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Abstract 
 
The effectiveness of magnetic resonance imaging (MRI) to monitor thermal lesions created by High Intensity 

Focused Ultrasound (HIFU) in rabbit liver in vivo is investigated. The MRI sequences of T1-weighted, and 

T2-weighted fast spin echo (FSE) were evaluated. The main goal in this paper was to find the range of repe-

tition time (TR) and range of echo time (TE) which maximizes the contrast to noise ratio (CNR). An ultra-

sonic transducer operating at 2 MHz was used, which is navigated using a positioning device. With T1W 

FSE the range of TR under which CNR is maximized ranges from 400 to 900 ms. The maximum contrast 

measured is approximately 25. With T2W FSE the range of TE that establishes maximum contrast is be-

tween 40 ms and 80 ms, with CNR of approximately 14. T1W FSE is much better than T2W FSE in detect-

ing thermal lesions in liver. Both T1W and T2 W FSE were proven successful to image thermal lesions cre-

ated by HIFU in rabbit liver in vivo. 
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1. Introduction 

 
Surgical resection is considered the therapy of choice for 

liver cancer. However, the percentage of patients who 

are good candidates for surgery is low [1]. Surgical re-

section is only feasible in 10–20% of the patients result-

ing to 5-year survival rates in the region of 40% [1]. 

Moreover, the incidence of new metastases after resec-

tion is high, and the success rate after multiple resections 

is low [1]. Because of the above disadvantages of surgi-

cal resection the development of several less invasive 

local ablative therapies for liver tumors is imperative. 

These approaches have included percutaneous ethanol 

injection [2], cryotherapy [3], radiofrequency [4], mi-

crowave [5], and laser ablation [6-7]. These local thera-

pies have produced survival rates similar to those with 

surgical resection in the treatment of metastases [8], but 

unfortunately high local recurrence rate is also reported 

[9].  

Therefore thermal ablation methods could possibly 

become a main treatment option for liver cancer, espe-

cially if recurrence rate is minimized. Another ablative 

method that could be used for liver cancer treatment is 

High Intensity Focused Ultrasound (HIFU). HIFU is the 

only non-invasive local therapy to be proposed to date. If 

HIFU is proven equivalent to surgical resection, this 

minimally invasive approach may be able to replace sur-

gery as the treatment of choice.  

A lot of work has been done in many directions since 

the 80’s in the area of liver ablation using HIFU. The 

threshold of intensity that is needed to cause irreversible 

damage in liver, was suggested by Frizell et al. 1987 [10] 

and Frizell 1988 [11]. This information is very useful, 

because the intensity needed to create lesions was de-

fined. The thermal effects of HIFU in liver were well 

documented by ter Haar et al. 1989 [12], and Sibile et al. 

1993 [13]. In the two studies by Chen et al. 1993 [14], 

and Chen et al. 1999 [15], the effect of HIFU ablation in 
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liver and cancerous liver using histology were analysed 

extensively. The effective delivery of HIFU protocols in 

real oncologigal applications of liver was achieved by 

implanting tumour cells in liver [16]-[20]. 

Since the 90’s clinical work has been initiated for 

liver cancer. Vallancien et al. [21] treated two patients 

with solitary liver metastases prior to surgical resection. 

The team headed by Wu in 1999 reported a clinical study 

for treating 68 patients with liver malignancies [22]. The 

same group reported a clinical study with 474 patients 

with Hepatocelular  Carcinoma (HCC) treated  using 

HIFU in combination with transarterial chemo 

-embolisation [23]. HIFU ablation has also been used for 

palliation in 100 patients with advanced-stage liver can-

cer [24]. Following treatment, symptoms, such as pain 

and lethargy, were relieved in 87% of the patients. 

Without an imaging system that allows for online 

monitoring of the deposition of ultrasound energy or the 

creation of induced lesion, it is impossible to predict the 

precise location of the HIFU beam, to monitor the tem-

perature changes, or to control the deposited thermal 

dose. In the past, these major constraints limited the de-

velopment of HIFU as a noninvasive surgical technique. 

In recent years, however, integration of HIFU with MRI, 

which allows high-sensitivity tumor detection and the 

ability to monitor temperature in real time, has increased 

the potentials of HIFU.  

MRI-guided HIFU has generally been reserved for 

the treatment of uterine fibroids [25] and breast adeno-

mas [26]. However, it is very likely that this mode of 

treatment monitoring and delivery will have a role in the 

treatment of liver tumours. Recently, a non-randomised 

clinical trial is under way [27] to assess the safety and 

efficacy of the MRI guided HIFU system ExAblate 2000 

(InSightec, Haifa, Israel) in the treatment of liver tu-

mours. It was reported that a small number of patients 

has been treated to date with promising results [27]. 

The first attempt to monitor the effect of HIFU using 

MRI in liver was reported by Rowland et al. 1997 [28], 

who demonstrated that monitoring of thermal lesions in 

liver is feasible. The MRI appearance of lesions in liver 

created using HIFU was also studied by Jolesz et al. 

2004 [29] and Kopelman et. al 2006 [30]. 

In this paper the goal is to investigate the effective-

ness of MRI to monitor therapeutic protocols of HIFU in 

rabbit liver in vivo. The two basic and most important 

MRI sequences of T1-weighted fast spin echo (FSE), and 

T2-weighted FSE are investigated. The goal was to cre-

ate large lesions and use MRI to discriminate between 

liver tissue and lesion. With T1W FSE the signal inten-

sity vs. repetition time (TR) is evaluated and based on 

this analysis, the contrast to noise ratio (CNR) is esti-

mated, in order to find the range of TR that produces 

maximum contrast. Similarly for T2W FSE the range of 

echo time (TE) is found that maximizes the contrast. A 

spherically focused transducer operating at 2 MHz was 

used, which is navigated inside MRI using an MRI com-

patible robot. 

 

2. Methods 

 
2.1. HIFU/ MRI system  

 
Figure 1 shows the block diagram of the HIFU/MRI sys-

tem which includes the following subsystems: 

a) HIFU system, b) MR imaging, c) Positioning device 

(robot) and associate drivers, and d) MRI compatible 

camera. 

 

2.1.1. HIFU system 

 
The HIFU system consists of a signal generator (HP 

33120A, Agilent technologies, Englewood, CO, USA), a 

RF amplifier (250 W, AR, Souderton, PA, USA), and a 

spherically shaped bowl transducer made from piezo-

electric ceramic of low magnetic susceptibility (Etalon, 

Lebanon, IN, USA). The transducer operates at 2 MHz, 
has focal length of 10 cm and diameter of 5 cm. The 

transducer is rigidly mounted on the MRI-compatible 

positioning system (MEDSONIC LTD, Limassol, Cy-

prus) which is described shortly. 

 
2.1.2. MRI Imaging 
 
The 3-d positioning device and the transducer were 

placed inside a MRI scanner (Signa 1.5 T, by General 

Electric, Fairfield, CT, USA). A spinal coil (USA in-

struments, Cleveland, OH, USA) was used to acquire the 

MRI signal 

 

Figure 1. HIFU system under MRI guidance showing the 

various functionalities of the HIFU/MRI system. 

 

2.1.3. Positioning device / Robot drivers 

 
The robot has been developed initially for three de-

grees-of-freedom, but it can be easily developed for 5 



degrees of motion. Since the positioning device is placed 

on the table of the MRI scanner its height should be 

around 55 cm (bore diameter of the MRI scanner). The 

length of the positioning device is 45 cm and its width 30 

cm. The weight of the positioning device is only 6 kg 

and therefore it can be considered portable. Figure 2 

shows the schematic the positioning device illustrating 

the 3 stages, transducer, and coupling method. The posi-

tioning device operates by means of 3 piezoelectric mo-

tors (USR60- S3N, Shinsei Kogyo Corp., Tokyo, Japan). 

More details of this positioning device can be found in 

[31]. Moreover, the positioning system includes opto-

electronic encoders (not shown in any of the figures) for 

providing signals indicating the relative positions of the 

movable elements in the positioning system. The resolu-

tion of all 3 axes of the positioning device is 0.1 mm.  

 
The box hosting the motor drivers is placed outside the 

MRI room since magnetic materials are involved. A DC 

supply (24 V, 6 A) is used to drive the Shinsei drivers. 

Wires from the Shinsei drivers are connected to a PCI 

6602 interface card (National instruments, Austin, Texas, 
USA) via a connecting block. The PCI 6602 interface 

card includes timing and digital I/O modules. The inter-

face is connected in a PC (Dell Inc. Round Rock, Texas, 

USA). 

 

2.1.4 MRI compatible camera 
 

In order to monitor the condition of the animal or hu-

mans (future use), an MRI compatible camera (MRC 

Systems GmbH, Heidelberg, Germany) was mounted on 

the system. The camera was interfaced by means of a 

video card. With the aid of the MRI compatible camera, 

the researcher can monitor the welfare of the animal. 

 

 

 

 

 

 

 

Figure 2 Schematic of the robot showing all of its stages. 

 

 
 
2.2 In vivo experiments 
 

For the in vivo experiments, New Zealand adult rabbits 

were used weighting approximately 3.5-4 kg. Totally 7 

rabbits were used in the experiments. The rabbits were 

anaesthetized using a mixture of 500 mg of ketamine 

(100 mg/mL, Aveco, Ford Dodge, IA), 160 mg of xy-

lazine (20 mg/mL, Loyd Laboratories, Shenandoah, IA), 

and 20 mg of acepromazine (10 mg/mL, Aveco, Ford 

Dodge, IA) at a dose of 1 mL/kg. The animal experi-

ments protocol was approved by the national body in 

Cyprus responsible for animal studies (Ministry of Agri-

culture, Animal Services). 

 
2.3 HIFU parameters 
 
The in situ spatial average intensity was estimated based 

on the applied power and the half-power width of the 

beam of the transducer. The attenuation used was 4 

Np/m-MHz. The half-power length of the beam is 15.6 

mm and the half-power width is 1.2 mm. The details of 

the intensity estimation can be found in [32]. In order to 

create large lesions, a square grid pattern of 4x4 overlap-

ping lesions was used. The spacing between successive 

transducer movements was 2 mm, which creates over-

lapping lesions for the intensity and pulse duration used. 

In all the exposures the ultrasound was turn on for 5 s. 

The in situ spatial average intensity used was 1000 

W/cm
2
. The delay between successive ultrasound firings 

was 10 s. 

 

2.4 MRI processing 
 
The following parameters were used for T1-W FSE: TR 

was variable from 100-1000 ms, TE=9 ms, slice thick-

ness=3 mm (gap 0.3 mm), matrix=256x256, FOV=16 

cm, NEX=1, and ETL=8. For T2-W FSE: TR=2500 ms, 

TE was variable from 10 ms to 160 ms, slice thickness=3 

mm (gap 0.3 mm), matrix=256x256, FOV=16 cm, 

NEX=1, and ETL=8.  

The contrast to noise ratio (CNR) was obtained by 

dividing the signal intensity difference between the Re-

gion of Interest (ROI) in the lesion and in the ROI of 

normal liver tissue by the standard deviation of the noise 

in the ROI of normal liver tissue. The ROI was circular 

with diameter of 3 mm. 

The tissue temperature change (�T) has been esti-

mated using the proton resonance frequency method 

given by the equation stated in Chung et al. 1996 [33]: 

��=�B0��T TE,     (1) 

where �� is the temperature-dependent phase shift which 

is the phase acquired before and during temperature ele-

vation and which accumulates during the echo time TE 

using fast spoiled gradient (FSPGR). The other terms are 

� which is the gyromagnetic ratio of proton, 

42.58MHz/T, � is the average proton resonance fre-

quency coefficient, and B0 is the flux density of the static 
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magnetic field. The measured temperature elevation can 

be added to the base-line temperature to obtain the abso-

lute temperature. The average proton resonance fre-

quency coefficient � for the frequency shift was taken to 

be -0.0105ppm/
o
C as determined by the method de-

scribed by Vykhodtseva et al 2000 [34]. 

 

3. Results 
 
The goal in this study was to use T1W FSE using differ-

ent TR (from 100 to 1000 ms) and then evaluate the ef-

fect of TR on the CNR. Figure 3 shows a large lesion in 

liver in vivo using T1-w FSE (TR=400 ms). This lesion 

was created using in situ spatial average intensity of 

1000 W/cm
2
 for 5 s. Since the step size of this 4x4 lesion 

was 2 mm, the size of this lesion is approximately 8 mm 

x 8mm. The MRI estimated maximum temperature in 

this lesion was 65 
o
C. Since the estimated temperature is 

below 100 
o
C, the occurrence of boiling was excluded. 

The thermal lesion appears bright and the contrast with 

liver tissue is excellent.  

 

 
Figure 3 large lesion in liver in vivo using T1-w FSE 

 

Figure 4 shows the photograph of the lesion of Figure 

3 after the animal was sacrificed in a plane perpendicular 

to the transducer face. 

Figure 5 shows the CNR between lesion and liver 

plotted against TR for the MRI image of Figure 3. The 

same trend of CNR was seen in all the remaining 6 rab-

bits. Also the maximum CNR between liver and lesion of 

the other 6 rabbits was also close to 25, and thus we are 

confident that this typical graph represents the behaviour 

of CNR vs. TR for rabbit liver ablation in vivo. The re-

laxation time T1 of the lesion is 250 ms, and relaxation 

time T1 of the liver is 600 ms. The proton density of the 

lesion increases by 20 % compared to the host tissue.   

 
 

Figure 4 photograph of the lesion of Figure 3 
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Figure 5 CNR vs TR 

 

Figure 6 shows the MRI image of the lesion of Fig-

ure 3 using T1W FSE demonstrating the excellent 

propagation deep in the liver (i.e. in plane parallel to the 

transducer beam axis).  

 
Figure 6 MRI image of the lesion of Figure 3 using T1W 

FSE 
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The second goal in this study was to explore T2W 

FSE using different TE (from 10 to 140 ms) and then 

evaluate the effect of TE on the CNR. Figure 7 shows the 

MRI images of the same lesion as in Figure 3 using T2W 

FSE (TE=60 ms).   

Figure 8 shows the CNR between lesion and liver 

plotted against TE for the liver and lesion of the MRI 

image of Figure 7. The relaxation time T2 of lesion is 35 

ms and the relaxation time T2 of the liver is 50 ms. The 

proton density of the lesion decreases by 5 % compared 

to the host tissue.   

 

 
Figure 7 MRI images of the same lesion as in Figure 3 

using T2W FSE. 
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Figure 8 CNR vs TE for the MRI image shown in Fig. 7 

 

4. Discussion 

 
In this paper the goal was to measure the CNR of FSE 

MRI sequences in detecting thermal lesions created by 

HIFU in rabbit liver in vivo. Both T1-W FSE and T2-W 

FSE have been proven successfully for providing excel-

lent contrast between liver and thermal lesion in rabbit in 

vivo.  

 

The CNR with T1W FSE is significantly higher than 

T2W FSE (25 with T1W compared to 14 with T2W).  

With T1W FSE the range of TR under which CNR is 

high and ranges from 400 to 900 ms. Obviously one 

should use TR of 400 ms in order to minimize the imag-

ing time. Thus, the optimum TR to be used is 400 ms. 

The maximum contrast measured is approximately 25. 

The window that maximises contrast in liver is much 

wider than the case of kidney [33].  

The maximum CNR obtained for liver is the highest 

we measured after 17 years of experience in this field. 

The relaxation time T1 of lesion (250 ms) is much lower 

than the T1 of the host tissue (liver) which is 600 ms. 

The greater the difference, the greater the CNR. How-

ever, one might not ignore the significant role that the 

value of proton density plays in the CNR. The proton 

density of the lesion is increased by 20 %.   

The trend of CNR vs TR starts to increase then it be-

comes flat and then at high TRs it starts to decrease 

again. This trend is justified because at low TR, the dif-

ference in signal intensity between lesion and liver is low 

at the beginning and therefore CNR is lower. At higher 

TR the signal intensity of lesion and tissue reaches their 

maxima and therefore the signal difference is lower and 

hence the CNR drops again.   

With T2W the range of TE that establishes maximum 

contrast is between 40 ms and 80 ms. This range was 

estimated by assuming that a CNR value of 10 is ac-

ceptable. Similar to what was seen in T1-weighted FSE, 

the window of TE that maximizes contrast is wider in 

liver compared to kidney [33]. Note that the maximum 

CNR value with T2W FSE is around 14 which is much 

lower than the value obtained with T1W FSE. The re-

laxation time T2 of lesion (35 ms) is lower than the T2 of 

the host tissue (liver) which is 50 ms. Therefore, in T2 W 

FSE the variation of signal intensity between lesion and 

liver is small (5 %) and therefore the factor dominating 

the CNR in T2-W FSE is the T2 relaxation time. The 

trend of CNR vs TE starts to increase then it becomes 

flat and then at high TEs it starts to decrease again. The 

same explanation holds as in the case of T1-W FSE. 
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