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Application of Data Mining to forecast Air Traffic: A 3-Stage
Model using Discrete Choice Modeling
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Dr. Antony D. Evans
University of California, Santa Cruz, Moffett Figl@A 94035, USA

The main goal of this study centers on developing an aggregate air itinerary share model
estimated at the city-pair level within the US air transportation system. This route demand
assignment model is part of a new modeling approach that has as its ultimate output the
prediction of detailed traffic information for the US air transportation system. In this
approach, city-pair demand generation, route demand assignment and air traffic levels
estimations are completed in 3 different stages within a single framework. Aiming to fully
develop the overall model, in this paper we focus on estimating the 2" stage, the air itinerary
choice model. In order to achieve this, the first approach taken applies a multinomial logit
model and uses a combination of stated preferences (SP) and revealed preferences (RP) data
to estimate the model. By using a mixed dataset, we attempt to improve the RP model
results, which often perform poorly due to high demand inelasticity. Preliminary results
show the potential of this approach, although further analysisisrequired to understand the
results obtained. For the final paper, different approaches and further interactions among
the model attributes will be applied to improve the model’s performance.

l. I ntroduction

IR TRAFFIC FORECASTS are crucial for planning in the aviation industrywallp trade-offs between

benefits— e.g., economic growth and negative consequences.g., the associated environmental impact of
aviation-. To enable supply to adapt to growth in demand, good forecafstsusd demand for air traffic as well as
good forecasts of how airlines are likely to serve this demand arelieksEhe latter are particularly important
given the long timescales associated with airport capacity expansionjaigp@cmany developed economies
where there is significant resistance to airport development. Good foretdistare demand are also critical for
airlines and airport authorities, which must plan their operations accordamglypften need to order equipment
well before it is required. Good forecasting requires a solid understaoflthg most important drivers of supply
and demand. Consequently, not only do historical trends in air trdatpn need to be studied, but the intrinsic
drivers underlying passenger and airline behavior must also bestoater

Aviation stakeholders tend to generate their own air travel forecastoeewhdting methodologies. While a
diversity of methodologies exist, econometric, gravity and timesseniedels prevail. Most of these models are
based on correlating aviation growth and socio-economic growth, (@f.4),Rnd are characterized by their relative
simplicity. For example, the FA#applies a simple growth factor algorithm to allocate traffic across the U§ AT
These approaches also often use similar explanatory variables, generally titosgh the judgment of domain
experts. More complex approaches from the literature are often not used ebefadsawbacks such as
computational intensity or relatively low accuracy.

This paper is an extensioof previous work which introduced a model to improve current forecasting
methodologies by better understanding the patterns underlying theéchissopply and demand for air travel, using
the US domestic air transportation system as an example. In that workintioeations were proposed: the use of
several data mining techniques to develop a forecasting methodology; thé audarger range of explanatory
variables than is commonly considered; and explicitty modeling the distribafiaity-pair passenger demand
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between itineraries. As a result, a 3-stage model, still in development ahéhevis introduced, as follows: In the
first stage, travel demand by city-pair is estimated; in the 2nd stagerettiietpd travel demand by city-pair is
transformed into travel demand by airport-pair; and finally, traffiele\are estimated in the third stage this
paper, efforts center on more fully developing the 3-stage model,anfibrrticular focus on stage 2. Whie
modeling approach for this second step was identified in théopiework, no model was developéd this paper,
we develop and apply a discrete choice model to distribute the city-pair parssemgand across the available
itineraries, identified using the classification algorithm described in the previoks wor

The approach described in Ref. 3 for distributing city-pair passerageardi across the available itineraries
aimed to estimate itinerary shares, defining the available itineraries based orethef karvice and the 25 hubs
considered in the study. These assumptions limited the number of itioptaoys to 26: a non-stop service plus 25
one-stop services to each of the 25 US hub airports. Although thel madented a valid solution for modeling
aggregate air-travel itinerary shares, it fails to directly model the distribafionarket shares across the available
itineraries serving a given OD city-pair. Consequently, in this papegttempt to solve the issue by developing an
aggregate air passenger itinerary choice model estimated at the city-pair level tivithdomestic US air
transportation network.

The remainder of the paper is structured as follows: a brief review of exiitioiggte choice modeling applied
in air transportatiofis outlined in Section II. This is followed by the paper’s objectives in Section Ill. The modeling
approach is detailed in Section.IMformation regarding the data sources is outlined in Section V. Madedsults
are presented in Section VI, followed by a discussion on future work in S&ttio

M. Literature Review

While the majority of existing research focuses on improving air travehdd models, a growing interest i
understanding the behavior of air travelers has become evident in aviatineequently, in recent years some
researchers focus on modeling competition and customer behavior to detairdiravel itinerary shares using
discrete choice methodologiesalso known as demand assignment modelfn the air transportation context,
understanding passengers’ choice behavior can become crucial to support airlines in their network planning and
scheduling. While most of the discrete choice models applied in urban tiatigmoare built using disaggregate
data and include information about the individual making the decisian the passenget in air transportation
data disaggregation as well as data accessibility are limiting factors. Mgrewsdrof the early studies on demand
assignment for air travel focus on studying the distributionemhahd across one single dimension. These early
models wereamostly applied to analyze air travelers’ choice within multi-airport cities or regions i.e. airport choice
modelé® — or across airlines- airline choice modefs-. Although the former is the most widely studied topic in
discrete choice model within air transportation, and has given a deepestandarg of the relationship between
airport’s attributes and airport’s market share, a more disaggregated assignment of the air travel volumes is needed.

Consequently, air itinerary choice models have become a growing treadeint years. Several approaches can
be identified in the existing itinerary demand allocation literature. Eadglels used a multinomial logit (MNL)
approach®, which are characterized by their simplicity. However, MNL models are hms¢lde assumption that
alternatives-i.e. itinerary options- compete equally with each other. Since itineraries sharing similar attributes are
expected to experience more competition among themselves than with other itineraries not sharing these attributes’
similarities, this consideration does not hold. In order to solve thisrmity assumption, nested logit (NL) models,
mixed multinomial logit (MMNL) models and other alternatives approaches hege usedUsing NL models,
Ref9, as described in Ref. 3, presents a 3-level weighted nested logit model iti pihdide ridership at the
itinerary level. This model is applied at an aggregate level and variables includdtbsea to capture the inter-
itinerary competition dynamic along three dimensions. Similarly, Refpresents a route demand assignment
model, which is included in an air passenger model that also dealsityifiair demand generation within the same
framework. For the route demand assignment model, the sttdgloes different approaches, with the 3-level
nested logit model being the one with most promising results. The thmesisions considered within the nesting
structure proposed are transport mode, airport choice and route dbsiicg.a MMNL model, Refll presents an
approach to analyze the itinerary choice behavior of business travelersadantage of using this modeling
approach is the fact thdtallows random taste variations across the individuals making theaged#nally, more
recent studies include alternatives approaches. For examplel ZRadplies a multinomial probit (MNP) model to
analyze the demand distribution across itineraries to support airlines’ management process, while Ref.13 introduces
a latent class model for airline itinerary and fare product choice.

Alternatively, other studies look at different types of data when develdpigiodeling approaches. Inspiring
the approach presented in this paper, Réffocuses its work on studying the use of a mixed datasentaining



revealed preferences (RP) and stated preferences (SP)idaieder to develop an itinerary choice model. Réfs
approach aims to exploit the variability of SP data for the estimation dREhenodel parameters, which often
perform poorly due to high demand inelasticity. Even thougthduranalysis on the results obtained need to be
generated, results show the potential advantage of using the SP data toontedéémand assignment.

Although results from these studies are promising, the appeacted are computational intensive, limiting
their application to relatively small network sets. The ability of some of thelswtal reproduce existing air traffic
is also limited and further model refinement and verification is duired to better capture passenger choice
effects. Taking as a reference the work done by Refiurther enhancements on existing route demand assignment
models are still possible. Such improvements are the focus opapesr. Hence, efforts center on developing an
aggregate air itinerary share model estimated at the city-pair level within the USIAD&,eventually included
within the single modeling framework to produce future aifitrdévels forecasts presented in Ref. 3

[11.  Objectives

The primary objective of this research is to develop an air itinerary choice naodiectly estimate the
distribution of passenger demand across available routes for a givempdal-CEventually, this model will be
combined along with models for forecasting air travel demand and dic teafels, all within the same framework
(described in Ref. 3). The ultimate air traffic forecasting model is inspiyegrevious resear¢hthat focused on
improving the FAA’s forecasting methodology and for which further potential improvements have been identified.
Consequently, in an attempt to fully develop the 3-stage model preserRaf. 3, and therefore, centering the
efforts in the model’s stage 2, the approach described in this paper is expected to:

e Highlight the most important factors underlying the air traveler’s choice behavior within the domestic
US ATS.
o Predict future air traffic growth, and hence, the evolution of the AE®BYy

In order to achieve these objectives, the developed model includes thremtsldeyond that of the existing
research:

o Explicitly modeling the distribution of city-pair passenger demand betwewraries within the US
ATS, so that when integrating this approach with the air trafficashelrmodel presented in Ref, 3
better predictions of airport-pair flows will be generated.

e The consideration of a combined RP and SP dataset rather than just RP data asdgpaidiyed.

¢ Ultimately, presenting a 3-stage model that deals with city-pair demand gemeratite demand
assignment and air traffic levels estimations within a single framewdnk.use of data mining and
machine learning techniques to develop this model will allow modeling the T& eXolution, as
described in Ref. 3; as well as producing prediction of air traffic witlidngd accuracy and precision
levels while maintaining the simplicity of existing econometric, gravity éme-series models.

V.  Approach

A. Detailed Forecasting M ethodology

Following the work presented in Ref. \Bhich introduced a 3-stage model for the purpose of forecastingef
air traffic levels, this paper focuses on fully developing its stageh2. dbjective of this phase is to transform
Origin-Destination (O-D) demand by city-pair into passenger demand lgyrtafrair by using an air itinerary choice
model. The overall approach of the 3-stage model is shown in Figarépgbendix A. Each stage is as follows:

e 1st stage: Air travel demand by city-pair is estimated using populatioome, dummy variables
indicating attractiveness of the city, availability of other transport modég@mneralized cost as input
variables, as described in Ref. 3. This follows the approaches useeldict @-D passenger demand
described by Refl6 and Refl7.

e 2nd stage: @ demand by city-pair extracted from th& gtage is transformed into passenger demand
by airport-pair, which serves as a stronger driver of airport-pairadiic. This is the main focus of this
paper, estimating an itinerary choice model that directly models the distributioarkét shares across
the available itineraries serving a given OD city-pair.

e 3rd stage: The predicted passenger demand by airport-pair is theasusgualit variable to predict the
flight frequency by airport-pair, along with the network theomgtrics and aviation-related variables -
i.e. flight frequency from previous year, number of airpodsviag a city, fuel price and dummy
variable indicating whether an airport serving a city is a hub or,rat described in Ref. 3



Different approaches are used in each one of the phases of the BistldeLinear regression with logarithmic
transformation in both the dependent and independent varialileslog-log model- is used in stage 1 and 3, as
described in Ref. .3Stage 2 consists in 2 steps: identification of available itineraries estimated using logistic
regression (described in detail in Ref. 3); followed by the distributiaheo©D demand by city-pair obtained from
the £ stage acrosthe available itineraries using a discrete choice model. The latter phase of this stagedsighe f
of this paper. This air itinerary model allows the flight segment passerngandeby airport-pair to be estimated,
based on the passenger itinerary demand from all O-D city-pairs. It ifieasible to develop a model for each
possible O-D market, so in order to apply the discrete choice model, thedi®iexd into five regions, as done by
Ref. 9: four Continental time zones (Central, East, Mountain and West) a&agiba for Alaska and Hawaii. This
specific O-D market grouping is an attempt to capture similarities amibreify-pairs. The number and nature of
these regional clusters will be modified using clustering techniquesurefuork. Given these regions, 18 entities
have been defined: considering &8l possible combinations of the Continental time zonesy., Central-Central
(C-C), Central-East (C-E), Central-Mountain (C-M), Central-West (C-8t), West-Mountain (W-M), West-West
(W-W) —; as well as an entity for Alaska and Hawaii to Continental US and an emtitiie Continental US to
Alaska and Hawaii.

An aggregate itinerary choice model is developed, as done by Ref.Re&rid:. In contrast to previous wotk
this approach aims to directly model the distribution of passenger desmaangst all available routes serving a
given city-pair, instead of only focusing on the level of service. atteanpts to model the aggregate share of all or
groups of decision makers - i.e. air travellers - choosing each aleraatia function of the characteristics of the
alternatives. Although the aggregate approach presents some disadvantagesdctorthardisaggregate approach,
the detailed data for each individual required for the disaggregate approathvsitable In this extended abstract
of the study, a simplified approach using a mixed dataset fooB& andSP data to model air itinerary choice
presented. The RP data is booking data from airlines operating withiStltlomestic market and the SP data is
based on an internet survey in US. City-paifsconsidered are those within the domestic US ATS and are defined
by origin and a destination. The universal choice Gets form for all possible itineraries within the entire ATS.
The choice problem is defined for each city-paire M, with choice set of all the possible itineraries in that given
city-pair represented hly,. Each itinerary is characterized by a set of attributes such as level of service, price and
time. As a simplification, only two possible level of service are corsifjeron-stop and one-stop flights. For the
one-stop flights, the connections available are throoighof the 25 US hubs considered in this study

The annual share of passenger demand assigned to each itineragrbatgiven city-pair is modeled as an
aggregate multinomial logit (MNL) function and is given by Eq. (1eret§ is the passenger share assigned to
itineraryi, V; is the utility function or value of itineratiyand the summation is over all itineraries for a given airport-
pair. The utility function ;) is a linearin-parameters function of the explanatory variables and assumes that eac
vector of attributes characterizing an alternative can be reduced to a scalar hadhesxpresses the attractiveness
of each alternative. Consequently, it is expected that the individgabop of individual will choose the alternative
with the highest value, maximizing their utility. Equation) §hows the general expression Y6y whereX; is the
vector of attributes defining alternativieandg' represents the coefficients to be estimated capturing the influence of
the corresponding attribute on the alternaifie

_ Exp(V)
" Xiexp(Vy) 1)
Vi=B"Xi=PB1 X+ Ba Xig +.. 4P X (2)

Attributes included in vectax; are as follows:
e Travel time,TT;, is the travel time of itineraryin minutes.
e Travel costTC,, is the travel time of itineraryin $, which is normalized by 100 for scaling purposes.
e nonstop, is a dummy variable which is 1 if itinerairys composed of 1 leg, 0 otherwise.
e onestop, is a dummy variable which is 1 if itinerairys composed of 2 leg, 0 otherwise.

8 |ATA codes for he 25 hubs considered in this study are: ORD, ATL, DFW, LAX, IAH, DENW, PHL, CVG,
MSP, PHX, EWR, CLT IAD, JFK, LAS, MIA, SFO, SLC, SEA, BWI, STLLE, MEM, PIT.
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Interactions among the attributes are accounted for by the model. Tdlded the specifications of the utilities.
It can be seen hoWwT and TC interact with dummy variableson-stop and onestop — i.e. level of service-
representing the strong correlation between the number of stops endatel cost of the itinerary. These
interactions are an attempt to capture the correlation between the speciéinchbbth variables, price and time.
Moreover, a logarithmic transformation has been considered for the variable gu$caning that the effect of
increasing the price is not linear across the several price levels. Far funffrovements, other interactions are to
be considered for the final paper. For example, the importanceitiienary origin and/or destination airport can be
correlated with time and price for non-stop itineraries. Similarly, fa-stop itineraries, the importance of hub
location on travel time and cost can also be accounted

To better understand the results obtained from the air itinerary choiad, imaticators such as willingness to
pay can be computed. Value of time (VOT) is the willingness of passengeay for one hour of travel. VOT is
given by Eq. (3), which is computed for each given alterndtiwdote that due to including the travel price in
logarithmic transformation when computing the utility, travel cost is atdaded in the formulation of VOT.

Table 1. Specifications of the utilitiesfor the itinerary choice model.

Constant ASCI 1 x alternative;
NS
IBTC In(TC;/100) x non-stop ;
Travel Cost
Js; oS In(TC,/100 6
TC n(TC;/100) x one-stop ;
IB'INI'S TT; x non-stop ;
Travel Time os
IB'I_I' TT; x one-stop ;
aV; /otime; -TC
vor, = QVi/dtime, _ frr

- Vy/oprice;  Prc 3)

During the estimation of the model, for each city-pair considered, the ity likelihood function are
computed, with the latter being combined in order to give the estimated lofgdideliOnce the itinerary choice
model is estimated using the MNL algorithm, Eq. (1) is applied to ctarthe market share of passengers for each
itinerary. The estimated passenger demand per itinerary is then used to computatségmand, i.e. passenger
demand per airport-pair, which will eventually be used as inputhfer3® stage within the 3-stage model as
described in detail in Ref.. 3

V. Application

The models described above are applied to a network of 337 airports thithUS ATS, as in Rdf8. Along
with the airport set mentioned, the compilation of the correspondingiti¢S, special city variables, and road-rail
variables are identical to those in RES.

Historical flight frequency data and airlines schedule are extracted from US DepartihTransport T-100
datd®, while historical information on passenger demand data and airfazesdsted from the Airline Origin and
Destination Survey (DB1B), which contains a 10% sample of airline tickats feporting carriefS. Travel times
and costs are also extracted from R¥f.while the SP data is obtained from an Internet survey conducted by the
Boeing Company in the fall of 208% The air itinerary choice model is estimated usiggemé?. Flight delay
information is obtained from the FAA Aviation System Performance Metri&P() databasé

The RP data considered for estimating the model is from 2007 to beeiwilh the period considered when
estimating the ultimate 3-stage model described in Ref. 3

Once the model is estimated, it will be applied to estimate the itinerary shares ent@enstwork of 337
airports into the future. These results will then be compared to those okEhia Tuture work.
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V1. Model Estimation Results

From the 3-stage model, results obtained for stage 1 and 3, as wellltsforsthe identification of available
itineraries between city-pairs, are presented and described in.Ref. 3

The air itinerary choice model introduced in this paper is under developnethemodel estimation results
will be included in the final paper. However, results have been generatadreduced dataset for the entity
Continental US to Alaska and Hawaii. Two different datasets have bedrtaigenerate these resuttgfering by
the number of city-pairs included from RP data, with one consigefii®©D pairs and the other one 15 OD pairs.
Both datasets are then combined with SP data. There are a maximum of 4tiede@vailable for each OD pair.
The estimation results model when considering both datasets are preserabtki@.For the first case, when only
7 OD pairs from RP data are includedl estimated coefficients are statistically significant with5& confidence
level. All travel time and cost coefficients have negative signs, as one wqedtesince the increase on time
and/or on price of a given itinerary will decrease its attractivenedsharefore, its utility. Finally, the magnitude
of the travel cost parameter for the non-stop itineraries is larger thasoshgarameter for one-stop itineraries.
However, for the travel time parameter the opposite effect is trueughtthe difference in this case is quite small
This indicates that passengers on connecting itineraries are less affectethbrease in price than on non-stop
itineraries. Contrariwise, passengers on non-stop itineraries are less affeatethbrease on travel time compared
to one-stop itinerarieBoth these results are unexpected, as non-stop passengers would tieiedpected to be
less price sensitive and more travel time sensitive. Regarding the price titi@afac some observations within the
RP data one-stop itineraries are more expensive might be the reasorewbsgulls suggest that passengers are less
affected by an increase in price on one-stop itineraries compared téopoitireeraries. In the case of travel time,
the limited number of available one-stop itineraries, resulting from thsidemation of only 25 connecting hubs
when creating the dataset, can be the cause of lack on variabiliheftnavel time variable, leading to the results
described. More analysis is needed to better understand these results.

For the case when 15 OD pairs are considered, estimated coefficients for ¢hedstvhave negative signs as
expected. Howevethe estimated travel time coefficients have positive signs, which is oppositettmne would
expect since an increase in travel time is expected to decrease the attractivéme#nerary. When considering
the magnitude of the estimated parameters, price and time for noihstoaries are larger compared to those for
one-stop itineraries. Similarly to the earlier case, most of the onetisteqaries in the RP data have higher prices
and as expected travel times are longer. All estimated coefficients are statistyrafiyasit with a 95% confidence
level

Table 2. Estimated coefficients and corresponding t-statisticsfor theair itinerary choice model corresponding
to entity Continental USto Alaska and Hawaii.

7 ODs 15 0Ds
Parameters | Coefficient  t-test | Coefficient t-test
,BTI\(I:S -9.84 -20.36 -7.79 -35.92
Travel Cost
P> 322 -11.54 | 3.2 -22.13
TC . . . ;
ﬂ_ll_\ll_s -2.13 -17.52 1.07 37.66
Travel Time
ﬂos 281 -20.56 | 0.174 6.34
Likelihood ratio test 118966 214255
p’ 0.257 0.304

Comparing results from the two cases, when 7 and 15 OD pairs are cedgidgpectivelyit is important to
note the type of data used. The lack of variability in the RP data mthelmause for poorer results, such as the
unexpected positive sign for the travel time in the 2nd case. Despstethe latter model shows a slight
improvement on the goodness of fit wittpaof 0.304, which compared to the 1st case (0.257) corresponds to an
increase of 19%. To further analyze the results and understarefféicé that the level of service has the
willingness to pay, VOT is computed - using Eq. {2or two itineraries differing by the number of stops, but with
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the same price. For example, taking a non-stop and a one-stop itihetargosting $400, VOT values computed
for both datasets are shown in Table 3. It can be seen how ingheafie, VOT values obtained are opposite to
what one would expect since it shows that passengers are willing to pashahigher price for one hour reduction
on their one-stop itineraries than on their non-stop itineraries. Loakitiee second case, when 15 OD pairs from
RP data are included, VOT values in absolute terms make more sense sirie pritig is expeetito be paid for

an hour reduction of travel tim& non-stop itineraries compared to one-stop itineraries. However, in gastbe
signs obtained are opposite to what one would expect.

Table 3. Value of Timefor the case when itinerarieswith different levels of service cost the same price of
$400.

7 ODs 15 0Ds
VOTys 87 -55
VOTOS 349 '22

VIl. Conclusions and Future Work

Research describad this paper provides an effort to improve on existing air traffiedasting methodologies
through a better understanding of the factors driving demapglysand network dynamics. In order to achieve this,
an aggregate air itinerary choice model, which is part of a 3-stage moa@dl traffic forecasting, is presented. The
model introduced aims to directly estimate the distribution of the O-Dadénacross the available itineraries
serving a given city-pair using the domestic US ATS as example applicatiomddeding approach explores the
use of a mixed SP and RP dataset, which is expected to improve resydtgebto existing researches only using
RP data.

Initial developmentof the route demand assignment model is still in progress. Howswewr preliminary
results have been produced for one of the entiti@entinental US to Alaska and HawaiiFrom these results some
aspects can be highlighted. When using a reduced dataset with a limitddt&®Results are quite promising,
showing estimated coefficients for travel cost and time with negaitives sind all being statistically significant.
When increasing the number of OD pairs included from the RP data, rebaltge slightly. While some aspects
worsen compared to previous estimated results - e.g. sign for traeegsiimated coefficients become positive -
others improve, such as tigeodress of fit for the model that goes from 0.257 to 0.304. Theseefdeucies are
believed to be caused by lack of variability within RP data as well asathesrof the data itself, having in some
cases higher prices for one-stop itineraries than for non-stop itineraries.

Model estimation results obtained to date look promising. However, therenisfooomprovement and further
work is planned to be included in the final papéew attributes and new correlations will be considered, as well as
better understanding the data used. Alternative modeling approachesasshthor MMNL models, will also be
investigated.

Ultimately, the estimated air itinerary choice model will be included within3tiseage model, which aims to
model air travel demand, route demand assignment and air traffandenithin a single framework. The proposed
modeling framework provides with an effort to improve on tixgsair traffic forecasting methodologies by using an
innovative approach. After the full model is developed, it will be usededigi air traffic in the US ATS into the
future, so that the results can be compared directly to the TAF.
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