 1.5 mm, voxel dimensions = 0.9375 × 

0.9375 x 1.5 mm, matrix size 256 * 192, field of view = 240 x 180 mm, flip angle = 20°, 

number of excitations = 1) for subsequent co-registration. 

Image processing 

All analyses were implemented using Statistical Parametric Mapping software, 

version 8 (SPM8) (www.fil.ion.ucl.ac.uk/spm/software/spm8/). The BOLD images were 

realigned to the fifth volume to correct for interscan movements by means of a rigid body 
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transformation with three rotation and three translation parameters. Subsequently, the 180 

fMRI images were spatially normalized to the standard template of the Montreal 

Neurological Institute (MNI) and re-sampled to a voxel size of 2x2x2 mm. Finally, the images 

were smoothed using an 8 mm full width half maximum Gaussian kernel.  

The smoothed single-participant images were analyzed via multiple regressions using 

the linear convolution model, with vectors of onset representing the experimental 

conditions (1, 2 and 3 - back) and the 0-back condition as a baseline. Six movement 

parameters were also entered as nuisance covariates. Serial correlations were removed 

using an AR(1) model. A high pass filter (128s) was applied to remove low-frequency noise. 

Contrast images of each memory load condition versus baseline were produced for each 

participant.  

Conventional fMRI Analysis 

Group-level analyses were based on random-effects analyses of the single-

participant contrast images using the summary statistic approach. Regions showing 

significant task effect across all participants were identified using one-sample t-tests against 

zero. The statistical threshold was set to p<0.05 with Family-Wise Error (FWE) correction on 

a voxelwise basis and minimum cluster size 20 voxels. For all analyses, results are reported 

in MNI space. 

Dynamic Causal Modeling 

Selection of volumes of interest (VOIs) 

Volumes of interest (VOIs) were defined bilaterally in the PAR, ACC and DLPFC based 

on evidence from prior studies demonstrating robust and consistent involvement of these 

regions in WM (Glahn et al., 2005; Owen et al., 2005) and based on the results from the 
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current analyses that found significant effects of WM load in these regions.  The coordinates 

for the VOIs were based on the group maxima from the contrast of 1, 2, 3 -back minus 0-

back condition following conjunction analysis. The coordinates of the group maxima were:  

DLPFC (left: x = -48, y = 36, z = 30; right; x = 48, y = 38, z = 30), PAR (left: x = -38, y = -56, z = 

42; right: x = 36, y = -52, z = 44) and ACC (left: x = -10, y = 26, z = 28; right: x = 12, y =24, z 

=28) and the). For each participant VOIs of 5mm radius were defined centred on participant-

specific maxima in these regions that were (i) within 4 mm from the group maxima, (ii) 

within the same anatomical area, as defined by the PickAtlas toolbox (Maldjian et al., 2003) 

and (iii) adjusted using the effect of interest F-contrast. Regional time series were 

summarised with the first eigenvariate of all activated (at p < 0.01) voxels within the 

participant-specific VOIs.  

Specification of model architecture 

For each experimental condition (1, 2, 3 –back) we used the VOIs defined above (L-

PAR and R-PAR, L-ACC and R-ACC, and L-DLPFC and R-DLPFC) to specify a six-area DCM in all 

participants. Within each hemisphere we defined bidirectional connections between these 

regions. Bidirectional connections were also specified between homologous regions in each 

hemisphere. For each experimental condition, 18 endogenous connections were specified in 

total with the main effect of memory as the driving input entering the L-PAR and R-PAR 

(Figure 1A). This architecture served as our base model which was then elaborated 

systematically to produce 18 alternative variants for each experimental condition to test 

how working memory load could modulate the 18 connections (Figure 1B). In total 54 

models were constructed, fitted and compared in the 40 study participants. 
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Model Comparison 

Model comparison was implemented using random-effects (RFX) Bayesian Model 

Selection (BMS) in DCM10 to compute exceedance and posterior probabilities at the group 

level (Stephan et al., 2009). The exceedance probability of a model denotes the probability 

that this model is more likely than any other in a given dataset. In addition to testing 

individual models we also made inferences about Families of models (Penny et al., 2010; 

Stephan et al., 2010).  

Families were specified based on laterality and direction of working memory 

information. To test for hemispheric laterality, models were divided into a Left-sided 

(Models 1, 3, 4, 5, 6, 7, 9, 10, 11) and a Right-sided Family (Models 2, 8, 12, 13, 14, 15, 16, 

17, 18). To test for directionality of working memory information three Families where 

created for each experimental condition, Forward (Models 3, 5, 10, 14, 16, 17), Backwards 

(Models 4, 6, 9, 13, 15, 18) and Lateral (Models 1, 2, 7, 8, 11, 12). All models were included 

in the BMS procedure, both when comparing individual models and model Families. Finally, 

to summarise the strength of effective connectivity and quantify its modulation, we used 

random effects Bayesian Model Averaging (BMA) to obtain average connectivity estimates 

(weighted by their posterior model probability) across all models for each participant (Penny 

et al., 2010). The implementation of RFX BMA in SPM8 employs an Occam’s window for 

computational efficiency, excluding from the average those models whose probability ratio 

(compared to the best model) is below 0.05. 

Relationship to behavioural measures 
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We subjected participant-specific BMA parameter estimates to one-sample tests to 

assess their consistency across participants. Behavioural data and DCM parameter estimates 

were analyzed in SPSS 20 (SPSS Inc, Chicago, IL, USA) and statistical inference was set at a 

threshold of p<0.002 following Bonferroni-correction for multiple comparisons.  

 

Results  

Behavioural data 

Details of participants’ performance in the n-back task are shown in Table 1.  

Conventional fMRI analysis 

Task-related activation was evident within the predicted WM network including the 

DLPFC, PAR and ACC. Details of the regional maxima are provided in Figure 2 and Table 2. 

DCM analysis 

Family-wise Comparisons 

We applied random effects BMS at the Family level to clarify the contribution of 

each hemisphere (Left: Models 1, 3, 4, 5, 6, 7, 9, 10, 11; Right: Models 2, 8, 12, 13, 14, 15, 

16, 17, 18) and to elucidate the direction of information (Forward, Backward or Lateral) at 

different memory loads. The Left-sided Family showed the highest exceedance probability 

(65%; Figure 3A) in the 1-back modulation. This pattern reversed in the 2- and 3-back 

modulations where the Right-sided Family showed exceedance probabilities of 60% and 

98% respectively (Figures 3B and 3C). 

  With regards to directionality, in the 1-back modulation the Forward Family showed 

an exceedance probability of 52% followed by the Backward Family with an exceedance 
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probability of 32% (Figure 3A). In the 2- and 3-back modulations, the Forward Family 

outperformed all others with an exceedance probability of 99% (Figure 3B and 3C).  

Comparing individuals models  

Comparing the individuals models in each memory load, did not reveal an optimal model for 

the 1-back modulation (Figure 4A). On the contrary, for the 2-back memory load, Model 16 

was the best fitting model with exceedance probability of 60%, where the modulation was 

placed from the R-PAR to the R-DLPFC (Figure 4B). Model 5 was the second best model with 

exceedance probability of 40%. In Model 5, 2-back modulated the forward connection from 

L-PAR to L-DLPFC (Figure 4B). 

For the 3-back task, Model 16 outperformed all other models with an exceedance 

probability of 96%, where the 3-back memory load is modulating significantly the forward 

connection from the R-PAR to the R-DLPFC (Figure 4C).   

Bayesian Model Averaging   

The results from the BMA across all subjects and across all fifty four models (18 

models for each experimental condition) are shown in Table 3. All connections between the 

six areas of the WM network were significant. BMA parameter estimates of the endogenous 

connections were found to be significantly consistent across participants. The task condition 

significantly modulated the forward connection from the R-PAR to the R-DLPFC (Table 3).  

Behavioural Correlations 

Based on the robust modulation of the connection from the R-PAR to the R-DLPFC by 

increasing memory load we performed correlations between the DCM parameters for this 

connection in the 3-back condition with response time and accuracy. The WM modulation 
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of this connection negatively correlated with response time (r= -0.331, p= 0.04) but not 

accuracy in the 3-back condition.  

 

Discussion 

 To our knowledge this is the first study to assess effective connectivity during WM 

processing using DCM. DCM is currently one of the most plausible methods for inferring 

neuroplastic changes in the strength of connections between neuronal populations and 

their context specific (Stephan et al., 2010). There are three key findings from our study. 

First, we demonstrated that increasing memory load was associated with increasing 

dominance of right-hemisphere models suggesting greater right hemisphere contribution to 

the most demanding WM conditions. Second, increasing memory load was associated with 

increased forward (i.e. posterior to anterior) effective connectivity within the WM network. 

Third, increasing memory load dramatically reduced individual variability in WM network 

architecture with the right-hemisphere forward model reaching an exceedance probability 

of 99% in the 3-back condition.     

 Early fMRI studies have lent support to the notion that processing within the WM 

network is left-lateralised for verbal and right-lateralised for spatial material (Fletcher and 

Henson, 2001). Recent quantitative meta-analyses have shown that engagement during 

verbal WM tasks can be seen bilaterally within the DLPFC, PAR and ACC (Wager and Smith, 

2003; Nee et al., 2013) although left-sided involvement was more common (Nee et al., 

2013). However previous studies (Altamura et al., 2007; Kirschen et al., 2005) as well as the  

current study suggest that the key driver of lateralisation within the verbal WM network is 

memory load. In the 1-back condition the Left-sided model Family showed an aggregate 

exceedance probability of 65% while in the 2-back condition the Right-sided model Family 



 

 

13 

 

showed an aggregate exceedance probability of 60%. These exceedance probabilities are 

moderate and may be best interpreted as evidence that right or left hemispheric 

involvement is nearly equally plausible at low to moderate WM demands. By contrast, in the 

3-back condition, that places the highest demands on maintenance and updating processes, 

the Right-sided model Family was dominant with an exceedance probability of 98%.  

 Previous literature has established that during a variety of WM tasks ipsilateral 

frontoparietal cortical regions are functionally coupled (Esslinger et al., 2012; Cole and 

Schneider, 2007; Schlosser et al., 2006). The current study provides new evidence regarding 

the directionality of effective coupling within the verbal WM network. We found that 

working memory information follows a posterior to anterior direction at moderate and high 

WM load as the Forward model Family showed an exceedance probability of 99% in the 2- 

and 3-back conditions. In particular the connection from the right PAR to the ipsilateral 

DLPFC was most consistently modulated by WM across all participants; the strength of the 

modulation increased with WM demands and was associated with reduced response time. 

Our findings receive significant support from transcranial magnetic stimulation (TMS) 

studies (Mottaghy et al., 2003; Esslinger et al., 2012; Meiron et al., 2012); TMS induced 

increase in frontoparietal coupling improved response time without a significant effect on 

accuracy. Correspondingly we observed a significant correlation between response time 

(but not accuracy) and the strength of the WM modulation of the frontoparietal effective 

connectivity. Mottaghy and colleagues (2003) were also able to determine using TMS at 

variable time points and at different cortical sites that during the verbal n-back task 

information propagated from posterior to anterior regions (parietal to prefrontal) and from 

the right to the left prefrontal cortex. This observation is consistent with our findings 

regarding the dominance of the forward right hemisphere model Families and the 
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importance of the connection between right PAR and right DLPFC. Moreover, our data 

further support the proposal of Mottaghy and colleagues (2003) that verbal WM 

performance may rely on successful coding of the visual input of letters first as objects in 

the right hemisphere and then as verbal concepts in the left hemisphere. 

           A feature of our experimental design merits comment. We employed the n-back 

task as a fMRI block paradigm, which precludes the possibility of including only trials on 

which participants answered correctly in our analysis. Considering the difference in 

accuracy and reaction time between memory loads, as would be expected, future studies 

investigating the effect of working memory may wish to employ tasks that permits that 

kind of analysis. Furthermore, the DCM models in the current study were constructed to 

probe cognitive control in the WM brain network. Future studies may also wish to include 

brain areas typically engaged in verbal WM, such as  left perisylvian regions (Rottschy et 

al., 2012), to investigate the verbal WM network directly.    

 Finally we found that increasing WM load dramatically reduced variability in the 

dynamic architecture of the WM network. The interest in short-term plasticity has 

generated much research on the effect of task on neural variability at all levels. Task-related 

reduction in variability has been observed throughout the cortex at the intracellular and 

inter-cellular level affecting membrane potential as well as individual and correlated 

neuronal firing (Churchland et al., 2010). Theoretical models have suggested similar 

properties for large scale neural networks (Sussillo & Abbott, 2009; Rajan et al. 2012). Our 

results provide direct empirical support for these models with regards to WM and further 

suggest that task difficulty is a significant additional moderator of short-term plasticity.  
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Figure Legends 

Figure 1. Model specification: The sources comprising the models were: DLPFC: dorsolateral 

prefrontal cortex; PAR: parietal; ACC: dorsal anterior cingulate cortex; left and right. 

Schematically, the modulations are represented as one memory load (•), but correspond to 

the three distinct modulations: 1-back, 2-back and 3-back. A. A six-area DCM was specified 

with bidirectional endogenous connections between all regions (PAR, ACC, DLPFC) in each 

hemisphere and lateral connections between homologous areas. Driving input of ‘1, 2, 3 -

back’ modelled into the left and right PAR. B. For each memory load (1, 2, 3 -back condition) 

18 models were constructed.   

 

Figure 2. A. Image showing task-related brain activation in the group (N=40) during the 

working memory N-back task (FWE,  corrected at p<0.05 on a voxelwise basis, minimum 

cluster size 20 voxels; image created with MRIcron 

http://www.mccauslandcenter.sc.edu/mricro/mricron/index.html). B. The effect of the 1, 2, 

3 -back conditions on the left and right parietal cortex (PAR), the left and right anterior 

cingulate cortex (ACC), left and right dorsolateral prefrontal cortex (DLPFC) in healthy 

participants (N=40). 

 

Figure 3. A. Family Exceedance Probability for the Left- and Right-sided Family, as well as 

the Forward, Backward and Lateral Family in the 1-back condition (N=40). B. Family 

Exceedance Probability for the Left and Right-sided Family, as well as the Forward, 

Backward and Lateral Family in the 2-back condition (N=40). C. Family Exceedance 
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Probability for the Left and Right-sided Family, as well as the Forward, Backward and Lateral 

Family in the 3-back condition (N=40). 

 

Figure 4A. Exceedance Probability for the eighteen models specified (N=40) in the 1-back 

condition. Yellow lines represent the Models that have Exceedance Probability above 5%. B. 

Exceedance Probability for the eighteen models specified (N=40) in the 2-back condition. 

Yellow lines represent the two winning models, Model 5 and Model 16. C. Exceedance 

Probability for the eighteen models specified (N=40) in the 3-back condition. Yellow line 

represents the optimal Model 16.   

 

 

 

 

 

 

 

 



Table 1. Demographic and behavioural data of study participants (n=40) 

 

 

 

 

 

 

 

 

 

 

 

 

 
                           

 

 Continuous variables are presented as mean and standard deviation;  

                          WAIS-R=Wechsler Adult Intelligence Scale-Revised 

 

 

 

 

 

 

 

 

 

 

Demographic data   

Sex (male:female) 20:20 

Age (years) 31.5 (10.4) 

WAIS-R IQ        115.5 (15.9) 

Behavioural Performance on the n-back task 

Response time, 1-back (ms) 596 (210) 

Accuracy,  1-back  (% correct) 100 

Response time, 2-back (ms) 659 (196) 

Accuracy, 2-back  (% correct) 91.2 (13.85) 

Response time, 3-back (ms) 748 (224) 

Accuracy, 3-back (% correct) 72.8 (16.1) 



Table 2. Voxel-based whole brain SPM analysis: Brain regions showing significant main 

effects in terms of hemodynamic responses to different working memory loads; 1, 2, 3 -back 

(p < 0.05, FWE cluster-level corrected across the whole brain with minimum cluster size 20 

voxels). 

 

Brain Region BA Laterality 

 

Coordinates Cluster 

Size 

(voxels) 

Z -

value  x y   z 

1-back > 0-back 

Inferior parietal lobule 

 

40 

40 

R 

L 

46 

-44 

-46 

-42 

44 

38 

121 

754 

6.61 

6.31 

Middle frontal gyrus 

(Dorsolateral PFC) 

46 L 

R 

-46 

52 

32 

36 

30 

30 

153 

256 

6.42 

6.30 

Middle frontal gyrus 6 R 32 6 62 47 5.97 

2-back > 0-back 

Inferior parietal lobule 

 

40 R 

L 

40 

-36 

-48 

-52 

44 

46 

231 

190 

7.90 

7.75 

Middle frontal gyrus 

(Dorsolateral PFC) 

46 

9 

R 

L 

46 

-42 

32 

8 

28 

28 

544 

968 

7.03 

6.64 

Anterior cingulate gyrus 32 R 

L 

8 

-4 

18 

10 

48 

58 

354 6.88 

Insula 13 R 34 24 -2 151 6.47 

Middle frontal gyrus 6 R 30 8 58 414 6.12 



3-back > 0-back 

Inferior parietal lobule 40 R 

L 

50 

-48 

-42 

-48 

42 

48 

287 

263 

8.01 

7.98 

Middle frontal gyrus 

(Dorsolateral PFC) 

9 

46 

L 

R 

-48 

48 

26 

40 

30 

30 

800 

542 

8 

7.99 

Anterior cingulate gyrus 32 L 

R 

-10 

8 

26 

20 

30 

28 

333 7.53 

Insula 13 L -34 22 0 680 6.99 

Thalamus N/A L -12 -10 6 142 6.44 

Inferior frontal gyrus 10 L -44 46 2 319 5.98 

Inferior frontal gyrus 47 R 34 20 0 572 5.67 

MNI coordinates denote the distance in mm from the anterior commissure, with positive X= right of midline, 

positive Y = anterior to the anterior commissure, and positive Z = dorsal to a plane containing both the anterior 

and the posterior commissures. Abbreviations: BA: Brodmann Area; ; L: Left; R: Right; N/A: Not Applicable; 

PFC: prefrontal cortex; SPM=Statistical Parametric Mapping. 
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Table 3. Dynamic Causal Modeling endogenous parameter and modulatory estimates for all 

connections across all subjects and across all models. 

 

Connection type Mean SD Minimum Maximum T-value P- value 

Endogenous 

parameters               

L-PAR→R-PAR 0.012 0.322 -1.876 1.007 2.727¥ 0.000** 

R-PAR→L-PAR 0.008 0.162 -1.049 0.120 2.639¥ 0.000** 

L-PAR→L-ACC 0.091 0.086 -0.159 0.266 7.154 0.000** 

L-ACC→L-PAR 0.006 0.012 -0.024 0.047 3.294 0.002** 

L-PAR→L-DLPFC 0.239 0.150 -0.039 0.654 10.818 0.000** 

L-DLPFC→L-PAR 0.017 0.050 -0.049 0.305 2.413 0.020* 

L-ACC→R-ACC 0.017 0.023 -0.005 0.090 5.106 0.000** 

R-ACC→L-ACC 0.020 0.034 -0.001 0.150 4.119 0.000** 

L-DLPFC→L-ACC 0.028 0.033 -0.015 0.095 5.910 0.000** 

L-ACC→L-DLPFC 0.021 0.047 -0.218 0.127 3.115 0.003* 

L-DLPFC→R-DLPFC 0.099 0.086 -0.025 0.304 7.809 0.000** 

R-DLPFC→L-DLPFC 0.119 0.100 -0.025 0.304 8.003 0.000** 

R-DLPFC→R-ACC 0.047 0.049 -0.071 0.158 6.519 0.000** 

R-ACC→R-DLPFC 0.039 0.042 -0.022 0.157 6.384 0.000** 

R-DLPFC→R-PAR 0.043 0.109 -0.082 0.685 1.936¥ 0.001** 

R-PAR→R-DLPFC 0.281 0.147 -0.111 0.493 12.982 0.000** 

R-PAR→R-ACC 0.098 0.084 -0.048 0.282 7.930 0.000** 

R-ACC→R-PAR 0.006 0.023 -0.085 0.086 1.948 0.05 
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Connection type Mean SD Minimum Maximum T-value P- value 

Modulatory 

parameters in 3-back       

R-PAR→R-DLPFC    0.102 0.073 -0.039 0.292 9.431 0.000** 

* p<0.05 uncorrected for multiple comparisons; ** p<0.002 corrected for multiple 

comparisons; ¥ Mann–Whitney U test; SD=standard deviation  

 

 

 

 











Legend for Supplemental Figure 1.  

 

The sources comprising the models were: DLPFC: dorsolateral prefrontal cortex; PAR: 

parietal; ACC: dorsal anterior cingulate cortex; left and right. A six-area DCM was specified 

with bidirectional endogenous connections between all regions (PAR, ACC, DLPFC) in each 

hemisphere and lateral connections between homologous areas. Driving input of ‘1, 2, 3 -

back’ modelled into the left and right PAR. Schematically, the modulations are represented 

as one memory load (•), but correspond to the three distinct modulations: 1-back, 2-back 

and 3-back. For each memory load (1, 2, 3 -back condition) 18 models were constructed.   

 




