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Abstract

The evolution of populations is influenced by many factors, and the simple classical models

have been developed in a number of important ways. Both population structure and multi-player

interactions have been shown to significantly affect the evolution of important properties, such

as the level of cooperation or of aggressive behavior. Here we combine these two key factors

and develop the evolutionary dynamics of general group interactions in structured populations

represented by regular graphs. The traditional linear and threshold public goods games are adopted

as models to address the dynamics. We show that for linear group interactions, population structure

can favor the evolution of cooperation compared to the well-mixed case, and see that the more

neighbors there are, the harder it is for cooperators to persist in structured populations. We further

show that threshold group interactions could lead to the emergence of cooperation even in well-

mixed populations. Here population structure sometimes inhibits cooperation for the threshold

public goods game, where depending on the benefit to cost ratio, the outcomes are bi-stability or

a monomorphic population of defectors or cooperators. Our results suggest, counter-intuitively,

that structured populations are not always beneficial for the evolution of cooperation for nonlinear

group interactions.

PACS numbers: 87.23.Ge, 05.10.Gg, 02.50.Le, 87.23.Cc

2



I. INTRODUCTION

The evolution of cooperation is an enduring conundrum in evolutionary biology since

Darwin [1–7]. Serving as an indispensable mathematical model, evolutionary game theory

[5, 6, 8–10] has become an effective method to quantify cooperation and predict evolutionary

outcomes for different situations. Some further theoretical analyses on the evolution of

cooperation have been achieved since the introduction of evolutionary dynamics in both

infinite and finite populations [4, 6, 11–13]. Within the area of dynamics, two-player games

[14–16] are frequently adopted to model typical pairwise interactions to understand the

evolution of cooperation [17–26]. Considering the ubiquitously group interactions ranging

from the natural world to human society, researchers recently generalized two-player games

to their multi-player versions [27–37], such as the N -person prisoner’s dilemma [30, 38],

N -person snowdrift game [31, 32], N -person stag hunt game [39], as well as the N -person

ultimatum game [40]. In a typical collective action, an individual’s payoff could be no longer

the simple summation of many pairwise interactions [33, 41], and instead it is replaced by

the multiple interactive payoffs from multi-player games, which depends on what strategies

all other opponents hold in the same group. The various compositions of different strategies

in group interactions give the possibility for the emergence of nonlinear fitness [29].

Evolutionary dynamics for strategies in group interactions are complex even in the ide-

ally structureless (well-mixed) populations, with outcomes which cannot be obtained from

pairwise interactions [28–30, 33, 34, 37, 42, 43]. In reality, the introduction of not merely

multi-player games but also structured populations gives rise to polynomial as well as non-

linear fitness functions in evolutionary dynamics [28, 29, 33, 34, 38, 44–47]. Hence it has

added a lot of difficulty to conduct analytical explorations for this case. Even so, some sig-

nificant work has emerged. For the cyclic population, van Veelen et al. [44] give analytical

conditions for cooperation to evolve with general multi-player games for any intensity of

selection. Based on the unequal sharing of diffusible common goods in microbial colonies,

with a particular population structure indicating the diffusible process, Allen et al. [45]

give the analytic relation between benefits and costs guarantying the success of coopera-

tion. Considering the typical discounted, linear, and synergistic group interactions, Li et al.

[46, 48] provide the theoretical rules for the emergence and stabilization of cooperation in

structured populations represented by regular graphs.
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Spatial reciprocity is generally accepted as one of the five rules facilitating the evolution

of cooperation [7], and some theoretical results as well as experiments have validated this

rule by illustrating the positive function of spatial interactions represented by lattice or com-

plex networks [17, 33, 46, 49–52]. However, we should not ignore some special cases where

the detrimental effect of spatial structure on cooperation is revealed under the framework of

the snowdrift game [18]. The presence of both multi-player games and population structure

enriches the outcomes of evolutionary dynamics. Moreover, as we consider general group

interactions in structured populations, we are provided with a much greater chance to ex-

plore the effects of population structure on the evolution of cooperation. However, due to

its inherent complexity, until now the evolutionary dynamics has only been given for some

specific games or well-mixed populations [12, 31, 32, 39, 44, 45, 48, 53, 54]. Here we give

the evolutionary dynamics for an arbitrary multi-player game with two strategies in struc-

tured populations represented by regular graphs. Whatever the specific form of the payoff

functions, the general multi-player game just requires the discrete payoff values on every

possible composition of strategies. Moreover, two typical multi-player games are employed

as examples to explore the evolution of cooperation in structured populations. We find that

some counter-intuitive results are obtained from these examples.

II. MODEL

We consider an infinitely structured population depicted by a regular graph with degree

k. The vertices of the graph represent individuals. The edges determine who interacts with

whom for the game payoff and who competes with whom for reproduction. In contrast to

the well-mixed population, population structure allows players to interact locally, i.e., in

each generation, every individual participates in k games organized by its neighbors and

one game organized by itself [46, 50] (see Fig. 1). Both types of game consist of k + 1

players. For every player in the population, after playing k + 1 games, they will attain

payoffs accumulated from every single game in which they are involved. The payoff matrix
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FIG. 1: Group interactions in structured populations. We choose 14 individuals from a population

with degree k = 3 to explain group interactions in structured populations. The nodes shown

as squares and circles represent individuals with strategy X and Y , respectively. The individual

with a blue square has three neighbors (colored orange). During evolution, in each generation,

every player will organize a game with a group of size k + 1 comprising itself and its neighbors.

Taking the blue square as an example, we find that its payoff consists of four games: one organized

by itself (circled by the dashed line in (a)), and another three organized by its three neighbors

independently (circled by the dashed line in (b), (c), and (d)). Using the payoff matrix, we give

the corresponding payoff of the blue square in each panel, where the subscript indicates the number

of individuals involved in the game with strategy X. Payoffs of other individuals can be calculated

in the same way in each generation, and after that, a death-birth process is employed to characterize

the evolution of strategies in the population.

for a general multi-player game with size n = k + 1 is presented as

Opposing X players 0 1 · · · i · · · k − 1 k

X a0 a1 · · · ai · · · ak−1 ak

Y b0 b1 · · · bi · · · bk−1 bk

where ai and bi depict the payoffs obtained by the players with strategy X and Y , respec-

tively. The subscript i is the number of players adopting strategy X in the game (see Fig. 1).

Based on the payoffs of each individual, the “death-birth” (DB) process is employed to cap-

ture the update process, where an individual in the population is randomly chosen to die at

each evolutionary step, and then all of its neighbors compete for the vacant site, gaining it

with probability proportional to their fitness.

In structured populations, pair approximation is adopted to capture the evolution of

strategies, where, in principle, the population structures are represented by regular graphs
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[19, 46, 55, 56]. The notations, pXY and pX are used to indicate the frequency of XY

pairs and strategy X. For an individual with strategy Y , the probability for him or her to

find someone with strategy X is qX|Y . Hence based on the above definitions, we have the

relations between these notations as

pX + pY = 1

qX|X + qY |X = 1

pXY = pY · qX|Y

pXY = pY X

where in this physical system, all variables could be represented by pX and qX|X .

After long calculations with the evolutionary process of the whole population captured

by pX and qX|X , we find that the global frequency change of pX is very slow due to the weak

selection intensity w [19, 46, 56]. Furthermore, we have

qX|X =
k − 2

k − 1
pX +

1

k − 1
(1)

at evolutionary equilibrium based on the separation of two time scales [57]. According to the

above relation between pX and qX|X , all variables in the dynamic evolutionary system can

be expressed only by pX mathematically when it is stable (for the detailed deviations, see

[46]). It elucidates that as the composition of the structured population in term of individual

strategies is stable, we could obtain the more detailed information about the population by

considering only the fraction of the players with strategy X.

Hence, as we use x to indicate the expected change of the frequency of cooperators, we

have the deterministic evolutionary dynamics

ẋ =
w(k − 2)

k(k − 1)
x(1 − x)f(x) (2)

where f(x) = k(πY
X − πY

Y ) + [(k − 2)x + 1]
[

(πX
X − πX

Y ) − (πY
X − πY

Y )
]

, and πY
X is the mean

payoff of the player adopting strategy X, who is the neighbor of the selected individual with

strategy Y . The above equation gives the evolutionary dynamics of group interactions in

structured populations, from which we could obtain the deterministic evolutionary direction

of the population by virtue of the sign of f(x), that is, the physical change of the strategy

composition is simplified by analyzing f(x). Considering the configuration of the population
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structure around the selected individual who has kX neighbors adopting strategy X, we have

πX
X = akX +

k−1
∑

i=0

p(i) ∗

[

ai+1 + i

k−1
∑

l=0

p(l)al+1 + (k − 1 − i)
k−1
∑

l=0

q(l)al

]

,

πX
Y = bkX+1 +

k−1
∑

i=0

q(i) ∗

[

bi+1 + i
k−1
∑

l=0

p(l)bl+1 + (k − 1 − i)
k−1
∑

l=0

q(l)bl

]

,

πY
X = akX−1 +

k−1
∑

i=0

p(i) ∗

[

ai + i

k−1
∑

l=0

p(l)al+1 + (k − 1 − i)
k−1
∑

l=0

q(l)al

]

,

πY
Y = bkX +

k−1
∑

i=0

q(i) ∗

[

bi + i
k−1
∑

l=0

p(l)bl+1 + (k − 1 − i)
k−1
∑

l=0

q(l)bl

]

.

p(i) and q(i) are the function of i,

p(i) =
(k − 1)!

i!(k − 1 − i)!
qiX|Xq

k−1−i
Y |X ,

q(i) =
(k − 1)!

i!(k − 1 − i)!
qiX|Y q

k−1−i
Y |Y ,

which denote the probability for players (who are neighbors of the selected individual)

adopting strategy X and Y to find i players with strategy X and k − 1 − i with Y in

the player’s other k− 1 neighbors except the selected individual, respectively, where qX|X =

(k−2)x/(k−1)+1/(k−1), qX|Y = (k−2)x/(k−1), qY |X = (k−2)(1−x)/(k−1), and qY |Y =

1 − (k − 2)x/(k − 1).

III. LINEAR PUBLIC GOODS GAME

For the traditional public goods game [30], every cooperator contributes a benefit b to the

group at a cost c (b > c), while defectors pay nothing, and eventually the totally collected

benefits from all cooperators are distributed evenly to every group member irrespective

of their previous strategies. As to the payoff matrix, mapping X and Y to the strategy

cooperation and defection severally, we have

ai =
(i + 1)b

n
− c,

bi =
ib

n
,

with 0 ≤ i ≤ n−1, and the corresponding evolutionary dynamics for well-mixed populations

is

ẋ = x(1 − x)[b/n− c] (3)
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where n is the group size. According to equation (2), we obtain the evolutionary dynamics

(see Appendix A)

ẋ =
w(n− 3)

n− 2
x(1 − x)

[

n + 2

n
b− nc

]

(4)

in structured populations where every individual has k neighbors (n = k + 1 here). Consid-

ering n > n2/(n + 2), the evolutionary dynamics indicates that the structured populations

could better pave the way for cooperation than the structureless cases (see Fig. 2a, 2b, 2d,

and 2e). It has also been pointed out that the benefit and cost of the cooperative behavior

only experience a linear payoff transformation as we move from the structureless population

to the structured [48]. Now let us consider the net benefit b̄ and cost c̄ for a cooperator. We

have the relations

c̄ = c−
b

n
,

b̄ =
n− 1

n
b

between b and b̄, c and c̄. Hence we get that cooperation could flourish in a structured

population if
b̄

c̄
>

n(n− 1)

2
. (5)

This means that the system will always end up in full cooperation if the above condition is

satisfied. As we have shown that, for the structured population represented by the regular

graph with degree k, every player has k neighbors and is engaged in group interactions with

size n = k + 1. Our results for group interactions captured by the public goods game in

structured populations suggest that cooperators will gain a foothold if the net benefit and

net cost ratio b̄/c̄ exceeds half of the product of the number of neighbors and the size of the

group interactions.

IV. THRESHOLD PUBLIC GOODS GAME

For the threshold public goods game (also called the n-person stag-hunt dilemma [39]),

public goods is available as the number of cooperators in the group meets a predetermined

threshold, and, if not, meaning that the collective target is not achieved, every player gets
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FIG. 2: Evolutionary dynamics for linear and threshold public goods games in well-mixed and

structured populations. Each arrow below the panels gives the range of benefit-to-cost ratio b/c, up

to which the corresponding evolutionary dynamics are shown. The direction of selection dynamics

is indicated by the arrow in each panel, where the small solid circle represents a stable equilibrium

while an empty circle represents an unstable equilibrium. In structured populations, the group size

is n = k + 1. In (c), the internal unstable equilibrium is x∗w, while for (g), it is x∗s. In (h), the

inset is employed to show that F (x) > 0 as x → 0, and it shares the same labels as the main panel.

Parameters are w = 0.01, c = 1, k = 5, n = 6, and the others for (a) and (d) are: b = 4, (b),(c),

(e), and (g): b = 10, (f): b = 1.1, (h): b = 2000.

nothing while cooperators still suffer the cost they have paid. In this case, we have

ai =
i + 1

n
bθ(i−M + 1) − c,

bi =
i

n
bθ(i−M)

(6)

where M is the threshold for the collective target, and the Heaviside step function θ(x)

satisfies θ(x < 0) = 0 and θ(x ≥ 0) = 1. As M = 0 or 1, the threshold public goods game

degenerates to its linear version. Here, for simplicity, we consider the largest threshold,

M = n.

For the replicator dynamics in well-mixed populations [6], we have

ẋ = x(1 − x)(bxn−1
− c)

where n is the group size. In this case, we find bi-stability of the evolutionary outcomes,

suggesting that the simple nonlinear group interactions (with maximum threshold) give the
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possibility for cooperators to take over the whole population (see Fig. 2c) whatever the value

of b/c, i.e. if the initial frequency of cooperators is bigger than x∗
w = n−1

√

c/b, cooperators

will occupy the whole population. However for the linear public goods game, it is impossible

for cooperators to take over the population as b/c < n.

When we consider the population structure, according to the equation (2), the evolution-

ary dynamics (see Appendix B) is

ẋ =
w (n− 3)

(n− 1)(n− 2)
x (1 − x)

{

bn
[(n− 3)x + 1]n−1

(n− 2)n−2
− n(n− 1)c

}

. (7)

Hence we have that cooperators could take over the population (see Appendix B) if and

only if

b

c
>

n− 1

n− 2
. (8)

For defectors, the criterion is

b

c
> (n− 1)(n− 2)n−2. (9)

The evolutionary outcomes are divided into three cases based on the value of b/c (see Fig. 2f

to 2h), where pure defectors, bi-stability of defectors and cooperators, and pure cooperators

are presented. It shows that a structured population could favor the evolution of cooperation

more than a well-mixed population when b/c > (n−1)(n−2)n−2 (see Fig. 2h), given that in

the former case the population will merely consist of cooperators. When b/c decreases but is

bigger than (n−1)/(n−2), the advantage of cooperators declines, where, similarly to the well-

mixed cases, an internal unstable equilibrium x∗
s = ( n−1

√

(n− 1)(n− 2)n−2c/b − 1)/(n − 3)

emerges (see Fig. 2g). However we should not miss the situation with b/c < (n− 1)/(n− 2)

where cooperators become extinct (see Fig. 2f), which will never happen for well-mixed

populations accompanied by the cooperative attraction interval ( n−1

√

(n− 2)/(n− 1), 1] (see

Fig. 2c), telling us that population structure is not always beneficial for cooperators.

V. DISCUSSION AND CONCLUSIONS

Population structure invokes much more complexity in exploring the evolution of coop-

eration under the metaphor of multi-player games, thus Monte Carlo numerical simulations

are frequently employed to investigate this issue. Here we theoretically address the evo-

lutionary dynamics of general group interactions in structured populations represented by
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regular graphs, where the payoff functions are not necessarily continuous. Two popular

examples, linear and threshold public goods games, are adopted to illustrate the dynamics.

We find that the threshold public goods game could give the possibility of the emergence of

cooperation with the maximum threshold even when the benefit to cost ratio b/c is small in

well-mixed populations, which is impossible for the linear case. Counter-intuitively, we find

that population structure is not always helpful for the evolution of cooperation under simple

nonlinear group interactions (for example the public goods game with maximum threshold).

Our results give another case demonstrating that spatial reciprocity sometimes cannot fa-

cilitate the evolution of cooperation under nonlinear group interactions, in addition to the

sole preceding one under the metaphor of the snowdrift game [18].

As we explore the effects of population structure on the evolution of cooperation for group

interactions, the concept of total payoffs [46, 50] is adopted to capture the interactions,

where each individual acquires payoffs from the game organized by itself as well as its

neighbors. However for well-mixed populations, the average payoff for each individual is

usually considered, i.e., it is the average payoff from one group interaction for individuals

with different strategies. We have retained these conventions, since they do not affect our

substantive results; if we had used the total payoff for our well-mixed populations, for

example, the rate of change in the replicator dynamics would be increased, but the phase

space and equilibria would be completely unchanged.

At first sight it is puzzling that, following equation (1), structured populations are more

favorable for cooperation (strategy X) than the well-mixed population, given that the con-

ditional probability clearly means that neighbors are more likely than random to be of

their own type. For the threshold public goods game, a tightly clustered group of defec-

tors would score zero, but this would be better than their cooperator neighbors, as any

such neighbor would likely have contributions from games involving at least one defector,

giving a negative reward. In the well-mixed case, this would not be true and coopera-

tors would be more likely to receive benefits. In particular for the structured game, one

of the contributions to an individual’s reward is the game centred on an individual that

it might replace. Thus if we consider the possibility of a cooperator replacing a defector,

the defector will have a contribution from the cooperator-centred game, and the cooperator

will have a contribution from the defector-centred game. In the well-mixed game this is

not the case as it involves a (or several) random group(s) including the given individual.
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From the perspective of theory, we could consider an example like this: assuming there

are k + 1 cooperators (strategy X) in a structured population with the configuration of

a cooperator surrounded by k cooperator neighbors, then we have qX|X = 2/(k + 1) and

pX = (k − 3)/[(k + 1)(k − 2)] for the structured population according to equation (1). For

the well-mixed case, qX|X = pX , and qX|X could be smaller than that for its structured

counterpart, however, it is possible for well-mixed populations to have more cooperators

than structured ones when (k − 3)/[(k + 1)(k − 2)] < pX < 2/(k + 1). Thus it is possi-

ble for well-mixed populations sometimes to be better for cooperation (X) than structured

populations. We note that the same relationship as equation (1) also occurs for pairwise

interactions [19] as well as group interactions with synergy and discounting [46], and it shows

that, in probability, population structure could favor the evolution of cooperation [17].

Furthermore, the coevolution of population structure and strategy is explored analytically

using linking dynamics, where the evolutionary dynamics derived from well-mixed popula-

tions [12] could give good approximations for that [22]. For general group interactions, it

is worth exploring the validation of general evolutionary dynamics on situations where the

population structure (not well-mixed) is allowed to switch during evolution (also known as

coevolutionary dynamics [58]). Here our result may provide a theoretical approximation for

more complicated evolutionary scenarios with the evolution of enormous configurations of

population structures.

Acknowledgements

The authors thank the members of Barabási laboratory for helpful discussions. A.L.,

J.D. and L.W. are supported by NSFC (Grants No. 61375120 and No. 61533001). M.B.

is supported by funding from the European Unions Horizon 2020 research and innovation

programme under the Marie Sk lodowska-Curie grant agreement No 690817. A.L. also ac-

knowledges the support from China Scholarship Council (201406010195).

12



Appendix A: The derivation process of evolutionary dynamics for the public goods

game

For the public goods game, using X and Y to represent cooperation (shorted by C) and

defection (shorted by D), we have

k−1
∑

i=0

p(i)ai =
k−1
∑

i=0

(k − 1)!

i!(k − 1 − i)!
qiC|Cq

k−1−i
D|C

[

(i + 1)b

k + 1
− c

]

= −c +
b

k + 1

[

1 +
k−1
∑

i=1

(k − 1)!

(i− 1)!(k − 1 − i)!
qiC|Cq

k−1−i
D|C

]

= −c +
b

k + 1

[

1 + (k − 1)qC|C

]

,

k−1
∑

l=0

p(l)al+1 =
k−1
∑

l=0

(k − 1)!

l!(k − 1 − l)!
qlC|Cq

k−1−l
D|C

[

(l + 2)b

k + 1
− c

]

= −c +
b

k + 1

[

2 + (k − 1)qC|C

]

,

k−1
∑

l=0

q(l)al =
k−1
∑

l=0

(k − 1)!

l!(k − 1 − l)!
qlC|Dq

k−1−l
D|D

[

(l + 1)b

k + 1
− c

]

= −c +
b

k + 1

[

1 + (k − 1)qC|D

]

,

k−1
∑

i=0

q(i)bi =
k−1
∑

i=0

(k − 1)!

i!(k − 1 − i)!
qiC|Dq

k−1−i
D|D

ib

k + 1

=
b

k + 1
(k − 1)qC|D

=
k−1
∑

l=0

q(l)bl

and

k−1
∑

l=0

p(l)bl+1 =
k−1
∑

l=0

(k − 1)!

l!(k − 1 − l)!
qlC|Dq

k−1−l
D|D

(l + 1)b

k + 1

=
b

k + 1

[

1 + (k − 1)qC|C

]

.

13



Hence we obtain

πD
C − πD

D = akC−1 − bkC +
k−1
∑

i=0

p(i)ai −
k−1
∑

i=0

q(i)bi

+
k−1
∑

i=0

p(i) ∗

[

i
k−1
∑

l=0

p(l)al+1 + (k − 1 − i)
k−1
∑

l=0

q(l)al

]

−

k−1
∑

i=0

q(i) ∗

[

i

k−1
∑

l=0

p(l)bl+1 + (k − 1 − i)
k−1
∑

l=0

q(l)bl

]

= −c− c +
b

k + 1

[

1 + (k − 1)qC|C

]

−
b

k + 1
(k − 1)qC|D

+
k−1
∑

i=0

p(i) ∗

{

i ∗

{

−c +
b

k + 1

[

2 + (k − 1)qC|C

]

}

+(k − 1 − i)

{

−c +
b

k + 1

[

1 + (k − 1)qC|D

]

}}

−

k−1
∑

i=0

q(i) ∗

{

i ∗
b

k + 1

[

1 + (k − 1)qC|C

]

+ (k − 1 − i)
b

k + 1
(k − 1)qC|D

}

= −2c +
b

k + 1

[

1 + (k − 1)(qC|C − qC|D)
]

+
k−1
∑

i=0

p(i) ∗

{

−(k − 1)c +
b

k + 1

[

2i + k − 1 + (k2
− 3k + 2)pC

]

}

−

k−1
∑

i=0

q(i)
b

k + 1

[

2i + (k2
− 3k + 2)pC

]

= −2c +
2b

k + 1
− (k − 1)c +

b

k + 1
(k − 1) +

2b

k + 1

k−1
∑

i=0

i(p(i) − q(i))

= −(k + 1)c + b +
2b

k + 1

=
(k + 3)b

k + 1
− (k + 1)c (A1)

and

πC
C − πC

D − (πD
C − πD

D) = akC − bkC+1 − (akC−1 − bkC )

+
k−1
∑

i=0

p(i)(ai+1 − ai) +
k−1
∑

i=0

q(i)(bi − bi+1)

=
b

k + 1

k−1
∑

i=0

(p(i) − q(i))

= 0. (A2)
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Therefore, substituting equations (A1) and (A2) into equation (2), we get the evolutionary

dynamics (4) for the public goods game.

Appendix B: The derivation process of evolutionary dynamics for the threshold

public goods game

For the threshold public goods game shown in equation (6) with M = k + 1, we have

(πC
C − πC

D) − (πD
C − πD

D) = p(k − 1)(ak − ak−1)

= b

(

k − 2

k − 1
x +

1

k − 1

)k−1

and

πD
C − πD

D = −c−

k−1
∑

i=0

p(i) c +
k−1
∑

i=0

p(i)

[

i

k−1
∑

l=0

p(l) (−c) + i p (k − 1) b + (k − 1 − i)
k−1
∑

l=0

q(l) (−c)

]

= b (k − 1)

(

k − 2

k − 1
x +

1

k − 1

)k

− (k + 1)c.

Hence we obtain the evolutionary dynamics (7) for the threshold public goods game with

n = k + 1.

Denoting ẋ = F (x), we have F (0) = F (1) = 0, and

F ′(x) =
w (k − 2)

k (k − 1)
[(1 − x) f(x) − x f(x) + x (1 − x) f ′(x)].

If F
′

(1) < 0, it means that x = 1 is stable, and we have

F ′(1) < 0 ⇐⇒ f(1) > 0 ⇐⇒
b

c
>

k

k − 1
.

If F
′

(0) > 0, it means that x = 0 is unstable, and we have

F ′(0) > 0 ⇐⇒ f(0) > 0 ⇐⇒
b

c
> k (k − 1)k−1.

Thus the criteria (8) and (9) are obtained for n = k + 1.
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