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Application of Data Mining to forecast Air Traffic: A 3-Stage 
Model using Discrete Choice Modeling 

Judit G. Busquets* and Dr. Eduardo Alonso† 
City University London, London, EC1V 0HB, UK 

Dr. Antony D. Evans‡ 
University of California, Santa Cruz, Moffett Field, CA 94035, USA 

The main goal of this study centers on developing an aggregate air itinerary share model 
estimated at the city-pair level within the US air transportation system. This route demand 
assignment model is part of a new modeling approach that has as its ultimate output the 
prediction of detailed traffic information for the US air transportation system. In this 
approach, city-pair demand generation, route demand assignment and air traffic levels 
estimations are completed in 3 different stages within a single framework. Aiming to fully 
develop the overall model, in this paper we focus on estimating the 2nd stage, the air itinerary 
choice model. In order to achieve this, the first approach taken applies a multinomial logit 
model and uses a combination of stated preferences (SP) and revealed preferences (RP) data 
to estimate the model. By using a mixed dataset, we attempt to improve the RP model 
results, which often perform poorly due to high demand inelasticity. Preliminary results 
show the potential of this approach, although further analysis is required to understand the 
results obtained. For the final paper, different approaches and further interactions among 
the model attributes will be applied to improve the model’s performance.   

I. Introduction 
IR TRAFFIC FORECASTS are crucial for planning in the aviation industry, allowing trade-offs between 
benefits – e.g., economic growth – and negative consequences – e.g., the associated environmental impact of 

aviation–. To enable supply to adapt to growth in demand, good forecasts of future demand for air traffic as well as 
good forecasts of how airlines are likely to serve this demand are essential. The latter are particularly important 
given the long timescales associated with airport capacity expansion, especially in many developed economies 
where there is significant resistance to airport development. Good forecasts of future demand are also critical for 
airlines and airport authorities, which must plan their operations accordingly, and often need to order equipment 
well before it is required. Good forecasting requires a solid understanding of the most important drivers of supply 
and demand. Consequently, not only do historical trends in air transportation need to be studied, but the intrinsic 
drivers underlying passenger and airline behavior must also be understood. 

Aviation stakeholders tend to generate their own air travel forecasts and forecasting methodologies. While a 
diversity of methodologies exist, econometric, gravity and time-series models prevail. Most of these models are 
based on correlating aviation growth and socio-economic growth, (e.g. Ref.1), and are characterized by their relative 
simplicity. For example, the FAA2 applies a simple growth factor algorithm to allocate traffic across the US ATS. 
These approaches also often use similar explanatory variables, generally chosen through the judgment of domain 
experts. More complex approaches from the literature are often not used because of drawbacks such as 
computational intensity or relatively low accuracy.   

This paper is an extension of previous work3, which introduced a model to improve current forecasting 
methodologies by better understanding the patterns underlying the historical supply and demand for air travel, using 
the US domestic air transportation system as an example. In that work, three innovations were proposed: the use of 
several data mining techniques to develop a forecasting methodology; the use of a larger range of explanatory 
variables than is commonly considered; and explicitly modeling the distribution of city-pair passenger demand 
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between itineraries. As a result, a 3-stage model, still in development at the time, was introduced, as follows: In the 
first stage, travel demand by city-pair is estimated; in the 2nd stage, the predicted travel demand by city-pair is 
transformed into travel demand by airport-pair; and finally, traffic levels are estimated in the third stage. In this 
paper, efforts center on more fully developing the 3-stage model, with a particular focus on stage 2. While a 
modeling approach for this second step was identified in the previous work, no model was developed. In this paper, 
we develop and apply a discrete choice model to distribute the city-pair passenger demand across the available 
itineraries, identified using the classification algorithm described in the previous work.  

The approach described in Ref. 3 for distributing city-pair passenger demand across the available itineraries 
aimed to estimate itinerary shares, defining the available itineraries based on the level of service and the 25 hubs 
considered in the study. These assumptions limited the number of itinerary options to 26: a non-stop service plus 25 
one-stop services to each of the 25 US hub airports. Although the model presented a valid solution for modeling 
aggregate air-travel itinerary shares, it fails to directly model the distribution of market shares across the available 
itineraries serving a given OD city-pair. Consequently, in this paper, we attempt to solve the issue by developing an 
aggregate air passenger itinerary choice model estimated at the city-pair level within the domestic US air 
transportation network.   

The remainder of the paper is structured as follows: a brief review of existing discrete choice modeling applied 
in air transportation is outlined in Section II. This is followed by the paper’s objectives in Section III. The modeling 
approach is detailed in Section IV. Information regarding the data sources is outlined in Section V. Modeling results 
are presented in Section VI, followed by a discussion on future work in Section VII.      

II. Literature Review 
While the majority of existing research focuses on improving air travel demand models, a growing interest in 

understanding the behavior of air travelers has become evident in aviation. Consequently, in recent years some 
researchers focus on modeling competition and customer behavior to determine air-travel itinerary shares using 
discrete choice methodologies – also known as demand assignment models –. In the air transportation context, 
understanding passengers’ choice behavior can become crucial to support airlines in their network planning and 
scheduling. While most of the discrete choice models applied in urban transportation are built using disaggregate 
data and include information about the individual making the decision – i.e. the passenger –; in air transportation, 
data disaggregation as well as data accessibility are limiting factors. Moreover, most of the early studies on demand 
assignment for air travel focus on studying the distribution of demand across one single dimension. These early 
models were mostly applied to analyze air travelers’ choice within multi-airport cities or regions – i.e. airport choice 
models4,5 – or across airlines – airline choice models6 –. Although the former is the most widely studied topic in 
discrete choice model within air transportation, and has given a deeper understanding of the relationship between 
airport’s attributes and airport’s market share, a more disaggregated assignment of the air travel volumes is needed.  

Consequently, air itinerary choice models have become a growing trend in recent years. Several approaches can 
be identified in the existing itinerary demand allocation literature. Early models used a multinomial logit (MNL) 
approach7,8, which are characterized by their simplicity. However, MNL models are based on the assumption that 
alternatives –i.e. itinerary options – compete equally with each other. Since itineraries sharing similar attributes are 
expected to experience more competition among themselves than with other itineraries not sharing these attributes’ 
similarities, this consideration does not hold. In order to solve this uniformity assumption, nested logit (NL) models, 
mixed multinomial logit (MMNL) models and other alternatives approaches have been used. Using NL models, 
Ref.9, as described in Ref. 3, presents a 3-level weighted nested logit model to predict airline ridership at the 
itinerary level. This model is applied at an aggregate level and variables included are chosen to capture the inter-
itinerary competition dynamic along three dimensions. Similarly, Ref. 10 presents a route demand assignment 
model, which is included in an air passenger model that also deals with city-pair demand generation within the same 
framework. For the route demand assignment model, the study introduces different approaches, with the 3-level 
nested logit model being the one with most promising results. The three dimensions considered within the nesting 
structure proposed are transport mode, airport choice and route choice. Using a MMNL model, Ref. 11 presents an 
approach to analyze the itinerary choice behavior of business travelers. The advantage of using this modeling 
approach is the fact that it allows random taste variations across the individuals making the decision. Finally, more 
recent studies include alternatives approaches. For example, Ref. 12 applies a multinomial probit (MNP) model to 
analyze the demand distribution across itineraries to support airlines’ management process, while Ref. 13 introduces 
a latent class model for airline itinerary and fare product choice.  

Alternatively, other studies look at different types of data when developing the modeling approaches. Inspiring 
the approach presented in this paper, Ref. 14 focuses its work on studying the use of a mixed dataset – containing 
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revealed preferences (RP) and stated preferences (SP) data – in order to develop an itinerary choice model. Ref. 14’s 
approach aims to exploit the variability of SP data for the estimation of the RP model parameters, which often 
perform poorly due to high demand inelasticity. Even though further analysis on the results obtained need to be 
generated, results show the potential advantage of using the SP data to model route demand assignment.   

Although results from these studies are promising, the approaches used are computational intensive, limiting 
their application to relatively small network sets. The ability of some of the models to reproduce existing air traffic 
is also limited and further model refinement and verification is still required to better capture passenger choice 
effects. Taking as a reference the work done by Ref. 14, further enhancements on existing route demand assignment 
models are still possible. Such improvements are the focus of this paper. Hence, efforts center on developing an 
aggregate air itinerary share model estimated at the city-pair level within the US ATS, to be eventually included 
within the single modeling framework to produce future air traffic levels forecasts presented in Ref. 3.  

III. Objectives 
The primary objective of this research is to develop an air itinerary choice model to directly estimate the 

distribution of passenger demand across available routes for a given O-D pair. Eventually, this model will be 
combined along with models for forecasting air travel demand and air traffic levels, all within the same framework 
(described in Ref. 3). The ultimate air traffic forecasting model is inspired by previous research15 that focused on 
improving the FAA’s forecasting methodology and for which further potential improvements have been identified. 
Consequently, in an attempt to fully develop the 3-stage model presented in Ref. 3, and therefore, centering the 
efforts in the model’s stage 2, the approach described in this paper is expected to:   Highlight the most important factors underlying the air traveler’s choice behavior within the domestic 

US ATS.   Predict future air traffic growth, and hence, the evolution of the ATS system.  
In order to achieve these objectives, the developed model includes three elements beyond that of the existing 

research:  Explicitly modeling the distribution of city-pair passenger demand between itineraries within the US 
ATS, so that when integrating this approach with the air traffic demand model presented in Ref. 3, 
better predictions of airport-pair flows will be generated.     The consideration of a combined RP and SP dataset rather than just RP data as typically considered.  Ultimately, presenting a 3-stage model that deals with city-pair demand generation, route demand 
assignment and air traffic levels estimations within a single framework. The use of data mining and 
machine learning techniques to develop this model will allow modeling the US ATS evolution, as 
described in Ref. 3; as well as producing prediction of air traffic with improved accuracy and precision 
levels while maintaining the simplicity of existing econometric, gravity and time-series models.   

IV. Approach  

A. Detailed Forecasting Methodology 
Following the work presented in Ref. 3, which introduced a 3-stage model for the purpose of forecasting future 

air traffic levels, this paper focuses on fully developing its stage 2. The objective of this phase is to transform 
Origin-Destination (O-D) demand by city-pair into passenger demand by airport-pair by using an air itinerary choice 
model. The overall approach of the 3-stage model is shown in Figure 1 in Appendix A. Each stage is as follows:   1st stage: Air travel demand by city-pair is estimated using population, income, dummy variables 

indicating attractiveness of the city, availability of other transport modes and generalized cost as input 
variables, as described in Ref. 3. This follows the approaches used to predict O-D passenger demand 
described by Ref. 16 and Ref. 17.   2nd stage: O-D demand by city-pair extracted from the 1st stage is transformed into passenger demand 
by airport-pair, which serves as a stronger driver of airport-pair air traffic. This is the main focus of this 
paper, estimating an itinerary choice model that directly models the distribution of market shares across 
the available itineraries serving a given OD city-pair.   3rd stage: The predicted passenger demand by airport-pair is then used as input variable to predict the 
flight frequency by airport-pair, along with the network theory metrics and aviation-related variables - 
i.e. flight frequency from previous year, number of airports serving a city, fuel price and dummy 
variable indicating whether an airport serving a city is a hub or not –, as described in Ref. 3.   
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Different approaches are used in each one of the phases of the 3-stage model. Linear regression with logarithmic 
transformation in both the dependent and independent variables – i.e. log-log model – is used in stage 1 and 3, as 
described in Ref. 3. Stage 2 consists in 2 steps: identification of available itineraries estimated using logistic 
regression (described in detail in Ref. 3); followed by the distribution of the O-D demand by city-pair obtained from 
the 1st stage across the available itineraries using a discrete choice model. The latter phase of this stage is the focus 
of this paper.  This air itinerary model allows the flight segment passenger demand by airport-pair to be estimated, 
based on the passenger itinerary demand from all O-D city-pairs. It is not feasible to develop a model for each 
possible O-D market, so in order to apply the discrete choice model, the US is divided into five regions, as done by 
Ref. 9: four Continental time zones (Central, East, Mountain and West) and a region for Alaska and Hawaii. This 
specific O-D market grouping is an attempt to capture similarities among all city-pairs. The number and nature of 
these regional clusters will be modified using clustering techniques in future work. Given these regions, 18 entities 
have been defined: considering all 16 possible combinations of the Continental time zones – e.g., Central-Central 
(C-C), Central-East (C-E), Central-Mountain (C-M), Central-West (C-W), etc., West-Mountain (W-M), West-West 
(W-W) –; as well as an entity for Alaska and Hawaii to Continental US and an entity for the Continental US to 
Alaska and Hawaii.  

An aggregate itinerary choice model is developed, as done by Ref. 9 and Ref. 14. In contrast to previous work3, 
this approach aims to directly model the distribution of passenger demand amongst all available routes serving a 
given city-pair, instead of only focusing on the level of service. This attempts to model the aggregate share of all or 
groups of decision makers - i.e. air travellers - choosing each alternative as a function of the characteristics of the 
alternatives. Although the aggregate approach presents some disadvantages compared to the disaggregate approach, 
the detailed data for each individual required for the disaggregate approach is not available. In this extended abstract 
of the study, a simplified approach using a mixed dataset formed of RP and SP data to model air itinerary choice is 
presented. The RP data is booking data from airlines operating within the US domestic market and the SP data is 
based on an internet survey in US. City-pairs, M, considered are those within the domestic US ATS and are defined 
by origin and a destination. The universal choice set, C, is form for all possible itineraries within the entire ATS. 
The choice problem is defined for each city-pair, m  M, with choice set of all the possible itineraries in that given 
city-pair represented by Im. Each itinerary i is characterized by a set of attributes such as level of service, price and 
time. As a simplification, only two possible level of service are considered, non-stop and one-stop flights. For the 
one-stop flights, the connections available are through one of the 25 US hubs considered in this study§.  

The annual share of passenger demand assigned to each itinerary between a given city-pair is modeled as an 
aggregate multinomial logit (MNL) function and is given by Eq. (1) where Si is the passenger share assigned to 
itinerary i, Vi is the utility function or value of itinerary i and the summation is over all itineraries for a given airport-
pair. The utility function (Vi) is a linear-in-parameters function of the explanatory variables and assumes that each 
vector of attributes characterizing an alternative can be reduced to a scalar value, which expresses the attractiveness 
of each alternative. Consequently, it is expected that the individual or group of individual will choose the alternative 
with the highest value, maximizing their utility. Equation (2) shows the general expression for Vi, where Xi is the 
vector of attributes defining alternative i; and β' represents the coefficients to be estimated capturing the influence of 
the corresponding attribute on the alternative i14.  

(1) 

(2) 

Attributes included in vector Xi are as follows:   Travel time, TTi, is the travel time of itinerary i in minutes.   Travel cost, TCi, is the travel time of itinerary i in $, which is normalized by 100 for scaling purposes.  non-stopi, is a dummy variable which is 1 if itinerary i is composed of 1 leg, 0 otherwise.   one-stopi, is a dummy variable which is 1 if itinerary i is composed of 2 leg, 0 otherwise. 

                                                           
§ IATA codes for the 25 hubs considered in this study are: ORD, ATL, DFW, LAX, IAH, DEN, DTW, PHL, CVG, 
MSP, PHX, EWR, CLT IAD, JFK, LAS, MIA, SFO, SLC, SEA, BWI, STL, CLE, MEM, PIT.   
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Interactions among the attributes are accounted for by the model. Table 1 shows the specifications of the utilities. 
It can be seen how TT and TC interact with dummy variables non-stop and one-stop – i.e. level of service – 
representing the strong correlation between the number of stops and the travel cost of the itinerary. These 
interactions are an attempt to capture the correlation between the specific hub and both variables, price and time. 
Moreover, a logarithmic transformation has been considered for the variable price, assuming that the effect of 
increasing the price is not linear across the several price levels. For further improvements, other interactions are to 
be considered for the final paper. For example, the importance of an itinerary origin and/or destination airport can be 
correlated with time and price for non-stop itineraries. Similarly, for one-stop itineraries, the importance of hub 
location on travel time and cost can also be accounted.  

To better understand the results obtained from the air itinerary choice model, indicators such as willingness to 
pay can be computed. Value of time (VOT) is the willingness of passengers to pay for one hour of travel. VOT is 
given by Eq. (3), which is computed for each given alternative i. Note that due to including the travel price in 
logarithmic transformation when computing the utility, travel cost is also included in the formulation of VOT.   

                  (3)                                     

During the estimation of the model, for each city-pair considered, the utility and likelihood function are 
computed, with the latter being combined in order to give the estimated log likelihood. Once the itinerary choice 
model is estimated using the MNL algorithm, Eq. (1) is applied to compute the market share of passengers for each 
itinerary. The estimated passenger demand per itinerary is then used to compute segment demand, i.e. passenger 
demand per airport-pair, which will eventually be used as input for the 3rd stage within the 3-stage model as 
described in detail in Ref. 3.   

V. Application 
The models described above are applied to a network of 337 airports within the US ATS, as in Ref.18. Along 

with the airport set mentioned, the compilation of the corresponding US cities, special city variables, and road-rail 
variables are identical to those in Ref. 18.  

Historical flight frequency data and airlines schedule are extracted from US Department of Transport T-100 
data19, while historical information on passenger demand data and airfares is extracted from the Airline Origin and 
Destination Survey (DB1B), which contains a 10% sample of airline tickets from reporting carriers20. Travel times 
and costs are also extracted from Ref. 20 while the SP data is obtained from an Internet survey conducted by the 
Boeing Company in the fall of 200421. The air itinerary choice model is estimated using Biogeme22. Flight delay 
information is obtained from the FAA Aviation System Performance Metrics (ASPM) database23.  

The RP data considered for estimating the model is from 2007 to be in line with the period considered when 
estimating the ultimate 3-stage model described in Ref. 3.  

Once the model is estimated, it will be applied to estimate the itinerary shares in the same network of 337 
airports into the future. These results will then be compared to those of the TAF in future work.  

Table 1. Specifications of the utilities for the itinerary choice model.  

 

Constant 1 x alternative i

ln(TC i /100) x non-stop i 

ln(TC i /100) x one-stop i 

TT i  x non-stop i 

TT i  x one-stop i 

Travel Cost

Travel Time

NS
TT
OS
TT

NS
TC
OS
TC

iASC
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VI. Model Estimation Results 
From the 3-stage model, results obtained for stage 1 and 3, as well as results for the identification of available 

itineraries between city-pairs, are presented and described in Ref. 3.   
The air itinerary choice model introduced in this paper is under development and the model estimation results 

will be included in the final paper. However, results have been generated on a reduced dataset for the entity 
Continental US to Alaska and Hawaii. Two different datasets have been used to generate these results, differing by 
the number of city-pairs included from RP data, with one considering 7 OD pairs and the other one 15 OD pairs. 
Both datasets are then combined with SP data. There are a maximum of 41 alternatives available for each OD pair. 
The estimation results model when considering both datasets are presented in Table 2. For the first case, when only 
7 OD pairs from RP data are included, all estimated coefficients are statistically significant with a 95% confidence 
level. All travel time and cost coefficients have negative signs, as one would expect since the increase on time 
and/or on price of a given itinerary will decrease its attractiveness, and therefore, its utility. Finally, the magnitude 
of the travel cost parameter for the non-stop itineraries is larger than the cost parameter for one-stop itineraries. 
However, for the travel time parameter the opposite effect is true, although the difference in this case is quite small. 
This indicates that passengers on connecting itineraries are less affected by an increase in price than on non-stop 
itineraries. Contrariwise, passengers on non-stop itineraries are less affected by an increase on travel time compared 
to one-stop itineraries. Both these results are unexpected, as non-stop passengers would typically be expected to be 
less price sensitive and more travel time sensitive. Regarding the price, the fact that in some observations within the 
RP data one-stop itineraries are more expensive might be the reason why the results suggest that passengers are less 
affected by an increase in price on one-stop itineraries compared to non-stop itineraries. In the case of travel time, 
the limited number of available one-stop itineraries, resulting from the consideration of only 25 connecting hubs 
when creating the dataset, can be the cause of lack on variability for the travel time variable, leading to the results 
described. More analysis is needed to better understand these results.  

For the case when 15 OD pairs are considered, estimated coefficients for the travel cost have negative signs as 
expected. However, the estimated travel time coefficients have positive signs, which is opposite to what one would 
expect since an increase in travel time is expected to decrease the attractiveness of the itinerary. When considering 
the magnitude of the estimated parameters, price and time for non-stop itineraries are larger compared to those for 
one-stop itineraries. Similarly to the earlier case, most of the one-stop itineraries in the RP data have higher prices 
and as expected travel times are longer. All estimated coefficients are statistically significant with a 95% confidence 
level.  

Comparing results from the two cases, when 7 and 15 OD pairs are considered respectively, it is important to 
note the type of data used. The lack of variability in the RP data may be the cause for poorer results, such as the 
unexpected positive sign for the travel time in the 2nd case. Despite this, the latter model shows a slight 
improvement on the goodness of fit with a ρ2 of 0.304, which compared to the 1st case (0.257) corresponds to an 
increase of 19%. To further analyze the results and understand the effect that the level of service has on the 
willingness to pay, VOT is computed - using Eq. (3) - for two itineraries differing by the number of stops, but with 

Table 2. Estimated coefficients and corresponding t-statistics for the air itinerary choice model corresponding 
to entity Continental US to Alaska and Hawaii. 

 

Parameters Coefficient t-test Coefficient t-test

-9.84 -20.36 -7.79 -35.92

-3.22 -11.54 -3.2 -22.13

-2.13 -17.52 1.07 37.66

-2.81 -20.56 0.174 6.34

15 ODs

Likelihood ratio test 118966

 ρ2     0.257

214255

0.304

Travel Cost

Travel Time

7 ODs

NS
TT
OS
TT

NS
TC
OS
TC
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the same price. For example, taking a non-stop and a one-stop itinerary both costing $400, VOT values computed 
for both datasets are shown in Table 3. It can be seen how in the first case, VOT values obtained are opposite to 
what one would expect since it shows that passengers are willing to pay a much higher price for one hour reduction 
on their one-stop itineraries than on their non-stop itineraries. Looking at the second case, when 15 OD pairs from 
RP data are included, VOT values in absolute terms make more sense since a higher price is expected to be paid for 
an hour reduction of travel time of non-stop itineraries compared to one-stop itineraries. However, in this case, the 
signs obtained are opposite to what one would expect.  

VII. Conclusions and Future Work 
Research described in this paper provides an effort to improve on existing air traffic forecasting methodologies 

through a better understanding of the factors driving demand, supply and network dynamics. In order to achieve this, 
an aggregate air itinerary choice model, which is part of a 3-stage model for air traffic forecasting, is presented. The 
model introduced aims to directly estimate the distribution of the O-D demand across the available itineraries 
serving a given city-pair using the domestic US ATS as example application. The modeling approach explores the 
use of a mixed SP and RP dataset, which is expected to improve results compared to existing researches only using 
RP data.   

Initial development of the route demand assignment model is still in progress. However, some preliminary 
results have been produced for one of the entities – Continental US to Alaska and Hawaii –. From these results some 
aspects can be highlighted. When using a reduced dataset with a limited RP data, results are quite promising, 
showing estimated coefficients for travel cost and time with negative signs and all being statistically significant. 
When increasing the number of OD pairs included from the RP data, results change slightly. While some aspects 
worsen compared to previous estimated results - e.g. sign for travel time estimated coefficients become positive -; 
others improve, such as the goodness of fit for the model that goes from 0.257 to 0.304. These discrepancies are 
believed to be caused by lack of variability within RP data as well as the nature of the data itself, having in some 
cases higher prices for one-stop itineraries than for non-stop itineraries.  

Model estimation results obtained to date look promising. However, there is room for improvement and further 
work is planned to be included in the final paper. New attributes and new correlations will be considered, as well as 
better understanding the data used. Alternative modeling approaches, such as NL or MMNL models, will also be 
investigated.   

Ultimately, the estimated air itinerary choice model will be included within the 3-stage model, which aims to 
model air travel demand, route demand assignment and air traffic demand within a single framework. The proposed 
modeling framework provides with an effort to improve on existing air traffic forecasting methodologies by using an 
innovative approach. After the full model is developed, it will be used to predict air traffic in the US ATS into the 
future, so that the results can be compared directly to the TAF.  
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Figure 1. Flowchart of the 3-stage model. 


