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Abstract. This paper presents a case study in “black-box” assessment of a 

“smart” device where, based only on the user manuals and the instrument itself, 

we try to build confidence in smart device reliability. To perform the black-box 

assessment, we developed a test environment which automates the generation 

of test data, their execution and interpretation of the results. The assessment 

was made more complex by the inherent non-determinism of the device. For 

example, non-determinism can arise due to inaccuracy in an analogue 

measurement made by the device when two alternative actions are possible 

depending on the measured value. This non-determinism makes it difficult to 

predict the output values that are expected from a test sequence of analogue 

input values. The paper presents two approaches to dealing with this difficulty: 

(1) based on avoidance of test values that could have multiple responses, (2) 

based on consideration of all possible interpretations of input data. To support 

the second approach we use advanced modelling and simulation techniques to 

predict all the likely interpretations and check whether any of them is observed 

at the smart device output. 

Keywords: testing, non-determinism, smart instruments, safety. 

1   Introduction 

The justification of smart instruments has become an important topic in the nuclear 

industry [1]. These instruments have operational and safety benefits as they are more 

accurate and require less calibration, but since they are programmable devices, there 

is a potential for software defects within the device, which could result in 

unpredictable behaviour.  

Ideally some independent assessment of the development information and 

firmware should be performed to gain assurance that the behaviour is predictable. In 

practice, however, it may not be possible and independent “black-box” testing [2] 

may be necessary to gain confidence in the device. “Black-box” testing is based 



solely on publicly available artefacts—typically the user manuals (for operation and 

maintenance) and the instrument itself. 

In this paper we describe the test environment we have developed to automate the 

process of test data generation, test execution and result checking. This was used to 

perform a range of automated black-box tests on a commercially available smart 

device. We found that a key difficulty in automating these tests was the 

non-deterministic response of the smart device to certain input values. We describe 

the strategies we have used to overcome this problem. 

2   Non-determinism in Smart Devices 

Smart instruments are physical devices to which we feed the input and read the 

corresponding output. For the purpose of this section we are assuming that a smart 

device: 

• has an analogue input to measure some plant parameter 

• has a configurable alarm, which is set on when the input value exceeds a certain 

limit 

• has a configurable deadband, to avoid “jitter” the alarm is only turned off when the 

input value drops below the deadband 

No matter what test environment we use to analyse such an instrument, 

non-determinism is unavoidable. It arises from a number of different sources that are 

inherent to smart devices. In particular: 

• smart device accuracy 

• smart device sample rates 

• smart device response lags 

In addition, the test harness can be a further source of uncertainty when checking the 

correctness of the results. 

2.1   Smart Device Accuracy 

Inaccuracy in the measured input value leads to a non-deterministic output result 

when the input value is close to some configured alarm limit as shown in Fig. 1. 
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Fig. 1. Non-determinism due to smart device inaccuracy 

The smart device measurement inaccuracy is represented by the thick grey line. If the 

internally measured value could lie on either side of the alarm limit (due to smart 

device measurement inaccuracy) then two alternative alarm states are possible. The 

test results only become deterministic when the measured value ensures that only a 

single alarm state is possible (e.g. when the measured value drops well below the 

deadband). 

2.2   Discrete Sampling Intervals 

A similar non-determinism problem arises if smart device measurements are only 

performed at discrete time points (see Fig. 2).  

 

 

Alarm state 

Off 

On 

Measured input 

Alarm Limit 

Deadband 

Time 

Smart device input 

sample interval 

Either  

alarm 

state 

possible 

Time  

Fig. 2. Non-determinism due to discrete smart device sample intervals 

 



It can be seen that the device will not “see” a short excursion above the alarm limit if 

the measurement samples straddle the excursion (solid lines) but the device would see 

the excursion if a sample coincided with the excursion (dashed lines). As we have no 

way of knowing when the samples occur within the smart device, we cannot 

determine which alarm state is expected even if the test equipment and smart device 

were absolutely accurate. 

2.3   Smart Device Lags 

Even if the alarm activation decision is deterministic, there is still uncertainty about 

when the expected response will appear at the smart device output. This is illustrated 

in Fig. 3 below. 
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Fig. 3. Non-determinism due to uncertain response times 

This arises from: 

• uncertainty about when the smart device samples the input 

• lags introduced by internal filtering algorithms 

• uncertainty about the computation time taken to decide the alarm state 

• variation in the time needed to physically switch an alarm relay to another state 

2.4   Non-determinism in the Test Harness 

The test harness is also a source of non-determinism due to: 

• Finite accuracy. This increases the uncertainty in the measured value as seen by the 

smart device. 

• Lags in the test relays. Special test relays controlled by the PC can simulate events 

like broken wires or power interruption. It can take a finite time to activate and 



deactivate a test relay, and this can extend the apparent time taken by the device in 

responding to the event. 

3   Testing Non-deterministic Systems 

To test smart instruments we have to address all the types of non-determinism 

described above. We can do it in the following way: 

• smart device accuracy – by taking one of the approaches: (1) avoidance of inputs 

which are “close” to an alarm limit (i.e. beyond the inaccuracies introduced by the 

smart device and the test harness) or (2) detailed analysis of all the possible 

interpretations of the inputs by the device to assess which outputs may be correct 

• smart device sample rates – by holding the test value steady for a fixed “settling 

time” before reading the result 

• smart device response lags – by holding the test value steady for a fixed “settling 

time” before reading the result 

• test harness – by allowing for the operation of test relays in the “settling time” 

(lags in the test relays) and taking the steps mentioned in bullet 1 (finite accuracy) 

Avoidance of inputs which are “close” to an alarm limit should, in theory, ensure that 

the smart device will respond in a deterministic way where each input measurement is 

interpreted as being definitely above or below the decision point. So we should be 

able to predict the alarm output values for each. 

However this restricts the scope for realistic testing and may make the detection of 

some bugs impossible, e.g. a device may enter erroneous state after receiving a value 

which is interpreted as equal to the decision point. If we wish to simulate typical plant 

operation we should allow any realistic sequence of input values, including 

• continuously changing values 

• inputs close to the alarm limit 

If this is allowed, then analysis of the smart device outputs becomes much more 

difficult. The test result checker has to: 

• identify when input values can result in different responses (given the uncertainties 

in accuracy and timing in the smart device) 

• maintain different execution threads for the different input interpretations  

• accept a set of output results that agree with any current thread 

This mechanism is illustrated in Fig. 4. If the actual result does not correspond 

with a given thread, the thread is discarded. If all the threads are removed this way, 

the result checker indicates a potential error. 

The figure shows a simplified version of the problem. Smart sensors often set an 

alarm after a configurable delay (i.e. the input must stay above the limit for at least 

certain time). If we remain “close” to a decision point for some time, assuming that a 

delay is set, the number of threads may be thousands or millions rather than the two 

shown in Fig. 4. The complexity of the analysis depends on the frequency with which 

the device can change interpretation of a constant input being “close” to a decision 

point. We can influence the complexity of the analysis by changing this assumption 

and as a result obtaining more or less false positives (Section 6 gives an example). 
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Fig. 4. Handling non-deterministic test results 

4   Black-box Testing Case Study 

The smart device chosen for this study is a smart sensor alarm unit that can measure a 

plant parameter and raise an alarm if a programmable limit is violated. The smart 

sensor used in this study can monitor a wide range of plant measurements (via 

thermocouple, resistance, or 4-20mA input signals). The device controls four relay 

outputs to annunciate different alarm states. 

The smart device can be configured to: 

• use different plant input sensors 

• trigger an alarm on high or low measured values 

• avoid alarm “jitter” by specifying latching, alarm delays and deadbands 

• detect rapid rates of change 

• raise an alarm if internal errors are detected 

The device also has LED status indicators which reflect the current state of each 

alarm relay. There is a push-button input that can be used to manually reset alarms 

that are configured to latch to the “on” state. The device can be configured via front 

panel pushbuttons and a display screen. It can also be programmed via configuration 

software running on a PC connected to the device by a serial interface. 

5   Test Harness 

We implemented a test harness to support functional test definition, execution and 

analysis of the results. The harness is composed of three parts (as shown in Fig. 5). 
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Fig. 5. Test harness elements 

The harness comprises: 

• An off-line test data generator. This produces test cases according to some strategy. 

The results are stored in a test data file. 

• An on-line test execution system, which reads the test data file, applies the test to 

the smart device and records the result. 

• An off-line result checker, which takes the test data file, computes the expected 

results and compares this against the result generated by the smart device. 

We chose to use off-line test generation and checking because this gives us additional 

flexibility. If there are errors in the checker, the test result file is still valid, so we only 

need to fix the checker. 

5.1   Test Data Generator 

We developed an application for test data generation. The application generates tests 

using two different strategies: 

• Statistical tests. This is an approximation of plant transients where the input 

increases to some limit with random fluctuations. An example of a transient is 

depicted in Fig. 6. 

 

 

Fig. 6. Simulated transient test sequence 

• Random tests. These are designed to maximise changes in the alarm outputs. An 

example is depicted in Fig. 7. 



 

Fig. 7. Random test sequence 

5.2   On-line Test Execution System 

The on-line test execution system comprised: 

• a PC with analogue and digital interfaces connected to the smart device 

• a LabVIEW program to read the data file with test cases to the smart device and 

record the results 
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Fig. 8. Test harness schematic 

The test environment (shown in Fig. 8) includes control of test relays to simulate 

broken wire conditions, and the operation of a manual reset button. We were also 

reading the output of the smart sensor to compare it with the test input and understand 

if differences observed can influence interpretation of the results. We tried to read 

back the test signal generated by the analogue interface by feeding it back to an 

analogue input so that it could be read by the PC. This however, affected the accuracy 

of the other analogue interfaces. Therefore, after doing some experiments we decided 

to remove this connection. 



The test execution system is composed of: 

• a personal computer, which runs a LabVIEW application controlling test execution 

and another application for configuring the smart sensor 

• a card with relays extending the PC interface (InLog PCX-4288) 

• a data acquisition device extending the PC interface (National Instruments 

USB-6008/6009) 

• a smart sensor undergoing tests 

• an analogue lab board providing voltage source for testing the state of the smart 

sensor 

In this configuration, the test signal error was about ±10mV (around 0.2% of the full 

scale value). 

The hardware was controlled by two Microsoft Windows application written in 

LabVIEW [3]. We developed: 

• a manually operated test-bench application 

• an automated test execution application 

The test-bench application was used to check out the hardware of our test 

execution system. It has a knob to adjust the input, diagrams, indicator lamps 

presenting the state of the alarms, and switches to simulate “broken wire” and 

pressing the reset button of the smart sensor. It also has four charts which display a 

diagram with the output from the alarms. 

 

 

Fig. 9. Test-bench application (GUI) 

The test execution application performs a set of pre-defined tests stored in a file 

created by the application for test data generation. The application has the following 

functionality: 

• It reads input from a data file (i.e. the voltage for the analogue input of the smart 

sensor, the state of the reset button and the state of the “broken wire” relay). 

• It provides input in a loop to the device acquisition card and sets the state of relays. 



• It reads output (i.e. the state of the analogue output and the state of the alarms) in a 

loop and writes it together with the corresponding input to a file. 

The model of the application is given in Fig. 10. 
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Fig. 10. Test execution application model 

Execution of one test takes 2s or 6s depending on whether a reset is part of the test. 

We found that we needed 2s for simulating the input because with shorter delays 

(e.g. 1s) behaviour of the smart sensor was unpredictable, i.e. many errors were 

recorded which could not be reproduced with the delay of 2s. We needed an 

additional 4s for simulating the reset button because the relay card we used is slow 

and with shorter delays it would be hard to be sure that the reset operation was 

simulated properly. A timing accuracy of 2s is acceptable for the device we have been 

analysing, but we plan to perform a more accurate response time analysis in 

subsequent research. 

Apart from these two applications, we used another one developed by the 

manufacturer of the smart sensor in order to configure the smart device via a PC and 

read the state of the process variable of the device. 

5.3   Test Analysis 

We implemented an off-line test results checker (an oracle) as an application. The 

result checking process is identical no matter which test data generation procedure is 

used. It takes the test result file comprising a sequence of smart sensor inputs and 

outputs and then checks if they agree with the internal model of the device built into 

the application. The model is a finite state machine defined based on the behaviour 

specified in the user manual. As the documentation is not precise, the model must try 

to take the weakest assumptions possible, i.e. permit all behaviours which do not 

conflict with the manufacturer’s documentation. If the outputs of the oracle and the 

actual result disagree, the checker generates a list of potential errors. 

The result checker is highly configurable. It specifies the configuration of each 

alarm relay (e.g. type, limit, deadband, latch mode, and relay delay). Its interface is 

shown in Fig. 11. 

 



 

Fig. 11. Result checker interface 

Given the input data, smart device configuration and delay data, the oracle can 

compute the result and compare it with the actual result. This is not as straightforward 

as it may first appear, as discrepancies can be generated if the expected result is not 

unique. Section 2 discusses the possible sources of non-deterministic results. The 

result checker has to identify all the possible interpretations of the inputs, and based 

on this data calculate all the possible states of the modelled device. If any of the 

threads has output values that match the test result, the result is accepted. If none of 

the states resulting from the inputs corresponds to the test result, a discrepancy is 

identified. 

Our non-deterministic model initially assumed that the test value measured by the 

smart device is unchanged between test input changes. However, by monitoring the 

smart device display, we established that the measured value does in fact differ on 

successive internal measurements made by the device. This inherent variability due to 

periodic internal sampling had to be included in the non-deterministic result checking 

model by computing new threads at each potential sample point (using a configurable 

sample rate). 

6   Testing and Test Results 

We applied three test strategies to derive test cases for the device: 

• Statistical testing. We generated and executed 4600 simulated plant transient test 

sequences. For realistic plant transients, this should give 99% confidence in 10
-3 

failures per demand if no discrepancies are detected by the result checker. 

Execution of one set of transients takes 8 days of continuous execution by the 

testing harness. 

• Random testing. We generated and executed 10 000 random tests. Execution of the 

tests took 6 hours. 



• Negative testing. We tested the device with: 

− out of range inputs (20% above and below the accepted range) 

− valid, equivalent inputs and checking for variation in the output 

− testing functional independence (i.e. where changes in the device configuration 

influence unrelated functionality) 

− random testing (this time addressing independence and consistency of the 

behaviour of alarms) 

− testing based on transients (this time addressing independence and consistency 

of the behaviour of alarms) 

Execution of the tests led to identification of a few potential discrepancies. Statistics 

about the detection rates for each of the strategies are presented in Table 1. 

Table 1: Discrepancy detection rates 

Number of discrepancies for a sampling rate 
Test strategy 

non 1/sec 2/sec 30/sec 

Statistical testing 25 13 10 10 

Random testing 0 0 0 0 

Negative testing 1 1 1 1 

 

The table shows the number of discrepancies detected for each of the strategies in 

the function of the assumed device sampling rate. We can see that the number of 

discrepancies detected falls when we assume that the device may change 

interpretation of a constant input. The number of discrepancies becomes constant 

once the sampling rate is increased to 2/sec, which may correspond to the actual 

sampling rate of the device. 

For each of the discrepancies detected we were able to identify the corresponding 

inputs and outputs and present them in the context of adjacent inputs and outputs 

using our analysis tool. An example is shown in Fig. 12. 

 

 

Fig. 12. Discrepancy analysis 

Analysis of the identified discrepancies revealed that all of the discrepancies occurred 

at values close to the configured alarm limits. These discrepancies can be explained if 



we change some the assumptions made about the behaviour of the device. Some of 

the potential explanations are given below: 

• We had assumed that all alarms use the same interpretation of the process variable. 

The data captured seems to suggest however that each of the alarms may interpret 

the input independently, e.g. an input value close to the limit may be interpreted by 

one of the alarms as being above and by another as being below the limit. 

• Our test automation system assumes 2 seconds is sufficient time to wait for a stable 

response, however, for a small fraction of inputs, it seems this delay is insufficient. 

• We might have assumed too small a range around a decision point where the 

interpretation of inputs is considered to be non-deterministic. 

7   Discussion 

From our case study it is clear that black-box testing is a non-trivial task. The number 

of discrepancies detected is very dependent on the accuracy of the model checker and 

its coverage of all sources of non-determinism in the expected result. We have 

independent evidence for believing that the smart device does in fact implement its 

alarm logic correctly, so the residual discrepancies are likely to be due to other 

sources of non-determinism that have not been included in the model checker. 

Clearly we can continue to refine the model checker of smart device behaviour to 

reduce the discrepancies even further, but we need to consider whether this is a 

realistic approach. Effectively, we are inventing a smart device design that can 

explain the observed discrepancies, but in a black-box context, we can never be sure 

the inferred design is actually valid. 

What we really need is a result checker that does not need to know about internal 

details (such as the sampling rate of the device) but is based solely on the published 

behaviour. One possible avenue that we intend to explore is the idea of defining a set 

of “invariant behaviours” derived from the public documentation, e.g.: 
Test_input >> alarm_lim � Alarm=ON 
Test_input << alarm_lim_deadband � Alarm=OFF 

Note that the >> operator is used to denote “definitely greater given the published 

inaccuracy, and the condition has remained true for the smart device’s published 

maximum response time”.  

If we do this, we have to accept that there are points in the test sequence where 

none of the invariants will apply and the model-checker simply has to ignore the 

results generated—discrepancies can only be checked when the invariant condition is 

active. There could also be difficulties with this approach because it assumes test 

points where the answer is unique, i.e. the possible states of the smart device converge 

to a single state. This may not always be true. For example: 

• An alarm is configured to latch permanently if the limit is exceeded 

• The test sequence rises up to the limit then falls 

In this case there are two possible responses so the smart device states will diverge for 

any subsequent test values that stay below the alarm limit. A more complex 

expression of expected behaviour over time would be needed like invariants 



expressed in some form of timed temporal logic [4]. We hope to investigate the 

feasibility of this approach in further research. 

8   Conclusions 

The paper presents a case study in which a test harness for a smart device was 

developed and used to execute a set of black-box test cases defined using several test 

strategies.  

We showed that non-determinism of the smart device response makes the testing 

significantly more difficult. We have sought to address this problem by designing the 

result checker to explicitly allow for non-determinism. When a potentially 

non-deterministic test condition is detected, the result checker creates different 

“threads” representing alternative potential states of the device. Normally the threads 

recombine at a later point in time, when the input leaves the area “close” to limits 

because the threads will converge to an identical internal state. For example, after a 

certain amount of time above a trip limit, all threads will be in the alarm state. 

This strategy has proved to be quite successful, but there are still some residual 

discrepancies that we suspect are false positives. These could probably be removed by 

increasing the complexity of the non-deterministic model of the device, but it is 

difficult to justify the model given that the device is a black-box.  

In the next stage of research we plan to investigate less strict forms of model 

checking where we ignore all test cases where there is any uncertainty about the 

expected results.  
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