
Bishop, P. G. & Cyra, L. (2010). Overcoming Non-determinism in Testing Smart Devices: A Case

Study. Lecture Notes in Computer Science, 6351, pp. 237-250. doi: 10.1007/978-3-642-15651-

9_18

City Research Online

Original citation: Bishop, P. G. & Cyra, L. (2010). Overcoming Non-determinism in Testing Smart

Devices: A Case Study. Lecture Notes in Computer Science, 6351, pp. 237-250. doi: 10.1007/978-

3-642-15651-9_18

Permanent City Research Online URL: http://openaccess.city.ac.uk/14340/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/76981621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Overcoming Non-Determinism

in Testing Smart Devices: a Case Study

Peter Bishop
1,2

, Lukasz Cyra
2

1 Centre for Software Reliability, City University, London

Northampton Square, London, EC1V 0HB, United Kingdom

2 Adelard LLP

Northampton Square, London, EC1V 0HB, United Kingdom

{pgb, lc}@adelard.com

Abstract. This paper presents a case study in “black-box” assessment of a

“smart” device where, based only on the user manuals and the instrument itself,

we try to build confidence in smart device reliability. To perform the black-box

assessment, we developed a test environment which automates the generation

of test data, their execution and interpretation of the results. The assessment

was made more complex by the inherent non-determinism of the device. For

example, non-determinism can arise due to inaccuracy in an analogue

measurement made by the device when two alternative actions are possible

depending on the measured value. This non-determinism makes it difficult to

predict the output values that are expected from a test sequence of analogue

input values. The paper presents two approaches to dealing with this difficulty:

(1) based on avoidance of test values that could have multiple responses, (2)

based on consideration of all possible interpretations of input data. To support

the second approach we use advanced modelling and simulation techniques to

predict all the likely interpretations and check whether any of them is observed

at the smart device output.

Keywords: testing, non-determinism, smart instruments, safety.

1 Introduction

The justification of smart instruments has become an important topic in the nuclear

industry [1]. These instruments have operational and safety benefits as they are more

accurate and require less calibration, but since they are programmable devices, there

is a potential for software defects within the device, which could result in

unpredictable behaviour.

Ideally some independent assessment of the development information and

firmware should be performed to gain assurance that the behaviour is predictable. In

practice, however, it may not be possible and independent “black-box” testing [2]

may be necessary to gain confidence in the device. “Black-box” testing is based

solely on publicly available artefacts—typically the user manuals (for operation and

maintenance) and the instrument itself.

In this paper we describe the test environment we have developed to automate the

process of test data generation, test execution and result checking. This was used to

perform a range of automated black-box tests on a commercially available smart

device. We found that a key difficulty in automating these tests was the

non-deterministic response of the smart device to certain input values. We describe

the strategies we have used to overcome this problem.

2 Non-determinism in Smart Devices

Smart instruments are physical devices to which we feed the input and read the

corresponding output. For the purpose of this section we are assuming that a smart

device:

• has an analogue input to measure some plant parameter

• has a configurable alarm, which is set on when the input value exceeds a certain

limit

• has a configurable deadband, to avoid “jitter” the alarm is only turned off when the

input value drops below the deadband

No matter what test environment we use to analyse such an instrument,

non-determinism is unavoidable. It arises from a number of different sources that are

inherent to smart devices. In particular:

• smart device accuracy

• smart device sample rates

• smart device response lags

In addition, the test harness can be a further source of uncertainty when checking the

correctness of the results.

2.1 Smart Device Accuracy

Inaccuracy in the measured input value leads to a non-deterministic output result

when the input value is close to some configured alarm limit as shown in Fig. 1.

Alarm state

Off

On

Measured input

Alarm Limit

Deadband

Time

Non-deterministic

value

Either

alarm

state

possible

Time

Fig. 1. Non-determinism due to smart device inaccuracy

The smart device measurement inaccuracy is represented by the thick grey line. If the

internally measured value could lie on either side of the alarm limit (due to smart

device measurement inaccuracy) then two alternative alarm states are possible. The

test results only become deterministic when the measured value ensures that only a

single alarm state is possible (e.g. when the measured value drops well below the

deadband).

2.2 Discrete Sampling Intervals

A similar non-determinism problem arises if smart device measurements are only

performed at discrete time points (see Fig. 2).

Alarm state

Off

On

Measured input

Alarm Limit

Deadband

Time

Smart device input

sample interval

Either

alarm

state

possible

Time

Fig. 2. Non-determinism due to discrete smart device sample intervals

It can be seen that the device will not “see” a short excursion above the alarm limit if

the measurement samples straddle the excursion (solid lines) but the device would see

the excursion if a sample coincided with the excursion (dashed lines). As we have no

way of knowing when the samples occur within the smart device, we cannot

determine which alarm state is expected even if the test equipment and smart device

were absolutely accurate.

2.3 Smart Device Lags

Even if the alarm activation decision is deterministic, there is still uncertainty about

when the expected response will appear at the smart device output. This is illustrated

in Fig. 3 below.

Alarm state

Off

On

Measured input

Alarm Limit

Deadband

Time

Smart device input

sample interval

Either

alarm

state

possible

Time

Output

response

lag(s)

Fig. 3. Non-determinism due to uncertain response times

This arises from:

• uncertainty about when the smart device samples the input

• lags introduced by internal filtering algorithms

• uncertainty about the computation time taken to decide the alarm state

• variation in the time needed to physically switch an alarm relay to another state

2.4 Non-determinism in the Test Harness

The test harness is also a source of non-determinism due to:

• Finite accuracy. This increases the uncertainty in the measured value as seen by the

smart device.

• Lags in the test relays. Special test relays controlled by the PC can simulate events

like broken wires or power interruption. It can take a finite time to activate and

deactivate a test relay, and this can extend the apparent time taken by the device in

responding to the event.

3 Testing Non-deterministic Systems

To test smart instruments we have to address all the types of non-determinism

described above. We can do it in the following way:

• smart device accuracy – by taking one of the approaches: (1) avoidance of inputs

which are “close” to an alarm limit (i.e. beyond the inaccuracies introduced by the

smart device and the test harness) or (2) detailed analysis of all the possible

interpretations of the inputs by the device to assess which outputs may be correct

• smart device sample rates – by holding the test value steady for a fixed “settling

time” before reading the result

• smart device response lags – by holding the test value steady for a fixed “settling

time” before reading the result

• test harness – by allowing for the operation of test relays in the “settling time”

(lags in the test relays) and taking the steps mentioned in bullet 1 (finite accuracy)

Avoidance of inputs which are “close” to an alarm limit should, in theory, ensure that

the smart device will respond in a deterministic way where each input measurement is

interpreted as being definitely above or below the decision point. So we should be

able to predict the alarm output values for each.

However this restricts the scope for realistic testing and may make the detection of

some bugs impossible, e.g. a device may enter erroneous state after receiving a value

which is interpreted as equal to the decision point. If we wish to simulate typical plant

operation we should allow any realistic sequence of input values, including

• continuously changing values

• inputs close to the alarm limit

If this is allowed, then analysis of the smart device outputs becomes much more

difficult. The test result checker has to:

• identify when input values can result in different responses (given the uncertainties

in accuracy and timing in the smart device)

• maintain different execution threads for the different input interpretations

• accept a set of output results that agree with any current thread

This mechanism is illustrated in Fig. 4. If the actual result does not correspond

with a given thread, the thread is discarded. If all the threads are removed this way,

the result checker indicates a potential error.

The figure shows a simplified version of the problem. Smart sensors often set an

alarm after a configurable delay (i.e. the input must stay above the limit for at least

certain time). If we remain “close” to a decision point for some time, assuming that a

delay is set, the number of threads may be thousands or millions rather than the two

shown in Fig. 4. The complexity of the analysis depends on the frequency with which

the device can change interpretation of a constant input being “close” to a decision

point. We can influence the complexity of the analysis by changing this assumption

and as a result obtaining more or less false positives (Section 6 gives an example).

Alarm state

Device input

value

Alarm Limit

Deadband

Time

Non-deterministic input values

Time

Off

On

One or more threads to represent

possible device states

Fig. 4. Handling non-deterministic test results

4 Black-box Testing Case Study

The smart device chosen for this study is a smart sensor alarm unit that can measure a

plant parameter and raise an alarm if a programmable limit is violated. The smart

sensor used in this study can monitor a wide range of plant measurements (via

thermocouple, resistance, or 4-20mA input signals). The device controls four relay

outputs to annunciate different alarm states.

The smart device can be configured to:

• use different plant input sensors

• trigger an alarm on high or low measured values

• avoid alarm “jitter” by specifying latching, alarm delays and deadbands

• detect rapid rates of change

• raise an alarm if internal errors are detected

The device also has LED status indicators which reflect the current state of each

alarm relay. There is a push-button input that can be used to manually reset alarms

that are configured to latch to the “on” state. The device can be configured via front

panel pushbuttons and a display screen. It can also be programmed via configuration

software running on a PC connected to the device by a serial interface.

5 Test Harness

We implemented a test harness to support functional test definition, execution and

analysis of the results. The harness is composed of three parts (as shown in Fig. 5).

Offline

test data

generator(s)

Test data

file

On-line test
execution

Test result

checker

Test

result file Discrepancy

reports

Fig. 5. Test harness elements

The harness comprises:

• An off-line test data generator. This produces test cases according to some strategy.

The results are stored in a test data file.

• An on-line test execution system, which reads the test data file, applies the test to

the smart device and records the result.

• An off-line result checker, which takes the test data file, computes the expected

results and compares this against the result generated by the smart device.

We chose to use off-line test generation and checking because this gives us additional

flexibility. If there are errors in the checker, the test result file is still valid, so we only

need to fix the checker.

5.1 Test Data Generator

We developed an application for test data generation. The application generates tests

using two different strategies:

• Statistical tests. This is an approximation of plant transients where the input

increases to some limit with random fluctuations. An example of a transient is

depicted in Fig. 6.

Fig. 6. Simulated transient test sequence

• Random tests. These are designed to maximise changes in the alarm outputs. An

example is depicted in Fig. 7.

Fig. 7. Random test sequence

5.2 On-line Test Execution System

The on-line test execution system comprised:

• a PC with analogue and digital interfaces connected to the smart device

• a LabVIEW program to read the data file with test cases to the smart device and

record the results

PC

Smart

Alarm

device

Alarm

relays

Test value

from analogue

output

Test relay control lines

Relay

Relay

Test

value

manual

reset

Analogue

output

Measured value (smart device)

Alarm states

Test value

feedback

Fig. 8. Test harness schematic

The test environment (shown in Fig. 8) includes control of test relays to simulate

broken wire conditions, and the operation of a manual reset button. We were also

reading the output of the smart sensor to compare it with the test input and understand

if differences observed can influence interpretation of the results. We tried to read

back the test signal generated by the analogue interface by feeding it back to an

analogue input so that it could be read by the PC. This however, affected the accuracy

of the other analogue interfaces. Therefore, after doing some experiments we decided

to remove this connection.

The test execution system is composed of:

• a personal computer, which runs a LabVIEW application controlling test execution

and another application for configuring the smart sensor

• a card with relays extending the PC interface (InLog PCX-4288)

• a data acquisition device extending the PC interface (National Instruments

USB-6008/6009)

• a smart sensor undergoing tests

• an analogue lab board providing voltage source for testing the state of the smart

sensor

In this configuration, the test signal error was about ±10mV (around 0.2% of the full

scale value).

The hardware was controlled by two Microsoft Windows application written in

LabVIEW [3]. We developed:

• a manually operated test-bench application

• an automated test execution application

The test-bench application was used to check out the hardware of our test

execution system. It has a knob to adjust the input, diagrams, indicator lamps

presenting the state of the alarms, and switches to simulate “broken wire” and

pressing the reset button of the smart sensor. It also has four charts which display a

diagram with the output from the alarms.

Fig. 9. Test-bench application (GUI)

The test execution application performs a set of pre-defined tests stored in a file

created by the application for test data generation. The application has the following

functionality:

• It reads input from a data file (i.e. the voltage for the analogue input of the smart

sensor, the state of the reset button and the state of the “broken wire” relay).

• It provides input in a loop to the device acquisition card and sets the state of relays.

• It reads output (i.e. the state of the analogue output and the state of the alarms) in a

loop and writes it together with the corresponding input to a file.

The model of the application is given in Fig. 10.

Set test value

Wait 2 secs
Reset?

Read results

Reset on

Wait 2 secs

Reset off

Wait 2 secs

yes

no

Fig. 10. Test execution application model

Execution of one test takes 2s or 6s depending on whether a reset is part of the test.

We found that we needed 2s for simulating the input because with shorter delays

(e.g. 1s) behaviour of the smart sensor was unpredictable, i.e. many errors were

recorded which could not be reproduced with the delay of 2s. We needed an

additional 4s for simulating the reset button because the relay card we used is slow

and with shorter delays it would be hard to be sure that the reset operation was

simulated properly. A timing accuracy of 2s is acceptable for the device we have been

analysing, but we plan to perform a more accurate response time analysis in

subsequent research.

Apart from these two applications, we used another one developed by the

manufacturer of the smart sensor in order to configure the smart device via a PC and

read the state of the process variable of the device.

5.3 Test Analysis

We implemented an off-line test results checker (an oracle) as an application. The

result checking process is identical no matter which test data generation procedure is

used. It takes the test result file comprising a sequence of smart sensor inputs and

outputs and then checks if they agree with the internal model of the device built into

the application. The model is a finite state machine defined based on the behaviour

specified in the user manual. As the documentation is not precise, the model must try

to take the weakest assumptions possible, i.e. permit all behaviours which do not

conflict with the manufacturer’s documentation. If the outputs of the oracle and the

actual result disagree, the checker generates a list of potential errors.

The result checker is highly configurable. It specifies the configuration of each

alarm relay (e.g. type, limit, deadband, latch mode, and relay delay). Its interface is

shown in Fig. 11.

Fig. 11. Result checker interface

Given the input data, smart device configuration and delay data, the oracle can

compute the result and compare it with the actual result. This is not as straightforward

as it may first appear, as discrepancies can be generated if the expected result is not

unique. Section 2 discusses the possible sources of non-deterministic results. The

result checker has to identify all the possible interpretations of the inputs, and based

on this data calculate all the possible states of the modelled device. If any of the

threads has output values that match the test result, the result is accepted. If none of

the states resulting from the inputs corresponds to the test result, a discrepancy is

identified.

Our non-deterministic model initially assumed that the test value measured by the

smart device is unchanged between test input changes. However, by monitoring the

smart device display, we established that the measured value does in fact differ on

successive internal measurements made by the device. This inherent variability due to

periodic internal sampling had to be included in the non-deterministic result checking

model by computing new threads at each potential sample point (using a configurable

sample rate).

6 Testing and Test Results

We applied three test strategies to derive test cases for the device:

• Statistical testing. We generated and executed 4600 simulated plant transient test

sequences. For realistic plant transients, this should give 99% confidence in 10
-3

failures per demand if no discrepancies are detected by the result checker.

Execution of one set of transients takes 8 days of continuous execution by the

testing harness.

• Random testing. We generated and executed 10 000 random tests. Execution of the

tests took 6 hours.

• Negative testing. We tested the device with:

− out of range inputs (20% above and below the accepted range)

− valid, equivalent inputs and checking for variation in the output

− testing functional independence (i.e. where changes in the device configuration

influence unrelated functionality)

− random testing (this time addressing independence and consistency of the

behaviour of alarms)

− testing based on transients (this time addressing independence and consistency

of the behaviour of alarms)

Execution of the tests led to identification of a few potential discrepancies. Statistics

about the detection rates for each of the strategies are presented in Table 1.

Table 1: Discrepancy detection rates

Number of discrepancies for a sampling rate
Test strategy

non 1/sec 2/sec 30/sec

Statistical testing 25 13 10 10

Random testing 0 0 0 0

Negative testing 1 1 1 1

The table shows the number of discrepancies detected for each of the strategies in

the function of the assumed device sampling rate. We can see that the number of

discrepancies detected falls when we assume that the device may change

interpretation of a constant input. The number of discrepancies becomes constant

once the sampling rate is increased to 2/sec, which may correspond to the actual

sampling rate of the device.

For each of the discrepancies detected we were able to identify the corresponding

inputs and outputs and present them in the context of adjacent inputs and outputs

using our analysis tool. An example is shown in Fig. 12.

Fig. 12. Discrepancy analysis

Analysis of the identified discrepancies revealed that all of the discrepancies occurred

at values close to the configured alarm limits. These discrepancies can be explained if

we change some the assumptions made about the behaviour of the device. Some of

the potential explanations are given below:

• We had assumed that all alarms use the same interpretation of the process variable.

The data captured seems to suggest however that each of the alarms may interpret

the input independently, e.g. an input value close to the limit may be interpreted by

one of the alarms as being above and by another as being below the limit.

• Our test automation system assumes 2 seconds is sufficient time to wait for a stable

response, however, for a small fraction of inputs, it seems this delay is insufficient.

• We might have assumed too small a range around a decision point where the

interpretation of inputs is considered to be non-deterministic.

7 Discussion

From our case study it is clear that black-box testing is a non-trivial task. The number

of discrepancies detected is very dependent on the accuracy of the model checker and

its coverage of all sources of non-determinism in the expected result. We have

independent evidence for believing that the smart device does in fact implement its

alarm logic correctly, so the residual discrepancies are likely to be due to other

sources of non-determinism that have not been included in the model checker.

Clearly we can continue to refine the model checker of smart device behaviour to

reduce the discrepancies even further, but we need to consider whether this is a

realistic approach. Effectively, we are inventing a smart device design that can

explain the observed discrepancies, but in a black-box context, we can never be sure

the inferred design is actually valid.

What we really need is a result checker that does not need to know about internal

details (such as the sampling rate of the device) but is based solely on the published

behaviour. One possible avenue that we intend to explore is the idea of defining a set

of “invariant behaviours” derived from the public documentation, e.g.:
Test_input >> alarm_lim � Alarm=ON
Test_input << alarm_lim_deadband � Alarm=OFF

Note that the >> operator is used to denote “definitely greater given the published

inaccuracy, and the condition has remained true for the smart device’s published

maximum response time”.

If we do this, we have to accept that there are points in the test sequence where

none of the invariants will apply and the model-checker simply has to ignore the

results generated—discrepancies can only be checked when the invariant condition is

active. There could also be difficulties with this approach because it assumes test

points where the answer is unique, i.e. the possible states of the smart device converge

to a single state. This may not always be true. For example:

• An alarm is configured to latch permanently if the limit is exceeded

• The test sequence rises up to the limit then falls

In this case there are two possible responses so the smart device states will diverge for

any subsequent test values that stay below the alarm limit. A more complex

expression of expected behaviour over time would be needed like invariants

expressed in some form of timed temporal logic [4]. We hope to investigate the

feasibility of this approach in further research.

8 Conclusions

The paper presents a case study in which a test harness for a smart device was

developed and used to execute a set of black-box test cases defined using several test

strategies.

We showed that non-determinism of the smart device response makes the testing

significantly more difficult. We have sought to address this problem by designing the

result checker to explicitly allow for non-determinism. When a potentially

non-deterministic test condition is detected, the result checker creates different

“threads” representing alternative potential states of the device. Normally the threads

recombine at a later point in time, when the input leaves the area “close” to limits

because the threads will converge to an identical internal state. For example, after a

certain amount of time above a trip limit, all threads will be in the alarm state.

This strategy has proved to be quite successful, but there are still some residual

discrepancies that we suspect are false positives. These could probably be removed by

increasing the complexity of the non-deterministic model of the device, but it is

difficult to justify the model given that the device is a black-box.

In the next stage of research we plan to investigate less strict forms of model

checking where we ignore all test cases where there is any uncertainty about the

expected results.

Acknowledgments. The authors wish to acknowledge the support of UK C&I

Nuclear Industry Forum (CINIF) who funded the research presented in this paper.

References

1. Bishop, P., Bloomfield, R., Guerra, S., Tourlas, K.: Justification of Smart Sensors for

Nuclear Applications, SAFECOMP 2005, LNCS 3688, pp. 194-207, Springer-Verlag,

Berlin/Heidelberg, Germany (2005)

2. R Alur, TA Henzinger, A Really Temporal Logic, Journal of the ACM (JACM), Volume 41

, Issue 1, pp. 181 – 203 (January 1994)

3. National Instruments, LabVIEW, http://www.ni.com/labview (visited on 24/02/2010)

4. M Krichen, S Tripakis1, Black-Box Conformance Testing for Real-Time Systems, Lecture

Notes in Computer Science, Volume 2989/2004 (Model Checking Software) pp. 109-126

(Feb 2004)

