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Abstract: Individual differences in cognitive efficiency, particularly in relation to working memory (WM),
have been associated both with personality dimensions that reflect enduring regularities in brain configura-
tion, and with short-term neural plasticity, that reflects task-related changes in brain connectivity. To eluci-
date the relationship of these two divergent mechanisms, we tested the hypothesis that personality
dimensions, which reflect enduring aspects of brain configuration, inform about the neurobiological frame-
work within which short-term, task-related plasticity, as measured by effective connectivity, can be facili-
tated or constrained. As WM consistently engages the dorsolateral prefrontal (DLPFC), parietal (PAR), and
anterior cingulate cortex (ACC), we specified a WM network model with bidirectional, ipsilateral, and con-
tralateral connections between these regions from a functional magnetic resonance imaging dataset obtained
from 40 healthy adults while performing the 3-back WM task. Task-related effective connectivity changes
within this network were estimated using Dynamic Causal Modelling. Personality was evaluated along the
major dimensions of Neuroticism, Extraversion, Openness to Experience, Agreeableness, and Conscientious-
ness. Only two dimensions were relevant to task-dependent effective connectivity. Neuroticism and Conscien-
tiousness respectively constrained and facilitated neuroplastic responses within the WM network. These
results suggest individual differences in cognitive efficiency arise from the interplay between enduring and
short-term plasticity in brain configuration.Hum Brain Mapp 36:4158–4163, 2015. VC 2015Wiley Periodicals, Inc.
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INTRODUCTION

Working memory (WM) is a fundamental cognitive
function that involves the maintenance of representations
of task-related rules and information over delay periods in
the absence of external cues [Barch and Smith, 2008].
Numerous functional magnetic resonance imaging (fMRI)
studies have confirmed that WM tasks are associated with
increased blood-oxygen-level-dependent (BOLD) signal in
the dorsolateral prefrontal (DLPFC) and parietal cortices
(PAR) and the dorsal anterior cingulate cortex (ACC)
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[Rottschy et al., 2012; Wager and Smith, 2003]. Accumulat-
ing evidence provides robust support linking personality
traits of neuroticism (propensity for negative emotionality)
and conscientiousness (goal-directed self-regulation) to
individual differences in WM task-performance and to the
macro-configuration of the WM neural circuitry. Individuals
with high levels of neuroticism perform worse on WM tasks
[Smith et al., 2011], have lower DLPFC and ACC volumes
[DeYoung et al., 2010; Kapogiannis et al., 2013; Wright et al.,
2006, 2007], show reduced fronto-parietal anatomical connec-
tivity [Bjørnebekk et al., 2013], and attenuated DLPFC activa-
tion [Kumari et al., 2004]. Conversely, higher levels of
conscientiousness have been linked to better WM task per-
formance [Smith et al., 2011] and greater DLPFC volume
[DeYoung et al., 2010; Kapogiannis et al., 2013; Wright et al.,
2006, 2007].

At the same time, it is well established that WM is crit-
ically dependent on neuronal computations at the micro-
scale level of synaptic- and neural network-level plasticity.
Successful maintenance of task-related representations is
causally linked to persistent firing of prefrontal neurons
[Fuster, 2001; Goldman-Rakic, 1995; Goto et al., 2010] that
are organized into dynamic assemblies based on Hebbian
principles [Fujisawa et al., 2008]. These neural assemblies
become sequentially active throughout the WM task with
each receding assembly passing its representational
“content” to further assemblies. The integrated effect gen-
erates local field potentials [Okun et al., 2010] which are
tightly linked to the fMRI-BOLD signal [Logothetis, 2008].

At present there are no mechanistic insights as to how
aspects of personality, that are associated with the macro-
organization of the brain, might relate to neuronal computa-
tions at the micro-scale level. Dynamic Causal Modelling
[DCM; Friston et al., 2003] is a powerful tool for the investiga-
tion of this relationship in living humans. DCM models the
directed influence of one neuronal group over another (effec-
tive connectivity), which provides an indirect measure of
network-level neuroplasticity [Stephan et al., 2007]. We have
already demonstrated that high WM load increases inter-
regional effective connectivity within the WM network [Dima
et al., 2014]. Here, we focus on exploring the relationship
between DCM-inferred network-level plasticity during WM
and personality dimensions. We use our previous data (Dima
et al., 2014) to examine the relationship between parameter
estimates of WM modulation and personality measures
derived from the five factor model [Costa and McCrae, 1992].
Based on the available literature, we expected neuroticism
and conscientiousness to have opposite effects, respectively
negative and positive, on inter-regional connectivity within
the WM circuitry.

MATERIAL AND METHODS

Participants

Forty healthy participants were included in the study if
they (i) had no personal lifetime history of mental disorder

or substance use as assessed following personal interview
using the Structured Interview for DSM-IV-TR Axis I Disor-
ders, non-patient edition [First et al., 2002], (ii) had no his-
tory of medical disorders or head injury, and (iii) did not
take any prescribed medication. All participants were right-
handed, based on self-report. Their intellectual quotient
(IQ) was assessed using the Wechsler Adult Intelligence
Scale—Revised [WAIS-R; Wechsler, 1981]. Personality was
assessed using the Neuroticism-Extraversion-Openness
Personality Inventory-Revised (NEO-PI-R) [Costa and
McCrae, 1992].

Details of the study sample are shown in Table I. The
study was approved by the Ethics Committee of the Insti-
tute of Psychiatry and the South London and Maudsley
National Health Service Trust. Written informed consent
was obtained from all subjects.

Working Memory Functional Imaging Task

The n-back task was employed in a block design incor-
porating alternating experimental and sensorimotor con-
trol conditions. A series of letters in yellow font were
displayed on a blue screen for 2 s each. Participants were
instructed to indicate by a button press whether the letter
currently displayed matched the letter from the preceding
n trials. In the sensorimotor control (0-back), the letter “X”
was the designated target. In the experimental conditions
(1, 2, 3-back), the target letter was defined as any letter
that was identical to the one presented in the preceding
one, two, or three trials. There were 18 epochs in all, each
lasting 30 s, comprising 14 letters with a ratio of target to
non-target letters ranging from 2:12 to 4:10 per epoch. The
entire experiment lasted 9 min and included a total of 49
target and 203 non-target stimuli. To avoid any systematic
order effects the conditions were pseudo-randomised. Per-
formance was evaluated in terms of reaction time to target
letters and accuracy (% correct responses). The task was

TABLE I. Characteristics of study sample (n540)

Demographic data
Sex (male:female) 20:20
Age (years) 31.5 (10.4)
WAIS-R IQ 115.5 (15.9)

NEO-PI-R scores
Agreeableness 113 (21.8)
Conscientiousness 119.8 (32)
Extraversion 110.8 (22.3)
Neuroticism 84.8 (34)
Openness/Intellect 112.3 (13.7)

Behavioural Performance on the n-back task
Response time to 3-back (ms) 748 (224)
Accuracy for 3-back (% correct) 72.8 (16.1)

Continuous variables are presented as mean and standard devia-
tion; WAIS-R5Wechsler Adult Intelligence Scale-Revised;
IQ5 Intelligence Quotient; ms5milliseconds.
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explained to participants prior to scanning but there was
no training.

Image Acquisition

Gradient echo planar magnetic resonance (MR) images
were acquired using a 1.5-Tesla GE Neuro-optimised Signa
MR system (General Electric, Milwaukee, WI) fitted with
40 mT/m highspeed gradients, at the Maudsley Hospital,
London. Foam padding and a forehead strap were used to
limit head motion. A quadrature birdcage head coil was
used for radio frequency (RF) transmission and reception.
A total of 180 T2*-weighted MR brain volumes depicting
blood-oxygenation level-dependent (BOLD) contrast were
acquired at each of 36 near-axial planes parallel to the
inter-commissural (AC-PC) plane; repetition time
(TR)5 3,000 ms, echo time (TE)5 40 ms, slice
thickness5 3 mm, voxel dimensions5 3.75 3 3.75 3

3.30 mm, interslice gap5 0.3 mm, matrix size5 64 3 64,
flip angle5 908. Prior to each acquisition sequence, four
dummy data acquisition scans were performed to allow
the scanner to reach a steady state in T1 contrast. During
the same session, a high-resolution T1-weighted structural
image was acquired in the axial plane (inversion recovery
prepared, spoiled gradient-echo sequence; TR5 18 ms,
TE5 5.1 ms, TI5 450 ms, slice thickness5 1.5 mm, voxel
dimensions5 0.9375 3 0.9375 3 1.5 mm, matrix size 256 3

192, field of view5 240 3 180 mm, flip angle5 208, num-
ber of excitations5 1) for subsequent co-registration.

Functional Image Processing

Conventional and DCM analyses were implemented
using Statistical Parametric Mapping (SPM8) (www.fil.ion.
ucl.ac.uk/spm/software/spm8/) and the corresponding
DCM analysis software (DCM8). fMRI images were real-
igned, normalized, and smoothed using an 8 mm full-
width-half-maximum Gaussian kernel. The smoothed
single-participant images were analyzed via multiple
regressions using the linear convolution model, with vec-
tors of onset representing the experimental conditions (1,
2, and 3 back) and the 0-back condition as sensorimotor
control. Six movement parameters were also entered as
nuisance covariates. Serial correlations were removed
using an AR(1) model. A high pass filter (128 s) was
applied to remove low-frequency noise. Contrast images
of each memory load condition versus baseline were pro-
duced for each participant.

Conventional fMRI Analysis

Group-level analyses were based on random-effects
analyses of the single-participant contrast images using the
summary statistic approach. Regions showing significant
task effect across all participants were identified using
one-sample t tests against zero. The statistical threshold

was set to P< 0.05 with familywise error (FWE) correction
on a voxelwise basis and minimum cluster size 20 voxels.
For all analyses, results are reported in Montreal Neuro-
logical Institute (MNI) space. Using the above parameters,
we identified the functional network engaged by the n-back
task (Supporting Information Table S1).

Dynamic Causal Modeling

Selection of volumes of interest

Volumes of interest (VOIs) were defined bilaterally in
the PAR, ACC, and DLPFC based on our results and sup-
ported by previous studies demonstrating robust and con-
sistent involvement of these regions in WM [Rottschy
et al., 2012; Wager and Smith, 2003]. The coordinates for
the VOIs were based on the group maxima from the con-
trast of 1-, 2-, and 3-back minus 0-back condition after con-
junction analysis. The co-ordinates of the group maxima
within the DLPFC [Left: x5248, y5 36, z5 30; Right:
x5 48, y5 38, z5 30], PAR [Left: x5238, y5256, z5 42;
Right: x5 36, y5252, z5 44], and ACC [Left: x5210,
y5 26, z5 28; Right: x5 12, y5 24, z5 28]. For each partic-
ipant, VOIs of 5 mm radius were defined centered on
participant-specific maxima in these regions that were (i)
within 4 mm from the group maxima, (ii) within the same
anatomical area, as defined by the PickAtlas toolbox
(http://www.fil.ion.ucl.ac.uk/spm/ext/#WFU_PickAtlas),
and (iii) adjusted using the effect of interest F-contrast.
Regional time series were summarized with the first eigen-
variate of all activated (at P< 0.01) voxels within the
participant-specific VOIs.

Model specification

As we have previously described [Dima et al., 2014], we
used the VOIs defined above in the left and right PAR, left
and right ACC, and left and right DLPFC to specify a six-
area DCM in all participants for each experimental condi-
tion (1, 2, and 3 back). Within each hemisphere, we
defined bidirectional connections between these regions.
Bidirectional connections were also specified between
homologous regions in each hemisphere. For each experi-
mental condition, 18 endogenous connections were speci-
fied in total with the main effect of memory as the driving
input entering the PAR bilaterally. For each experimental
condition, this base model was elaborated systematically
to produce alternative variants to test how WM load could
modulate the 18 connections.

From this point on, all analyses were restricted to the
high memory load condition (3-back) versus sensorimotor
control (0-back) contrast because differences in cognitive
and neural efficiency are more apparent at high WM load
[Gevins and Smith, 2000]. (Analyses relevant to the 2-back
versus 0-back contrast may be found in the Supporting
Information Material).
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Model comparison

As we have previously described [Dima et al., 2014], we
used random-effects Bayesian Model Selection (BMS) [Stephan
et al., 2009] in DCM8 in order to compare all plausible models
of effective connectivity. For the 3-back vs. 0-back condition, 18
models were compared in terms of their exceedance and poste-
rior probabilities in order to identify the optimal model.

Connectivity parameter estimation

We then used random effects Bayesian Model Averaging
(BMA) to obtain average connectivity estimates across all
models for each participant [Penny et al., 2010] as BMA
accommodates uncertainty about models when estimating
the consistency and strength of connections.

Relationship Between Connectivity Estimates

and NEO-PI-R Domains Scores

BMA connectivity estimates of the connections modu-
lated by WM within the optimal DCM model were exam-
ined in terms of their relationship with all NEO-PI-R
domain scores using a forced regression model into which
age [Stanley et al., in press], sex [Hill et al., 2014], and IQ
[Nisbett et al., 2012] were also considered as these factors
are known to influence WM.

RESULTS

NEO-PI-R Domains

As shown in Table I, the means of the NEO-PI-R scores of
the study sample were within their respective normative

range. Cronbach’s alpha coefficients for the five personality
dimensions in our sample were high (Neuroticism5 0.90,
Extraversion5 0.92, Agreeableness5 0.88, Openness/
Intellect5 0.87, and Conscientiousness5 0.91).

Identification of Optimal DCM

DCM analysis identified a right sided, forward WM
model with an exceedance probability of 96%. In this opti-
mal model, the WM load at 3-back significantly increased
effective connectivity in the forward connection from the
right PAR to the right DLPFC (P< 0.002). The strength of
the WM modulation of the effective connectivity from the
right PAR to the right DLPFC was associated with
improved response time (r520.33, P5 0.04), without
change in performance accuracy.

Regression Analysis

The BMA connectivity estimate of the forward connec-
tion from the right PAR to the right DLPFC was entered
as a dependent variable in a forced regression model with
age, sex, IQ, and NEO-PI-R scores of all five personality
domains as factors. We found that higher neuroticism
scores were associated with reduced WM modulation of
the connection from the right PAR to the right DLPFC
(b520.86, P5 0.001), while the opposite was the case for
conscientiousness (b5 0.74, P5 0.001). Agreeableness
(b520.11, P> 0.2), Extraversion (b5 0.21, P> 0.2), Open-
ness to Experience (B5 0.13, P> 0.2), age (b520.07,
P> 0.2), sex (b520.02, P> 0.2), and IQ (b5 0.17, P> 0.2),

Figure 1.

(a) Neuroticism was negatively correlated with the WM modu-

lation of the forward connection from the R-PAR to the

R-DLPFC; (b) Random-effects Bayesian Model Selection identi-

fied one model with an exceedance probability of 96%. Post hoc

t-tests on Bayesian Model Averages of connectivity confirmed

that WM load significantly modulated the forward connection

from the R-PAR to the R-DLPFC in all participants; (c) Consci-

entiousness was positively correlated with WM modulation of

the forward connection from the R-PAR to the R-DLPFC.

Abbreviations: L5 left; R5 right; ACC5 anterior cingulate cor-

tex; DLPFC5 dorsolateral prefrontal cortex; PAR5 parietal cor-

tex; WM5working memory.
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were not significant. The overall model fit was R2
5 0.46

(Fig. 1).

DISCUSSION

In healthy individuals, neuroticism, characterized by
negative affect, has been associated with disadvantageous
changes in cognition, brain structure, anatomical connec-
tivity [Bjørnebekk et al., 2013; DeYoung et al., 2010; Kapo-
giannis et al., 2013; Kumari et al., 2004; Wright et al., 2006,
2007], and resting state connectivity [Kruschwitz et al.,
2015]. Conversely, conscientiousness, characterized by
adherence to rules and goals, seems to have a protective
role [DeYoung et al., 2010; Forbes et al., 2014; Kapogiannis
et al., 2013; Wright et al., 2006, 2007].

The novel finding in this study is the identification of a
mechanistic link between personality dimensions and cog-
nitive efficiency during a WM task through changes in
right frontoparietal effective connectivity. Effective connec-
tivity is considered an index of short-term neural-network
level plasticity [Friston, 1994; Friston et al., 2003; Stephan
et al., 2010]. This short-term plasticity represents a funda-
mental mechanism by which the brain alters or contextual-
izes its connectivity and function in response to external
or internal cues [Salinas and Sejnowski, 2001]. Two inde-
pendent lines of evidence support the crucial role of for-
ward connections from the parietal to the frontal cortex
and their relationship to WM. Electrophysiological studies
have found that tasks with high WM load place greater
demands on parietal regions, expressed as persistently
high EEG alpha rhythm [Gevins and Smith, 2000] and
increased parietal involvement improves response time
without affecting accuracy. Similarly, repeated transcranial
magnetic stimulation has been shown to increase parieto-
frontal functional connectivity and improve response time
in WM tasks [Esslinger et al., 2014]. The parieto-frontal
changes in connectivity were context sensitive (task-
related) and not present in resting state data [Esslinger
et al., 2014]. Together, this evidence suggests that during
WM, high-load conditions transiently increase parieto-
frontal coupling. We have shown here that WM modula-
tion of the right parieto-frontal effective connectivity seems
to be influenced by personality traits of neuroticism and
conscientiousness. Higher neuroticism scores were associ-
ated with reduced WM modulation while higher conscien-
tiousness scores were associated with increased WM
modulation.

This study presents a powerful approach for identifying
mechanistic links between cognitive neuroscience con-
structs and domains of psychopathology. Deficits in WM
of medium to large effect size are present in most if not all
neuropsychiatric disorders [recently reviewed by Snyder
et al., 2015] although their diagnostic and prognostic sig-
nificance has been studied most extensively in psychotic
disorders, namely schizophrenia and bipolar disorder
[Frangou, 2014; Schmidt et al., 2015]. It is also the case that

abnormalities in fronto-parietal connectivity in psychotic
disorders have also been robustly associated both with
WM dysfunction and the clinical symptom expression
[Frangou, 2014; Schmidt et al., 2015].

There are several methodological considerations in inter-
preting our results. The NEO-PI-R is a self-report instru-
ment. Although there is much evidence in support of its
validity and reliability, particularly in healthy individuals
[Young and Schinka, 2001], self-report measures inevitably
reflect subjective judgement. Furthermore, our sample is
relatively small for the study of individual differences.
Although the association between personality dimensions
and effective connectivity is robust, confirmation of our
findings in a larger, independent sample would be desira-
ble. Last, DCM is not a direct measure of short-term neu-
roplasticity. In fMRI studies, neuroplastic responses can
only be inferred from task-related changes in BOLD signal.
The advantage of DCM is that it does not rely simply on
changes in the hemodynamic response [Friston et al.,
2003]. It informs about changes in neuronal states and
therefore provides a better model for the underlying neu-
roplastic changes [Friston et al., 2003].

Our results demonstrate that neural network plasticity,
as measured by changes in effective connectivity, links
individual differences in behaviour and cognitive
efficiency.
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