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In this papera conpressive sensing (CS3ub-Nyquist, nonuniform deterministic sampling
techniqueis consideredin conjunction with a computationally efficient power spectrum
estimationapproachfor frequency domairoutputonly systemidentification of linear white
noise &cited structural systemslThe adoptedCS sensing spectral estimation approaskume
multi-band inputrandom sigalsktochastic processesithout posing any signal sparsity
requireanentsandtherefore it is applicable to linear structures with arbitramgnber of degrees

of freedom and level of damping. Further, it applies directly to theNsgist (CS)
measurementand thus, itby-passes the computationally demanding signal reconstristtépn
from CSmeasurementsNumerical resultpertaining to te acceleration response oflamped
structure with closekgpaced natural frequencies are provided to demonstrate the effectiveness
of the consideredpproacho provide reliable estimates of natural frequenbigsneans of the
standardfrequency domairpeak-picking algorithmof operational modal analysissingup to
90% fewer measurements compared to the Nyquist rate sampledtdatenvisioned that this
studywill further familiarize the structural dynamics community witle potential ofCS-based
techniques for vibrationbased structural health monitoring and condition assessment of
engineering structures.

Keywords Compressive SensingPower Spectrum Estimation Outputonly System
Identification ARMA Filter, Multi-band Stationary Random Procesdéslti-coset sampling.

1 Introduction and Motivation natural frequencies, danimg ratios and mode
shapes)by acquiring and processingpw-
amplitude acceleratiosignalsfrom structures
excited by ambient (assumed to bewhite)
Hoise. From a technological viewpoint, the
Use ofwireless sensonetworks (WSN) has
been an importanteyelopment inOMA of
civil strudures in the past 15 years (e.g.,

certain concepts and techniques from theLynCh 2007, Spencer and Yun 20)0

fleld§ 9f (!mear) structural dynamlcssystem Compared to arrays of wired sensors, WSNs
identification, and modal testing (e.g., Ewins

2000) to derive dynamic properties (e.g. allow for more economicaland rapid

Operation modal analysis (OMA), also
referredto as outpuonly modal analysis, is a
widely used wrationbased technique for
condition assessment, design verification, an
health monitoring of civil engineering
structures(e.g., Reynders 2012)It relies on
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implementation oOMA. In fact, he current the Nyquist rate These gains become more
consensus is that WSNs will mune the important in maitoring stiff structures and/or
preferred wayto monitor civil structures via higher modes of vibrationFurthermore, CS
OMA once thepracticalconstraintof limited based sampling reduces data storage
energy availability of battery operated sensorequirements at the sensavhile the amant
nodesand data transmission bandwidth aref (compressively sensed) data to be
addressed in a cosffective and robust transmitted may bdow depending on the
manner. sparsity of the acqred signals. It is noted,
To this aim it has been recenly however, thatin principle CS is not as
recognizedthat theoretical and technological effective in reducing the amount of
developments fromthe emerging field of transmitted data, which is the most energy
compressive sensin@gCS) may offer new consuming operation in wireless sensors, as
viable strategieso reduce costs in WSNer  off-line lossy or lossless data compression
OMA (Park et al. 2014, O'Connor et al. 2014 algorithms appliedo Nyquist sampled signals
Yang and Nagarajaiah 2B In a nutshell, before wireless transmission at -board
CS asserts thaf an N-length discretdime  micro-processors in the currently used f©8
signalvector xeR™ (assumed to be sensorgLynch 2007) Still, efficient CS data

sampled at the Nyquist rate from an analogcquisiton may circumvent the offine
continuoustime ~ signal) or its linear compression step and therefore reduce the

transformation a on a basis of vectors Size, complexit, and cost of sensors. On the
collected in the ¥ eR™ matrix (i.e. antipode, the computational burden is
x=Wa) has onlyJ nonzero entries (J_’ transferred to the base station since signal

sparse”), thenxcan be faithfully retrieved reizcr?nlstruiction frorr: tC%mﬁrﬁSSi\éemsﬁQ;Ed
(with high probability) from only M >9Na&s IS a computationally —demanding

proportional to Jlog(N/J)  nornuniform operation.

random measurements v — o, where In this context O’'Connor et al.(2014
y=o¥a, reported signficantly reduced energy

yeR™* and @ ¢ R™™" is an appropriately consumption ira long-term field deployment
defined random matrix, by solving an of wireless sensorsacquiring randomly
¢, optimization problem d.g., Baranik sampled suiNyquist measurements compared

2007. This result suggests that CS can bio conventional (Nyquist sampling) sensors.

usedto simultaneously acquire and compres n r:h's 4 apipI;]caItlon, mir a:qntiliifdd c;)mpressed
signals(i.e., reduce their dimensions frolh sensed signals we transmitted o a base

to M<<N) by exploiting their potentially St?til(\)ln an(: rect:cs;n)ruded in thef timedoma}in
“spar®” structure in some domain (e.g., the(a yquist ra e).y means of a comomy
Fourier domain) In fact, althowgh not yet used reconstruction algorithm in CS. Then,

commercially availableyarious subNyquist tr;]e nnrtle/cogstrlrjctedr IS:'gn:tdSn ffr(r)rrr? d (?,[ach
CSbasedandom sampling devices have bee annelisensors -are ourteansiormed 1o

: btain frequency respea functions (FR$)
theoretically developed and prototypatbng 0 7
these lines(e.g., Tropp et al. 2010Mishali and the mode shapes were defiwming the

and Eldar 2010) To this end, wireless sensor:sStandard frequency domain decomposition

equipped withsuch sampling devicegnable algorithm of OMA (see e.g., Brincker and

slower sampling rateand, thereforeteduced Zthatng ZO?S)inIIowmg da _S|m|lar CSbtasetd d
energy consumption(and monetary cost) strategy, that Is,consiaering reconstructe

compared tothe currently used analdg- Nyquist sampled signalsiithe timedomain

. - from randomly sampled suRyquist
digital converterADCs) operatng at least at measurementsyang andNagarajaiah(2015)
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strategy for outpubnly system iéntification

conjunction with blind source separation foris theoretically applicable to both lightly and
mode shape and natural frequency estimatioheavily damped randomly (white noise)

In a different study,Park et al. (2014)

recognizedthat for the purposes of modal computationally

system identification of linear systenssgnal
recongruction in timedomain from CS

excited structures whereasit by-passes the
demanding signal
reconstruction in timelomain from the sub

Nyquist measurements.

measurements is not necessary. In this regard, The remaindeof the paper is organized as

they considered a  singular
decomposition based algorithm to iewe
mode shapes directly from selyquist non

uniform random measuremerassumed to be 3

acquired by means of the“random

value follows. Section 2 introduces the adopted

device and multcosetsamplingstrategyfor
stochastic processes (random signedgction
reviews the mathematical details to
accomplish power spectrum estimation

demodulatctr device of Tropp et al. (2010) directly from CS measurements, while section
Although reasonably accurate results in termd outlines the optimization problem that needs
of mode shapes were derived from noisy fieldo be solvedo design efficient deterministic

recorded data pertaining to a bridge structuresampling patterns.

the theoretical development oPark et al.

Section 5 pertinent

provides numerical results to assess the

(2014)relies on the assumption of undampedpplicability and accuracy of the adopted

free vibratingdeterministicstructural response approach

signals (i.e., the analog version ofx is a

by  ansidering simulated
acceleration data from a white noise excited

multi-tone signal expressed as a superpositidwo degree of freedom linear structure with

of harmonics with unknown amplitudes andcloselyspaced natural frequencies. Finally,

frequencies), which is not aligned with thesection 6 summarizes conclusions and points
assumptionof white noise excited structures to directions for future work.

of the standar@®MA.

In this study, the potential of asub
Nyquist noruniform deterministic sampling
techniguen conjunction withcomputationally
efficient power spectrurmrestimationdirectly
from CS acceleration measurements
explored for

2 Multi-coset Compressive Sampling
of Stochastic Processes

2.1 Sampling Strategy and Device

iS Let x(t) be a continuous itime t complex
frequency domain system valued

widesensestationary  stochastic

identification of linearly vibrating white noise processcharacterizedy the power spectrum

excited structural ystems. In particular, a
discretetime implementation of a CS
samplingdeviceconsideredn Ariananda and
Leus (2012), alongside periodic
(deterministic) sampling strategieproposed
by Tausiesakul and Gonzaifrelcic (2013
and 2014) areadopted. The caidered
sampling scheme can accommodarteilti-

Px(w) in the domain of frequencies band
limted by 2x/T. Broadly speaking
compressive sensing (CS)ims to sample
realizations of this procest a rate lower than
the Nyquist sampling rate/T (in Hz), and still
be able to faithfully estimate the power
spectrumPy(w). To this aim,the multi-coset
sampling stragy is herein adopted (see e.g.

band random siwpls (stochastic processes)Misali and Eldar2009) according to which

and does not require anysignal sparsity

the grid of Nyquist sampleg(nT) is divided

assumptior(see also Cohen and Eldar 2014)into blocks of N consecutive sampleand

In this regard, théerein considered Clsased

3
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from each blockM (<N) Nyquistratesamples within each block is governed byhe
are selected. The resulting sampling is coefficientscy[n] of the filterwritten as
periodic with periodN; nonruniformsinceany
subset ofM samplesmay be selecteffom a _{1, n=-n,,

. . C [n] =
total of N Nyquistrate samples within each m 0, n=z-n,
block; anddeterministicsince the position of
the M samples on the Nyquist grid of samplesyvhere there is no repetition i, i.e,
x(nT) is defineda priori once and appleeto
all considered blocks.The above sampling N, #-N,, V m=m. 2
strategycan be implemented by utilizinyl
interleaved  analotp-digital  converters The output of then-th branch is given by
(ADCs) operating at dsamplingrate 1/NT) as
discussed in Ariananda and Leus (2013). YmlKl = Z[ kN, 3)
discretetime model of such a sanipd device
is shown in Figurel in which the discrete whereZ [ is expressed as
time signalx[n]= x(n/T) entersM branches
and at eachm branch (m= 0,1,...M-1), the 0

1)

signalis convolved(filtered) by an N-length z,[n :_k;N Lk kn Kk (4)
sequence&-[n] and dowasampled byN. The o
selection of M samples (samping pattern)
el =l bl o wlk] = kN
=
coln]
bl =ablxa] o k] = kN
L] S
c1[n] l
z[n) o———y . . .
% | Zm 1[”] = Cm ][”] * “‘I[H] W Ym I’I‘J = Zm ]I_J!'"\']
' L5
('m[”]
o 2M 1[1] = enra[n] * (] o Ym-1[k] = 2a-a[kN]
%] L

S|
ear-1[n] l

Figurel. Discretetime model of theconsiderednulti-cosetsampling devic€Ariananda and Leus 2012)

2.2 Relation of the Input and Output autacorrelationfunction of the input signal to
Correlation Functions the device given by
Consider the crosscorrelation  function ryww[k] :Ey{ym[!l vl H} 5

between the output sequences of the different
branches of the device in Figure 1 and thgpq
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n=Efm{ m ¥} ©  RII=[ry [0 - 1 [
12
respectivelywhere E-} is the mathematical SRR O 1) I R || ]T, (42
expectatioroperatorwith respect ta and the
“*”superscript denotesomplex conjugation. where
Further,consider the patterarosscorrelation
function between the different sampling B
patternsof each branch of the same devicer“m'%[n] _{r%'%[nl\ﬂ fopcd N 11 (13)
expressed as . '
A 1)N+1]J .
0
Iooe [N==2 c,[H ¢k h (7)  In all previous equations and hereafter the “T”
k=1-N superscript denotes matrix transpositioBy

assuming that the autocorrelation function of

Substitting Eq. (1) into Eq. (6), yields the input signal in Eq. (6) takes on negligible

r, o [=dn-(n, -n)l. (8) Vvalues outside the rangé<k<L (in practice
A this will always hold for somd., depending
wheres[n]=1 for n=0 ands[n]=0 for 0. on the level of damping of the structural

It can be shown that the following System being monitored)Eq.(9) can becast
relationship blds (Ariananda and Leus 2012) in theform of (Ariananda and Leus 2012)

. r, =R, (14)
Ik =Y RITr[K 1, ©
=0 in which r, is the M?(2L+1)-by-1 vector
where r, [K] is the M2-by-1 vectorcollecting defined as
the output crossorrelation functionsr T
P mdm o =[]0 [0 Geer] 1]) . (15)
between theM branches of the considered
sampling devie evaluated at indek, that is, r, is theN(2L+1)-by-1 vector defined as
ry[K] :[ryo,yom SRS L B r, :[rXT[O]~——rXT[L]---r—XT[ g--r] 1]T'

, (10 (16)
9 (S e ryM'MM[k]],

andR_ is the M?(2L+1)-by-N(2L+1) matrix
r, [n] is theN-by-1 vector collectinghe input given as
autocorrelation function evaluated at certain

indices as in F:;[[(z]] R(?O] o 9 Rco[l]
rx[n]:{rx[nl\!l <oor[nN 1] - R.=| O R[] RJO] . L L@
T (11) : fe)
Nl O .. O R RO

) . . i
andR([l] is the M4-by-N matrix defined as where O is the zero matrix
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In the next section, an estimator of the Consider the unbiased estimatof the
power spectrum of the input signaln] is crosscorrelation function irEq. (5) defined as
consideredand therefore of the proces&))
derived from the crossorrelation funtions . K] = 1 K’“mz'"{ok}y Myl . (1
between the output sequences of the “»m K—|K "
branches of the sampling device Figure 1
upon solving Eq. (10) for, . These cross WhereK is the number of measurementén
correlation functions are, in turn, estimatecEStimate of the vectapectrums, of Eq.(19)

directly from the output sequences from eacfa" Pe reached by invertiftg). (14) as
branch inEq. (3)(i.e.,CS measurementsFor A A
a Q-long Nyquist sampled input signafn] S =Faan(ReR:) TR, (22)
the total number of the output measurement

are onlyMQ/N (M<N) with M/N being the Where the
compression ratio.

=max{ Ok}

“1" superscript denotes matrix
inversion and a “H” denotes Hermitian
transposition. In the last equatiorthe

2 p o ) .
3 Power Spectrum Estimation Directly from (2L+1)M=by-1 vector 1, is defined in a
CS Measurements similar way as the vector, in Eq. (15)

Under the assuption thatx[n] (the input Where the crossorrelation of Eq.(5) is
discretetime random signal/process in Figureréplaced by the esmator in Eq.(21) To
1) is sampled at the Nyquist rate from a bancensure that the pseudtoverse matrix
limited continuougime process x(t), the (RI'R.)'R! exists, the sampling patterns
power spectrum of the latter process can bg n] has to be designed such tHaf has full
expressedby means of the Wienethintchine columnrank It turns out that thiglesign task

theoren within the Gw=2r rangeas is equivalent to th selection ofM different

% _ rows from the identity matritn of size N.
R(w)=> rine™, (18)  Importantly, dthough the sampling patter
= correlation matrix R, is large {.e., of size

where i =+—1. The above equation can beM?(2L+1)-by-N(2L+1)), the fact that it has a

discretized using a Nyquist grid and cast irpPase structure as Sho‘”’.‘ Eq. (17) can be
matrixcvector form as exploitedto reduce theequiredcomputatioal

effort to obtain its pseudinverse as

S, = Fo ol (19) (Tausiesakul an@onzalezPrelcic2013)
where F, is theN(2L+1)-by-N(2L+1) standard A_l(“éR? (0] ij(“)ﬁc: [(1)]
discrete Fourier transforrDET) matrix and (R'R)*RY = o (a()) 0
s, is aN (2L+1)-by-1 vector given as ce : .

AN @R[1]
5.=|RO Bl 2r o o )
(2L +1)N N o
. : (20) oS
R, {mZ”((ZLJFl)N—l)H - LAY R[]

O A'(@R![0]
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where A(a) is the N-by-N diagonal matrix
with thediagonal

afa @ - al (24)

in which «(n) for p=1,2,..Nis given by
1M-1

a, ()=, Zé[fnﬁlf ", - ryq)}r

M-1M
m=0 m=0

+5[N—q +1-(n, - qq)]

(25

and n is the sequence d¥l positive integer
numbers expressed as

n= [no n WH]T , (26)

which defines the sampling pattern in Eq. (1).
Substituthg Egs. (15) and(23) into Eq. (22)
yields

S = I:(2|_ +)N

| AM@R[OIF,[0]

A (@R [O]F, [L -1
A (@R [O]F, [L]
AN (@R [O]F, [-L]

A”(@R?[0]F,[-2]
| AM@R[0]%,[-] |

27
A (@R [1

A (@R [UF[L]
AN @R [-L]
AR [UF,[-L+1

A @R IUF, -1
| AM@RIE 0]

in which

G. Deodatis and P.D. Spanos (eds.)
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AN @R [KIT[ ]
s B (29
=A@ D e o [k, T
m=0m=0
In the next section, a constraint

optimization problem is formulated to define
the n sequencen Eg. (26) or, equivalently,
the sampling pattern in Eq. (1) such that the
sampling matrix R, in Eq. (17) attains a
pseudeinverse and therefore the spectrum
s.can be estimated directly from the CS

measuements using Eq. (27).
4 Design of the Multi-coset Sampling Pattern

Consider  the M2(2L+1)-by-M?(2L+1)
covariance matrix of the estimatorof ry
defined as

C, =E{, ~ELEN(F, - ) )

and assume that the number of brandiies
known. Further, assumbat the input signal
x[n] is zeromean circulaly-symmetric
complexvalued Gaussian.i.d. noise (note
that althouglthis assumption ianrealistic for
x[n] being acceleration response of white
noise excited linear structural systems, it is
only consideed herein to facilitate the
derivation of the sampling pattern of the
devicein Figure land is not restrictive to the
class ofsimulated or recorded signals that can
be treatd by thisdevicd. Then, t can be
shown thatCfy possessethe block-diagonal

(29)

structure (Ariananda and Leus 2012)
0

(30

forke{0,1...L-L,..- 3.
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where C;; [klis the M*by-M? covariance where ||| is the Euclidean norm.Setting

matrix given by ne=0 in EQ.(26), theoptimum design of the
sampling sequence& can be adgieved by
K] = 1 o solving the optimization problei(Tausiesakul
o K|k~ and GonzalePrelcic2014
r%'c“[O]rc}'q’[O] ' %'QIO]r E’ ({0] ﬁMSE =arg rnninfMSE 0)
lONg6[0] e, JOIr ¢ {01 a. (n)>1
: : ' 1
* * v 2,3,..., =N_|+1,
faolOs ([0 ro Jor: jo] (1) nef23. [ SNI+1
. =0,
Fe 1[0, , ,[0] k 1 (36)
oo 05, [0 _ Stony,= LE N_|,
: N, €{N,,+L ...,
SRR Lo PP ) l_% N_|-M+m+1,
By observing that vme{l,2,...,M -2},
1 -
C: [kl =r|k| KC; ; [0], (32) where f,,..(n) :% f e(N) is given by
the matrix in Eq.(2) can be concisely written o= MZ_ll « 1
(and efficiently computed using any higher "MSEY/ ™ s %:O%{m o (n) (37)

level programming language) as
The above sampling pattern design approach
C, = K(A(B)®nyfy[0])’ (33)  for power spectrunestimationdirectly from
the CS measurements using the racdiset
where ®is the Kronecker product arfidis the  sampling device of Figure tan be further

(2L+1)-length sequence improved in terms of MSE by ugina
weighted least square error criterion
ﬂ:[i 11 (Tausiesakubnd GonzalePrelcic2013). The
K K-1 K-L following section provides selected numerical
1 17 (34)  results for both the above approachémulti-
P K—J . coset sampling pattern design

Let f,sc(n) be the normalized mean 5 Numerical Example

square error (MSEof the power spectrum N this section, fie applicability and

estimator in Eq. (22 given by effe_ctive_ness _of th€S de\_/ice of _Figure 1lin
conjunction with the herein considerpdwer
E {"é _quz} spectrumestimationapproachis numerically
fuee(n) = G . E " (35) gsse_s_sed. for outponly struct.ural _ system
N(2L+1)(1+ Zleo*“ identification purposes. To this aim, he
K 4%&SK-1)* continuoustime acceleration response process
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of a white noise excited two degreE the PSD othe analog system (broken curve in
freedom (DOF)structuralsystemwith closely Figure 2). The coefficients of this ARMA
spaced naturalfrequencies is considered filter are derived by the auto/cross correlation
Specifically, the system has naturalmatchingmethod(see e.g., Span@nd Zeldin
frequenciesvi1=20rad/sandw,=25ad/s anda 1998), commonly used for spectrum
commonratio of critical dampingof 5% for compatible simulation (see e.g., Giaralis and
bothmodes of vibration The amplitude of the Spanas 2009).

frequency response function (FRF) squared For illustration purposes, a muttoset
of the system (transfer function)for sampling device with a large number of
acceleration output, sometimes callechannelsM=14, and low sampling rate at the
accelerance in the field of modal testingADCs, N=128, is considered which achieves a
(Ewins 2000),is plotted in logarithmicdB  compression ratio oM / N =11% (i.e., only
scale and normalized to its peak valua 11% of the Nygist sampled input data are
Figure 2 (thick solid gray curvejThe ratio of acquired by the device). The sampling pattern
the two peak values attaindxy this transfer shown in the legend of Figure 2 is utilized
functionat the two natural frequencies is 2.84derived by solving the least squares
Under the assumption of ideal white noiseptimization problem in Eq. (36) assuming
input, which is in alignment wittOMA, this  K=1768 andL=5. The analytically obtained
transfer function becomes the “target  normalized powerpectrum estimate from this
(known) power spectral density (PSD)device is further plotted in Figure 2. It is
function that is sought to be captured by thghown to capture well the salient attributes of
CS sampling device of Figure 1Since he the system transfer function such as the
device consideredassumes Nyquist sampled|ocation of the two prominent peaks (natural
discretetime input signals, the consideredfrequencies) and their amplitude. This PSD
analog structural system is replaced by #&as keen derived by using Egs. (9) and (19),
surrogate digital autoegressive moving along with the autocorrelation function of the
average (ARMA) filter whose transfer ARMA filter in Eq. (6).

function traces closely (is practically identical

within the frequency range of interest), with

z O
= /\/\
[=]
o -0t
g Transfer function of structural system (Target PSD)
(&) L - o s ST .
- ml‘-'_ - Transfer function of digital ARMA filter
- / - - y - . 3 +
2 [ Theoretical output PSD from multi-coset sampling with pattern:
f i A =[0 1 2 6 8 20 29 38 47 50 53 60 63 4]
é 3 .I
2
= -80
Z
-100

o 20 10 60 80 100 120 140 160

Frequency o [rad’s]
Figure2. Acceleration transfer function of a two degree of freedom structural systegat(PSD) with
damping ratio 5%or all modesand naural frequencies:1=20rad/s and2=25rad/s, and theoretical PSD
obtained from a mul¢oset sampling device in Figure 1 with-14 and\N=128.
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0

20 40 60 80 100 120 140 160
Frequency o [rad/s]
Figure3. Estimated PSDs from Nyquist sampled and CS sampled simulate@d&#68,M=14 and
N=128)vis-avis the target PSQtransfer function of considered two degree of freedom structural system)

= | (W
=] I';rl ';J"f\fw"w W endibs e L bimd St At i A
2 i iR e e
& .zolml Lﬂi | mv 1 ﬁTTm m r{']‘ﬁ il '..ﬁ ! i kb.f‘ I i1
= V4l 1 Yl " \
r% | ; L | ]
E /
3 | ;'r Transfer function of structural system (Target PSD)
=5 f
“; Gl _!" Estimated PSD directly from multi-coset sampled CS
z (f simulated measurements- 1 realization
—;: i|| Estimated PSD from Nyquist sampled
= -80F measurements (M=N=1)- 10 realizations
)

Tablel. Estimated properties of the two degree of freedom structural systartravisfer
function shown in Figure 2 from frequency domain ppiking technique applied to average
PSDs estimated directly from CS measuents for different number of realizations

Number of [on w7 z 2z Peak value
realizations  (rad/s) (rad/s) ) ) ratio
Structural system ; 20 25 500  5.00 255
properties
10 20 25 6.67 7.83 2.47
9 20 25 7.78 7.96 2.68
8 20 25 6.74 7.89 2.58
Estimated properties 7 20 25 6.67 7.02 2.49
from peak picking to 6 20 25 7.78 7.89 2.74
PSD estimated directly
from CS 5 20 25 6.74 7.89 2.82
measurements 4 20 25 682  7.89 2.68
3 20 25 7.78 6.14 2.97
2 20 25 5.62 4.39 3.20
1 20 25 8.79 8.77 2.45

Furthermore, the consideration of thecolored (filtered) through the ARMA model.
ARMA filter compatible with the considered Next, the thus generatedn] signalsenter the
structural systemallows for the efficient sampling devicawith M=14 andN=128. In
generation of simulated[n] random signals Figure 3, a PSD émated directly from CS
compatible with the target PSD by filteringmeasurementsfor a single x[n] input
discreetime clipped Gaussian white noiserealization is plotted against the target PSD.
sequences.n this regard, 10 such sequencedhis PSD has been derived by usingKg1),
of 228608 length each are generated an@7) and (28). The considered CS
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measurements are taken from a number dhe accuracy of the estimated values of the
K=1786 blocks 0fN=128 length, and for each damping ratios derived fall roughly within the
block one sample is acquired each of the expected range of the PP algorithm. Lastly,
M=14 branches. Therefore, a total number ahe ratio of the estimated peak values attained
1786-14= 25004 newniform sampled CS by the CS PSDs compare relatively well with
measurements are acquired according to thibe value attmied by the “target” PSD which
sampling pattern shown in Figure 2For is a promising indication of the applicability
comparison,the PSDs estimated from 10of the considered approach for mode shape
Nyquist sampled realizationg[n] (case of estimation.

N=M=1) where each realization comprises

1786-128= 228608 unifolsn Nyquist 6 Concluding Remarks

sampled measuremenésge also superposed in
Figure 3 derived by means dofie standard
periodogramfor spectra estimation The
considered estimated PStdm simulated CS
measurements follows closely the target PS
and confirms the good quality of matching
achieved by the PSD derived from the auto
correlation function of the ARMA filter in

Figure 2. identification.  The adopted CSpectral

Imporiantly, for the purpose of system estimation approach assumesulti-band
identification, error quantification between the _appro R .
rémdom sigals (i.e., realizations of wide

estimated CS PSDs from simulated data an . nse stationary stochastic procesaghout
the theoretical PSD (e.g., in the mean squalse ) ary 1ic proce
sense) may not be an appropriate metric osing any signal sparsity requirements and

assess the potential of the herein coneidert erefore it is applicable to linear structures

L ith arbitrary number of dgees of freedom
CSbased approach. Rather, the aim is %’nd level of damping. Further, it aps

ensure that reasonable estimates of th .
structural system properties can be derive wgctl)r/]to the sub\lqusthCSmeasurer_nentl_T
ffom the estimated PSDs. In ths respese, o rr. e f ESIES T
standard  peagicking (PP) in frequency CS measugremgnts as is the case Wiﬂ? recent
domain algorithm of operational modal U :

work considering randonCS sampling for

aralysis (e.g., Reynders 2012) is herein ; : 2
congidere(d gto de);ive natural )frequenciesoperatlonal modal analysis. The applicability

damping ratios and peak value ratios from thé‘nd egﬁgtheank?:Sf theoﬁtonj;g;a red ?Etreorarl](:h
CS estimated PSDs. Table 1 summarizes tﬂg 9 peonly y

thus estimated structural properties from 2222(;2210;5 gilr:ga?e dr?g#geﬂ nljjig':?aet:a of
averaged PSDs derived from a differen P Ya

numbe of CS sampled realizations. ei;mblttaeeninv%?\?iqr?nsgatl(iar?ea?y d:m ':ﬂﬁw
Remarkably, natural frequencies are P 9 P

accurately retrieved even in the case Ogegreeof-freedom white  noise  excited

considering a single CS sampled realizatioﬁtéuﬁt:r:iie;‘"tgurtﬁgsgg oir?pav(\:/g(rjk bnatﬁtreal
(i.e., 25004 nofuniform sampled q going y

measurements folowing e mutaser 2010TS Sdtfesscs ine ssues of assesang e
sampling pattern of Figure 2)Furthermore, y PP

A multi-coset subNyquist, noruniform
deterministic sampling strategy to acquire
conpressive  sensed (CS) acceleration
Ig1easurementx;)f linear white noise excited
Structural systemshas beenconsidered in
conjunction with a computationally efficient
power spectrum estimation approach for
frequency domain outpuinly system
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to the acquired CS signals and of extending analog signals|IEEE Trans. Signal Proces

the presented approach to the mattannel

57(3),993-1009 Mar., 2009

case for mode shape extraction directly from©'Connor, S.M., Lynch, J.p. and Gilbert, A.C.

CS measurements.
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