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Abstract. Splanchnic ischaemia can ultimately lead to cellular hypoxia and necrosis, and may 

well contribute to the development of multiple organ failures and increased mortality. 

Therefore, it is of utmost importance to monitor abdominal organ blood oxygen saturation 

(SpO2). Pulse oximetry has been widely accepted as a reliable method for monitoring oxygen 

saturation of arterial blood. Animal studies have also shown it to be effective in the monitoring 

of blood oxygen saturation in the splanchnic region. However, commercially available pulse 

oximeter probes are not suitable for the continuous assessment of SpO2 in the splanchnic 

region. Therefore, there is a need for a new sensor technology that will allow the continuous 

measurement of SpO2 in the splanchnic area pre-operatively, operatively and post-operatively. 

For this purpose, a new fibre optic sensor and processing system utilising the principle of 

reflectance pulse oximetry has been developed. The accuracy in the estimation of SpO2 in 

pulse oximetry depends on the quality and amplitude of the photoplethysmographic (PPG) 

signal and for this reason an experimental procedure was carried out to examine the effect of 

the source-detector separation distance on the acquired PPG signals, and to ultimately select an 

optimal separation for the final design of the fibre-optic probe. PPG signals were obtained from 

the finger for different separation distances between the emitting and detecting fibres. Good 

quality PPG signals with large amplitudes and high signal-to-noise ratio were detected in the 

range of 3mm to 6mm. At separation distances between 1 mm and 2 mm, PPG signals were 

erratic with no resemblance to a conventional PPG signal. At separation distances greater than 

6mm, the amplitudes of PPG signals were very small and not appropriate for processing. This 

investigation indicates the suitability of optical fibres as a new pulse oximetry sensor for 

estimating blood oxygen saturation (SpO2) in the splanchnic region. 

1.  Introduction 

Monitoring of abdominal organ oxygen saturation (SpO2) is of paramount importance in anaesthesia, 

intensive care and surgery[1]. The organs and tissues must be sufficiently perfused with oxygenated 

blood in order to survive. When an organ or tissue suffers severe hypoperfusion or extreme hypoxia, 

organ dysfunction ensues. Tissue hypoxia of one organ may lead indirectly to dysfunction or failure of 

distant organs through the release of mediators and various toxins [2]. In the case of bowel ischaemia, 

the loss of mucosal barrier function results in bacterial translocation and endotoxin absorption into 

portal blood which can amplify the systemic inflammatory response following surgery [3, 4]. This 

may ultimately contribute to the development of multiple organ failure, which remains a common 



 

 

 

 

 

 

cause of death and morbidity following major surgery despite advances in intensive care management 

[2]. 

Previous studies have indicated that the gastrointestinal tract might be the canary of the body, and, 

if monitored accurately, could allow for the early detection of inadequate tissue oxygenation [5]. 

Current monitoring techniques have not been widely accepted for use in the clinical setting, and do not 

provide a readily available monitoring technique to measure splanchnic perfusion and, most 

importantly, to quantitatively measure splanchnic oxygen saturation [1,2]. Techniques used to measure 

tissue oxygenation such as polarographic oxygen electrodes remain research tools and are used as a 

basis to compare emerging technologies [2]. Gastric tonometry, one of the few techniques currently 

used in clinical practice for estimating intestinal hypoxia, has been shown to be useful as a prognostic 

tool in detecting hypovolaemia [6]. However, due to the intermittent, heavily operator dependent and 

time consuming nature of the device, as well as its expense, it has not been widely accepted [7, 8]. 

Methods such as laser Doppler, Doppler ultrasound, and intravenous fluorescein have also been 

previously explored to assess intestinal ischaemia in animals [9, 10]. Many of these techniques are 

complex and expensive and none of them directly measures oxygenation. Therefore, there is a need for 

a simple, reliable, and continuous method for estimating abdominal organ blood oxygen saturation 

(SpO2). 

Pulse oximetry is a non-invasive optical technique used to estimate arterial blood oxygen saturation 

by shining light at two wavelengths, red and infrared, through vascular tissue [11]. The intensity of the 

backscattered light which reaches the photodetector is measured and the variations in the 

photodetector current are assumed to be related to blood volume changes underneath the probe. These 

variations are electronically amplified and recorded as a voltage signal called the 

photoplethysmograph (PPG). The pulsatile nature of arterial blood results in a waveform in the 

received signal that allows the absorbance effects of arterial blood (ac component) to be identified 

from those of non-pulsatile venous blood and other body tissue (dc component). The light absorbance 

of oxygenated haemoglobin and deoxygenated haemoglobin at these two wavelengths is different and 

therefore the amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial 

oxygen saturation. From the ratios of these amplitudes, and the corresponding dc 

photoplethysmographic components, arterial blood oxygen saturation (SpO2) is estimated [12]. The 

technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are 

detected as photoplethysmographic signals. Therefore, in order to accurately estimate SpO2 PPG 

signals of good quality and high signal to noise ratio are required. 

Pulse oximetry has been used experimentally in the detection of intestinal oxygenation in animals 

[13, 14]. In these studies it was found to be a rapid, reproducible, as well as a highly sensitive and 

specific technique for detecting small bowel ischaemia. More recently a custom made reflectance 

pulse oximeter has been used for the first time in humans to measure PPGs from various abdominal 

organs such as the liver, the kidney and the bowel. The use of commercial pulse oximeters for 

estimating splanchnic perfusion in humans has been found to be impractical (bulky, cannot be 

sterilized etc). There remains a need for a new sensor technology that is suitable for use in the human 

abdomen, which will allow the continuous measurement of SpO2 in the splanchnic area pre-

operatively, operatively and post-operatively. 

To overcome the limitations of the above described technologies, a new fibre optic sensor utilising 

the principle of reflectance pulse oximetry and processing system has been developed for the 

continuous estimation of splanchnic blood oxygen saturation. In the design of a reflectance pulse 

oximeter probe the distance between the transmitting and receiving optical components have a 

significant impact on the quality and amplitude of the photoplethysmographic signal, and 

consequently in the estimation of blood oxygen saturation. This paper describes the technical 

developments of the fibre optic sensor and processing system, and explores in detail the effects of 

fibre (transmitting and receiving) separation on the PPG signal.  

 



 

 

 

 

 

 

2.  Reflectance Pulse Oximeter Development 

A new reflectance, pulse oximeter probe was developed, comprising of optical fibres coupled to 

infrared and red subminiature version A (SMA) mounted emitters (peak emission wavelengths at 

850 nm and 650 nm respectively) and a photodiode (single photodiode with an active area of 1 mm
2
). 

A PPG processing system was developed for the detection and pre-processing of the red and infrared 

ac and dc PPG signals before digitization by a 16-bit data acquisition card (National instruments, 

DAQPad-6015). The digitized PPG signals were further processed, analysed and displayed by a 

Virtual Instrument (VI) implemented in LabView. 

2.1.  Fibre Optic Probe. Silica glass step index fibres with a core of 600 μm were chosen for the 

transmission and reception of light to the tissue. The fibres were protected with a hard polymer buffer, 

Kevlar strands, and an outer Tefzel jacket. Bare fibre was exposed at the end of each fibre cable. The 

fibre was cleaved to achieve a flat surface at 90 degrees to the emitting light. The tip of each fibre was 

polished with a 5 μm, 3 μm, 1 μm, and 0.3 μm polishing film to ensure that the fibre region was free 

from large scratches and that there were no chips in the edges of the fibre that extended into the core 

of the fibre.  

In order to facilitate multiplexing of the red and infrared light into a single fibre, a 400 nm 

bifurcated fibre (Y-piece) is used (Ocean Optics, Netherlands). Two ends of the Y-piece are coupled 

to SMA mounted emitters, while the other end is attached to a prepared 600 μm fibre (Figure 1). This 

allows for the two wavelengths to be transmitted down a single fibre. A single prepared 600 μm fibre is 

used to detect the backscattered light.  

 

 

Figure 1. Reflectance configuration of fibre-optic pulse oximeter probe including desired probe 

dimensions 



 

 

 

 

 

 

 

2.2.  PPG Processing and Acquisition System. An electrically isolated acquisition and processing 

system has been designed and developed to drive the optical components of the fibre probe and also to 

detect and pre-process the red and infrared ac and dc PPG signals. A virtual instrument (VI) 

implemented in LabView was also developed. The VI is used for driving various hardware parts in the 

processing system and also for the acquisition, displaying, analysis and storing of all acquired PPG 

signals. A block diagram of the processing system is shown in Figure 2. The emitters, red (R) and 

infrared (IR), are driven by software controlled constant current sources. Output signals generated in 

the Virtual Instrument drive the current sources via the outputs ports of the 16-bit analogue-to-digital 

card. These output signals are shown in Figure 3. The two multiplexing signals allow for the red and 

infrared emitters to be turned on and off at a rate of 500 Hz, ensuring that both emitters are never on at 

the same time. The intensity signal allows the user to control the intensities of the emitters at all times 

during use. The photodetector detects the energy backscattered by the tissue and gives an output 

current proportional to the detected light intensity. The output of the current-to-voltage (I-V) 

differential amplifier contains multiplexed PPG signals corresponding to red and infrared wavelengths. 

The signal from the current-to-voltage differential amplifier passes to a demultiplexer synchronised to 

the multiplexing signals from the VI, which separate the red and infrared signals. The two signals (R 

and IR) are then filtered to extract the ac and dc PPG components for each wavelength. The output 

PPG signals are digitised and further analysed by the Virtual Instrument. PPG traces corresponding to 

infrared and red wavelengths are obtained simultaneously and displayed on the personal computer 

screen. All acquired signals are also saved in spreadsheet format for further post processing and 

analysis.  
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Figure 2. Block diagram illustrating the various stages of the PPG Processing system 

 



 

 

 

 

 

 

  

Figure 3. (a) Multiplexing signals from VI, used to control the multiplexing of the two emitters, and 

(b) Intensity signal from VI, which allows the intensity of the emitters to be varied. Each volt 

corresponds to 10mA of a drive current.  The signal can be changed at anytime during use. 

 

3.  Optimal Source-Detector Separation Study 

Source-detector separation is of great importance and significance in designing a reflectance pulse 

oximeter probe as it bears a direct impact on the quality of the PPG signal and the accurate estimation 

of SpO2 [15]. Prior to finalising the probe design and setting the fibres in epoxy, a detailed 

investigation was conducted to examine the effect of source detector separation on PPG signals and to 

ultimately establish the optimum separation distance between the light emitting  and receiving fibre.  

In order to conduct this experiment, a precision drilled perspex finger piece was designed to allow 

for the placement of the fibres at various distances (Figure 4). All separation distances given are from 

the centre of the emitting fibre to the centre of the detecting fibre. During the experiment, PPG signals 

obtained from the finger at both wavelengths were recorded simultaneously while varying the 

separation between emitter and detector at 1 mm increments (range: 1-8 mm). During the experiment 

the emitter current was maintained constant at 40 mA. Any overhead fluorescent lights were switched 

off to minimise artefacts. 

 

 

Figure 4. Illustrating the use of a precision drilled perspex piece for the placement of fibres during the 

source-detector separation experiment 

 



 

 

 

 

 

 

4.  Results 

Photoplethysmographic signals of good quality were recorded at both wavelengths at all separation 

distances between the transmitting and receiving fibres. Figure 5 depicts typical finger ac PPG traces 

at various separation distances. 

Although PPG traces were detected at almost all separation distances, there were significant 

differences in signal amplitude, and morphology at the various monitoring separations. Large 

amplitude PPG signals were acquired at 1 mm separation. However, these signals were of very poor 

quality (very noisy) and erratic with little resemblance of a conventional PPG signal. Signals within 

the range of 2 mm to 6 mm produced PPGs of good quality with large amplitudes and high signal-to-

noise ratio (SNR). Over 6 mm separation distance the resulted ac PPGs were of poor quality and very 

low amplitude (Figure 5). 

 

 

Figure 5. Typical photoplethysmographic (PPG) traces from the finger at various fibre separation 

distances 
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Figure 6. Mean PPG, red (R) and infrared (IR), ac amplitudes and Standard Deviation at all 

investigating separation distances (drive current at 40mA) 

 



 

 

 

 

 

 

Figure 6 shows the mean ac red and infrared PPG amplitudes for all separation distances. It can be 

seen that the PPG amplitudes decrease as the separation distance increases. Such a phenomenon is 

well explained as the transfer of photons to the emitter via the tissue bed decreases as the distance 

between the emitting source and the receiving source increases. Figure 7 shows the mean dc red and 

infrared PPG signals (Standard Deviation) for all separation distances. The dc signals at 1-2 mm 

separation were predominately larger than at other separation distances. This suggests that the source 

and detecting fibres are too close, and therefore saturating the photodetector. 
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Figure 7: Mean PPG, red (R) and infrared (IR), dc amplitudes and Standard Deviation at all 

investigating separation distances (drive current at 40mA) 

5.  Conclusion 

The development of a real-time blood oxygen saturation monitoring system for the splanchnic area 

would greatly aid in the timely assessment of the patient medical condition. Quick detection of 

changes in tissue oxygenation in the viscera could allow for earlier intervention to restore splanchnic 

perfusion, and improve survival in critically ill patients.  

  

In an attempt to develop a new pulse oximetry probe for estimating splanchnic oxygen saturation pre-

operatively, operatively and postoperatively a new fibre-optic based pulse oximeter system has been 

successfully designed and developed. Detailed experiments to determine the optimum separation 

distance between the receiving and the transmitting fibres of the probe have been conducted in the 

laboratory.  

  

Photoplethysmographic signals acquired at 1 mm distance between the transmitting and receiving 

fibres are found to be unsuitable as the resulted PPG signals, both ac and dc, were noisy, erratic, and 

of extremely large amplitudes. This is possibly due to saturation of the photodetector. PPG signals 

from such separation distance will ultimately result in the erroneous estimation of blood oxygen 

saturation. At 2 mm separation the ac PPG signal was of better quality than the 1 mm separation. 

However, the dc level produced at this separation was clearly unsuitable for estimation of SpO2 as they 

caused the photodetector to saturate again. Both ac and dc PPG signals in the range of separation 

between 3 and 6 mm were of good quality with large ac amplitudes and dc values within the expected 

range. Such signals will be most suited for the accurate estimation of blood oxygen saturation. PPG 

signals above 6 mm separation produced weak signals of low amplitude and very poor signal to noise 



 

 

 

 

 

 

ratio. Such signals will be unreliable in the estimation of blood oxygen saturation and, therefore, such 

distances between transmitting and receiving fibres should be avoided.  

  

In conclusion this work has demonstrated that the optimum separation distance between the emitting 

optical fibre and the receiving fibre in the development of a fibre-optic splanchnic pulse oximetry 

probe should be within the range of 3 to 6 mm. These results, although preliminary, suggest that it 

might be feasible to develop a fibre-optic pulse oximeter that will be used for the estimation of 

splanchnic blood oxygen saturation pre-operatively, operatively and post-operatively. Further studies 

will be conducted to verify the use and ability of this probe in a clinical setting. 
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