
Rybynok, V., Kyriacou, P. A., Binnersley, J. & Woodcock, A. (2010). MyCare Card Development:

Portable GUI Framework for the Personal Electronic Health Record Device. IEEE Transactions on

Information Technology in Biomedicine, 15(1), pp. 66-73. doi: 10.1109/TITB.2010.2091143

City Research Online

Original citation: Rybynok, V., Kyriacou, P. A., Binnersley, J. & Woodcock, A. (2010). MyCare

Card Development: Portable GUI Framework for the Personal Electronic Health Record Device.

IEEE Transactions on Information Technology in Biomedicine, 15(1), pp. 66-73. doi:

10.1109/TITB.2010.2091143

Permanent City Research Online URL: http://openaccess.city.ac.uk/13217/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

MyCare Card Development: Portable GUI

Framework for the Personal Electronic

Health Record Device
V. O. Rybynok, P. A. Kyriacou, Senior Member, IEEE, J. Binnersley, and A. Woodcock

Abstract—In most emergency situations, health professionals
rely on patients to provide information about their medical his-
tory. However, in some cases patients might not be able to commu-
nicate this information, and in most countries an online integrated
patient record system has not been adopted yet. Therefore, in or-
der to address this issue the ongoing project MyCare Card (MyC2 ,
www.myc2.org) has been established. The aim of this project is to
design, implement, and evaluate a prototype patient held electronic
health record device. Due to the wide range of user requirements,
the device, its communication interface, and its software have to be
compatible with many common platforms and operating systems.
Thus, this paper is addressing one of the software compatibility
matters—the cross-platform GUI implementation. It introduces a
portable object-oriented GUI framework, suitable for a declarative
layout definition, components customization, and fine model-view
code separation. It also rationalizes the hardware and software
solutions selected for this project implementation.

Index Terms—Graphical user interface (GUI), health care, pa-
tient care, personal health record, Python.

I. INTRODUCTION

I
N MANY areas of health care, particularly emergency care,

health professionals rely on patients to provide information

about their medical history. However, reliable information may

be difficult to acquire from patients who are unwell, confused, or

have communication difficulties. It is suggested that a personal

electronic health record device might empower patients to be

aware and have more control of their health status. Such a tech-

nology will also enable them to have the most updated health

and personal information at their disposal which will provide a

means of security and safety [1], [2].

Over the years, there have been many attempts to develop

personal electronic medical record devices such as chip-and-

pin cards, USB memory sticks, etc. [3]. Such technologies have

been embraced by people and governments with various levels

of success (e.g., [1], [4], [5]). In the U.K., there has been a slow

uptake of such technologies despite the efforts of the health

sector to convert all medical records from paper to electronic

format. However, the first attempt to test such technologies in

the British public was successfully trialed in the U.K., between

1989 and 1992 [5]. During this trial, over 13 000 patients were

provided with smart cards containing health information that

only they and health professionals treating them were able to

access. The results showed that the majority of participants

were in favor of having the cards. However, their use was not

continued, as the technology was not sufficiently mature at this

time.

In an effort to re-engage such an approach, new social at-

titude surveys [6] toward electronic personalized records have

been conducted in this study with a focus on the identification

of the design requirements toward the developments of a new

electronic personalized medical record device. The results of

these surveys were used in this project to produce the proto-

type system (record media and access software) which is being

continuously evaluated and refactored. The system code name

utilized for this project is MyCare Card, abbreviated as MyC2 .

This project aims to design and implement a system, which

will be intuitive and transparent for users of almost any computer

literacy. Therefore, from the beginning, the project development

had to be focused on the end-user interface. Thus, the software

GUI had to be developed first.

To control the project’s complexity, MyCare health record

system development was split into two subprojects: MyCare

Card—medical records storage media device; and MyCare Card

Browser—GUI and database software, which allows card own-

ers and health professionals to view and edit, where appropriate,

information stored on the MyCare Card. The focus of this paper

is the development of MyCare Card Browser GUI. MyCare Card

design and hardware are only reviewed to the extent required to

justify some of the solutions proposed in software (see [7], [8]

for further information).

GUI-driven and agile development styles provoked some sta-

bility and refactoring issues during MyCare Card Browser de-

velopment. These were related to the lack of explicit separation

in the source code between the following software parts: GUI

layout; composite components (e.g., frames, panels); common

components view and behavior customizations (e.g., buttons,

text boxes); and the binding code between data model and GUI

interfaces. Such separation was mandatory due to the source

code changes induced by the end-user evaluations conducted

simultaneously with the software development. Different ap-

proaches were reviewed concerning how such code could be

organized. Considerable effort was made to follow good devel-

opment practices and to keep the data model and view codes

separate. Despite these measures, the card browser software

had to undergo at least three major evaluation-refactoring cy-

cles aimed to redefine the source code internal structure.

Eventually, when the source code stabilized, it became possi-

ble to recognize certain patterns in its components organization

and to form a general object-oriented framework. This frame-

work is suitable for a simple declarative layout definition, chosen

components customization, and fine model-view code separa-

tion. The concepts comprising the developed GUI framework

are discussed in this paper.

The programming language and cross-platform GUI toolkit

used in this project are Python and wxPython, respectively.

Although all examples shown in this paper are written in Python,

the concepts of the presented framework can be used with almost

any object-oriented programming language and GUI toolkit.

II. METHODS AND MATERIALS

A. Initial Requirements

In order to establish preliminary end-user requirements of the

MyCare Card, two similar questionnaire surveys were designed

to collect attitudes, to patient held records and requirements

for an electronic patient held record device, from the public

and health professionals. Over 500 participants took part in

the survey. Approximately half of these were members of the

public and half were health care professionals. Ethical clear-

ance was obtained to consult health care professionals. Data

were collected in different areas of the U.K. in order to include

participants from different geographical locations and working

environments [7].

The combined results were used to derive an initial set of

development requirements for the user interface software, the

data that needed to be stored and the preferred storage device.

When initial development requirements became available, soft-

ware tool chain, programmatic libraries, and development model

were selected. Issue tracking and source code version control

systems were also established [8].

To reduce the cost of the development and to minimize its

dependence on the major computer systems manufacturers, open

source (OSrc) [9] software tools and programmatic libraries

were utilized.

Projects that gain most from the OSrc are networking projects

and community-driven projects. MyCare is a community-driven

project, as its success is directly related to its popularization and

wide acceptance of its future communication and data storage

standards. Therefore, MyCare project might achieve its max-

imum development performance under the OSrc development

model [10].

B. Programming Language and Its Environment

The Python programming language has been utilized in this

project as a major language, run-time environment, and a com-

mon algorithms infrastructure. The C++ programming language

was selected for security-related and low-level access algo-

rithms implementation. Simplified wrapper and interface gen-

erator (SWIG) is a software development tool that connects

programs written in C and C++ with a variety of high-level

programming languages including Python. SWIG was chosen

in this project to join low-level C++ code components with a

high-level Python code. Python library py2exe and the Windows

installation package builder named Inno Setup were utilized to

make software distribution packages familiar to Windows users.

Python’s clean syntax, excellent cross-platform capabilities,

extensive libraries, its dynamic and object-oriented nature, and

its integration capabilities make it a good choice for a proto-

typing development project such as MyCare Card. Availability

of Python’s source code, commercial support from a number of

companies, and extensive user community make it suitable for

the further development.

In the development of MyCare Card Browser, wxPython was

used as a primary GUI toolkit. The core component of wxPython

is wxWidgets toolkit. At base, wxWidgets is a GUI component

library implemented in C++, which means it is a set of C++

classes that encapsulate a wide range of features. The goal of

wxWidgets is to allow a C++ program to compile and run on all

supported platforms with only minor changes to the source code

from platform to platform, and with a reasonably consistent look

and feel between the platforms. Both wxWidgets and wxPython

are OSrc libraries.

C. Card Device Interface

In this prototyping study, conventional USB mass storage pro-

tocol was utilized to store user’s medical data, security and au-

thentication data, and the browser software itself on the MyCare

Card. All data are stored on the card in files, which are available

to the operational system (OS) services via standard portable

disk drivers. USB mass storage devices are natively supported

by nearly any desktop OS available today. In further develop-

ment, for security reasons, additional USB device protocols will

need to be implemented. Those protocols will protect MyCare

Card user medical data and software files from unauthorized

access and from accidental corruption. Therefore, files access

algorithms implemented in MyCare Card Browser software are

isolated into interface classes to allow future embedding of such

security protocols, without affecting other software parts or the

overall source code structure.

III. RESULTS

A. Establishing Types of Data Records

The survey investigation showed that 85% of the public said

they would find an electronic patient held medical record device

useful, especially if they were too ill to give information to

a health professional. Approximately half of this group had

used some form of patient held health record and cited the

major benefit of doing so as being access to health information.

The concerns of this group related to inaccuracy of information

(74%), loss of records by the patients (80%), and unauthorized

access (75%). Some 94% of the health professionals said they

would find a patient held record useful and, in this case, the most

common reason was to overcome communication problems [6],

[11], [12].

Regarding the types of information that should be stored on

the device, most of the members of the public surveyed thought

that current medication, name, allergies, blood group, and long-

term conditions should be included, and that all health profes-

sionals should be able to access these items. However, over three

quarters also agreed that access to other information should de-

pend on the role of the health care professional [6].

For health care professionals, the most important pieces of

information to be held on the device are related to allergies; cur-

rent medication; name; long-term conditions; age; major health

problems in the past; and next of kin. The majority of these

participants thought that all health professionals should be able

to access the most important pieces of information. Again, the

majority of participants supported the use of a restricted access

system, where the viewing of certain pieces of information was

restricted to particular groups of professionals [12].

B. MyCare Card Browser Framework

The MyCare Card Browser source code framework has been

created in this project. This framework allows the source code

development and maintenance while adding the new software

features and modifying existent ones, under the end-user eval-

uations feedback. MyCare Card Browser software built on this

framework should have looked and felt like an end product to al-

low the end-user group evaluations from the early development

stages. The implemented framework can be used to perform the

following steps in a systematic way, without breaking the source

code execution stability and maintainability:

1) adding new data records, new record types, and formats

or removing and modifying existent ones;

2) associating GUI components, designed to display and edit

user data, and corresponding data records, available via

the data model interface;

3) changing validation and formatting rules for the entered

data;

4) moving GUI components around and between container

windows, while preserving correct data associations;

5) adding new GUI components, which may (or may not) be

associated with the data model;

6) modifying existent GUI components views and behaviors

(components styles);

7) centralized controlling of the common GUI parameters,

such as font types, proportions, or sizes;

8) combining dynamic layout algorithms (intuitive for end

user) with visual GUI designer-generated code (quicker

development).

The major design pattern forming the core of the MyCare

Card Browser GUI framework is DataAware GUI components.

Those components and their place in the overall software struc-

ture are described in the following sections.

Based on the preliminary data types, and storage media spec-

ifications and end-user expectation, an initial prototype of the

Fig. 1. GUI package namespaces structure.

MyCare Card Browser software has been implemented. This

paper describes the developed GUI framework, which has been

used to implement MyCare Card Browser. The “view” part of

the developed framework is located in gui package.

C. gui Package Namespaces Structure

gui package namespace structure which in Python corre-

sponds to its source code directory tree is shown in Fig. 1.

Apart from the gui package shown in Fig. 1, MyCare Card

Browser includes mc module and data package. mc module

(“controller” part) contains DataAware GUI components. These

components are classes which by multiple inheritance join GUI

components defined in gui.styles module and in gui.styled
(see Fig. 1) package with the data access code contained in data

package (“model” part).

1) GUI Components Styles: gui.styles module has been

implemented in MyCare Card Browser to support the concepts

of style and parametric control of the GUI components view

and interactive behavior.1 The concept of styles is similar to

the one used in typesetting programs. For example, instead

of using generic text box TextCtrl class directly, it can be

inherited and extended by the SingleLineTextView class.

SingleLineTextView can redefine fonts, colors, borders, cur-

sors, and other properties, which control the component view

and interactive behavior. SingleLineTextView class in its

constructor can refer to the global configuration object, which

holds parameters, common for the whole application, including

its GUI appearance.

Such common GUI controls “style” wrapping has three main

advantages:

1Term “interactive behavior” is used in this paper to refer to the GUI compo-
nent sound, visual, tactile, and similar presentation effects. It should be distin-
guished from the “logic behavior,” which is related to the software content and
operation.

1) it allows controlling software GUI appearance properties,

such as fonts, colors, etc. from a single place—the global

configuration object;

2) it gives semantic meaning to GUI components and allows

modifying existent GUI components view, shapes, sizes,

and interactive behaviors, depending on their purpose in

the software;

3) it allows replacing underling (wrapped) common GUI

components with the new ones, and introducing new

components without interfering with other parts of the

software.

Although gui.styles module and gui.styled package

names may look similar, their purposes and contents are es-

sentially different. All packages included in gui package are

defining window layouts of the software composite GUI com-

ponents, at various layout nesting levels.

2) GUI Layout: There are three packages contained in the

gui package: gui.dataaware, gui.simple, and gui.styled.

All these packages have similar namespaces structure shown in

Fig. 1. In this paper, those packages are collectively referred as

layout package. layout package can be seen by the rest of

the software as a separate module which namespace includes

few composite window classes such as frames or panels.

In such directory structure, dynamic layout logic can be sep-

arated from the layout optimization and interactive behavior

algorithms. In this GUI framework, dynamic layout logic can

be used jointly with some visual designer software (such as

wxGlade). Each layout class that defines window layout logic

is placed into gui.layout package.decl package.

Layout classes defined in gui.layout package.decl spec-

ify sizers-based windows layout logic in their constructors.

Those layout classes are inherited by the behavior classes, which

define windows layout optimization and interactive behavior al-

gorithms. These algorithms are located in the class constructors

and event processing member functions.

The behavior classes are defined in the modules in

gui.layout package. Names of the behavior classes are

the same as the layout classes from which they inherit—

they are distinguished by their namespaces—layout classes

are in gui.layout package.decl and behavior classes are in

gui.layout package namespaces. Following the tradition of

GUI programming in MS Windows, “CamelCase” style with

the first capital letter is used for the window class names.

Three separate layout packages (see Fig. 1) are used in this

software due to the different meaning of their contents and

also for avoiding circular dependences. gui.simple package is

only using wxPython library. gui.styled package is using GUI

components defined in gui.styles module and it can also use

gui.simple package and wxPython library. Thus, gui.styled
package defines composite windows, which contain styled com-

ponents. gui.dataaware package can use the same resources

as gui.styled package, and additionally is using DataAware

GUI components, which are defined in mc module.

Separation between layout and behavior classes allows

achieving independence from the technique by which compos-

ite window layouts are defined. Therefore, the utilized GUI

visual designer software can be easily replaced with another

one. The format in which the window layout is defined can also

be changed easily. For example, the native Python code can

be replaced by the dynamically loaded wxWidgets native xrc

resources file format to achieve better customization flexibility.

3) Data-Flow Model: mc module represents a glue point

that joins the data model defined in data package and the

GUI components defined in gui.styled package. It introduces

DataAware GUI components, which display and edit records

available in the data model. Those connected-to-data compo-

nents are used by gui.dataaware package to layout their in-

stances on the containing windows, which are directly visible

to the end user.

4) Data Access and Security: The class defined in data

package, which represents data model is not accessed directly by

the DataAware GUI components defined in mc module. Instead,

the instance of the data model class is created and exported in

storage module. In the future, after the current prototyping

development stage, MyCare Card user’s data should be moved

into more secure location, which will not be available via the

standard file system. storage module data model access indi-

rection will allow us to only modify some of its functions in

order to access data on another location.

Algorithms, which are accessing user’s data will be located in

a module abstracted by the storage module. The user data will

be encrypted and decrypted by the data access algorithms on

the fly. This approach will allow secure data storage regardless

of the stored data format (e.g., dict).

security module implements authentication and authoriza-

tion algorithms. Currently, those algorithms only do text strings

matching to mimic correct operation during the end-user eval-

uations. In further development, more advanced security algo-

rithms will need to be implemented in this module alongside

with session management and data encryption keys validation

(see Section IV for discussion).

D. DataAware GUI Components

Based on the list of the data record types (see Section III-A))

that are expected to be stored on MyCare Card, the model of

health data has been designed. In the current version of My-

Care Card Browser, this data model is represented by the native

Python type dict. dict is the class used to create mapping ob-

jects, i.e., such objects that contain key : value pairs. Another

dict object can be assigned to the value, making it possible to

create nested data records or tree-like structures.

As dict data type is embedded in Python, it does not require

additional access drivers. For this type of applications, however,

the dict class has the major disadvantage—it has to keep the

whole dataset in the main memory. At this prototyping stage

of MyCare project development, the user medical data were

relatively small, and dict was sufficient to store and process

it without causing significant memory overhead or operation

delays.

As the project and its data requirements grow, the dict ap-

proach may become inadequate. Therefore, to abstract the data

model from the details of its implementation as the dict class,

the data model interface—DataAccessor class—has been

implemented. It effectively isolates access to the dict from

other parts of the software that require access to the data model.

Such an interface allows modular replacement of dict by an-

other class or even by a full database system.

In order to make DataAccessor independent of the under-

lying data model, the concept of DataPath was introduced. It

seemed reasonable to directly associate GUI components with

the paths to records in the data model. In wxWidgets, objects

of GUI component classes are related to each other via logical

parent–child relationships. Components which are visually con-

taining other components are parents to the components which

they are containing. For example, the text box which is visually

contained on the panel is panel’s child. These visual and log-

ical relationships can be used to compute relative paths to the

records in the data model.

For example, there might be a name editor component. This

name editor component may be represented by a panel class that

contains four text boxes to edit title, first name, middle name,

and last name. User’s name in the data model may be located

at /personal/name path. The name parts may be accessed

by their relative paths, such as title, first name, etc. Then,

path to the name might be associated with the panel, and the

individual name part paths might be associated with the text

boxes. Thus, each text box knows its parent’s path and its own

path and can compute its full path to the field in the data model,

e.g., /medrec/personal/name/title.

Such a representation of the relative paths by the logical

child–parent relationship allows implementation of the generic

composite GUI controls that are connected to the data model.

The described name component, for example, might be used to

edit card owner name, next of kin name, or any other name used

in the program by changing its path to the record in the data

model.

In order to avoid separate maintenance of GUI components’

behavior logic and their paths to the data model, it was found

convenient to edit such associations via a visual GUI editor. At

the same time, components’ behavior and data model access

algorithms should have been kept separate to allow their mod-

ifications independently of each other. In order to meet those

requirements, DataControl polymorphic class and its deriva-

tives have been introduced (see [8] for the full source code of

MyCare Card Browser).

All classes inherited from DataControl will have

DataAccessor and DataPath properties. They will also be

able to call GetData() member function to obtain record from

the data model, associated with them via DataAccessor and

DataPath.

To support the concept of relative paths and to call

DataControl.UpdateControlFromData() member functions

when a control update is required, the DataControlContainer

polymorphic mixin class has been defined.

View controls generally display their data record in some

compact form, and depending on their setting may not show all

record parts. Edit controls are bigger on the screen and display

all record parts. DataViewControl and DataEditControl

polymorphic classes were introduced to reflect this

difference.

Fig. 2. MyCare Card working prototype with USB interface.

The implemented data-aware and styled GUI components can

be used by a visual GUI designer to layout top windows and

composite components. Due to the polymorphic and mixin im-

plementation of the data-aware GUI components, the designer-

generated code is isolated from the data model structure and

from the components implementation.

E. MyCare Card Form-Factor

According to the conducted survey (see Section II-A), smart

card media type was preferred over other proposed devices such

as USB sticks, key fobs, jewelry, and devices linked to a mobile

phone.

Considering the technical advantages and disadvantages of

traditional smart cards and modern USB sticks, the use of USB

sticks is preferable for MyCare Card implementation [7]. How-

ever, given the public’s preference for a smart card, a com-

promise had to be found between the two media types. This

compromise was a USB card, example of which is shown in

Fig. 2. The USB card design combines the advantages of both

smart card and USB stick media types.

F. MyCare Card Browser Implementation

MyCare Card Browser has been implemented utilizing the

software framework, which key concepts were described in the

previous sections. In this section, the resulting graphical inter-

face is presented from user’s perspective.

When the MyCare Card user inserts the card into a USB port

of the computer, the “welcome” window shown in Fig. 3 ap-

pears on the screen. It only happens if the portable drive autorun

option is enabled on the host operating system; otherwise, the

user should run the program in a conventional way. The “wel-

come” window briefly outlines the purpose of this software and

provides the user with the two login options. The first option is

to login as the card owner and the second is to login as a health

professional. Additional warning button on the welcome screen

shows a security message, stating that all health professionals

who have been issued with their own personal identification

number (PIN) can see user’s data.

When the user clicks “MyCare Card Owner” button for the

first time, the program shows the card owner new PIN dialog.

In this version of MyCare Card Browser, the concept of PIN,

Fig. 3. MyCare Card Browser welcome and new PIN windows.

similar to the one used in bank cards, was utilized. In further

development, it will be replaced with a longer password for

stronger data protection (see Section IV for discussion). Af-

ter the user enters and confirms the new PIN, the “welcome”

and PIN dialog windows are getting hidden and the main My-

Care Card Browser window appears on the screen in a user

mode. When the user clicks the “Health professional” button,

the program shows the health professional login dialog. When

the health professional enters a correct PIN, the “welcome”

and PIN dialog windows are again hidden and MyCare Card

Browser main window appears on the screen in a health pro-

fessional mode. Similar to the card owner PIN, the health pro-

fessional PIN will be replaced by the identification number and

password pair in further development. In the present version of

the browser, health professional credentials are stored on the

card itself, which would be impractical for the real-life appli-

cation. In further development, the remote health professional

authentication should be implemented (see Section IV).

Example of the typical MyCare Card Browser screenshot is

shown in Fig. 4. On this screen, the browser’s main window

is displayed. The tab panel opened in the main window is the

current medication records editor. Although it might be diffi-

cult to demonstrate on the static media, this figure shows the

dynamic nature of the GUI framework. The last two medica-

tions, identified as “Simvastatin” and “Atenolol” in Fig. 4 are

displayed as a compressed list. When the user clicks the edit

button, the interface expands to show the medication editing

panel. All long-text fields are also automatically expanded to

accommodate the entered text. When any of the GUI compo-

nents expands to accommodate more data or to display more

information, the window layout is automatically adjusted. Re-

fer to [8] for more screenshot examples and for the MyCare

Card Browser demonstration.

IV. CONCLUSION AND FURTHER WORK

A. Conclusion

The portable, modular, and extendable GUI software frame-

work has been implemented in this project. The main advantage

of this GUI framework is that it allows concurrent development

and end-user evaluations, while preserving the program stabil-

ity and code maintainability. Additionally, it lets the software

developer to combine GUI designer-generated code with dy-

Fig. 4. MyCare Card Browser framework operation example, demonstrating
dynamic layout in GUI designer-generated components.

namic layout logic in a direct unobscured way. These qualities

make the presented framework useful for the end-user-driven

development of the personal heath record solutions.

The core design pattern forming the base of this framework is

the DataAware GUI controls. The underlying concepts used to

implement DataAwareGUI controls are the styled GUI controls

and DataControl-based classes, described in this paper.

Utilizing this software framework, the MyCare Card system

has been successfully developed. This system is a prototype of

a credit card-sized personal medical record USB device (see

Fig. 2) and the GUI software, designed to provide access to the

medical data, stored on the card to the MyCare Card owner and

health professionals.

Fifty MyCare Card test units (see Fig. 2) have been manufac-

tured. Those manufactured cards are currently being evaluated

in a real-life trial by potential users in the U.K. The initial users

response has been positive and indicates that such cards will

be a useful acquisition for both members of public and health

professionals.

The research highlights that the initial barriers to the use of

electronic health record devices will be the security of informa-

tion. In the proposed system, data can only be accessed using

a personal identification number, and will only include infor-

mation that the individual is willing to enter and share with

others. A similar level of authentication will be required by

health professionals to read it and, therefore, such fears appear

to be exaggerated.

Additionally, the device will be independent of centrally held

records, so will not provide a route in to more sensitive infor-

mation. The developed MyCare Card Browser interface classes

allow embedding of the user authentication and data encryp-

tion algorithms minimizing the potential for fraudulent use of

devices that have been reported as lost or stolen.

B. Further Work

The early development versions of MyCare Card Browser

featured data fields access control based on security groups and

individual health professional credentials [7], [8]. Security

groups were formed by health professional roles in medical

care. However, the conducted end-user evaluations have demon-

strated that the concepts of security groups and access levels

are difficult to understand for most people. Therefore, further

work is needed to simplify the security-related parts of the GUI

and abstract its internal parameters further from the end user.

More specifically, by default, every field in the personal health

database on the MyCare Card should have the “Private” Boolean

property, represented by the check box in browser’s GUI. My-

Care Card Browser will have two operation modes: online and

off-line. In online mode, every health professional can be au-

thorized by his/her number and password via an authentication

server. Thus, every authorized health professional will be able

to access all fields on the card.

In off-line mode, the authentication server is not available, and

health professional remains unauthorized. Unauthorized health

professional may not access fields, which are checked as “Pri-

vate” by the card owner. In off-line mode, health professionals

still need to enter their numbers and passwords. MyCare Card

Browser will use the entered number and password to compute

a hash code and store it on the card. The unauthorized health

professional should be able to edit health data fields on the card.

All changes made by the unauthorized health professional are

stored in a postponed cache on the card and are not applied to

card owner’s health records database.

When MyCare Card Browser gets online, it automatically

verifies health professional number and password hash codes

via authentication server. If health professional authorization

passes, the postponed cache changes are applied to the health

database on the card. If authorization fails, all postponed cache

changes are rejected.

Nonhealth professional should be able to access the nonpri-

vate health data fields in the read-only mode.

MyCare Card Browser online and off-line operation modes

are transparent for the card user. The “Private” property is in-

tuitive and self-explanatory for most people, and it effectively

hides security-related terms such as access levels or groups from

the MyCare Card user. One of the questions that is still open

is whether the card user should be able to mark any field as

“Private,” or some of the field types should be impossible to

hide from nonhealth professionals. Such open fields might in-

clude name, blood group, allergies, and other emergency-related

data.

The data backup server might be implemented to keep user’s

medical data in cases when the card is lost or damaged. Data

synchronization interfaces might be implemented to synchro-

nize data on the card with the currently used medical data sys-

tems. Synchronization interfaces and backup server should help

maintaining currency of the medical data.

Future stages of the research will entail the development of

more detailed usage scenarios, testing of the MyCare Card and

evaluation of the usability of the MyCare Card Browser user

interface. Further, MyCare Card Browser development will in-

clude selection and implementation of the card data encryption

algorithms, health professional authentication methods, corre-

sponding authentication server, and client side algorithms.

REFERENCES

[1] K. Häyrinen, K. Saranto, and P. Nykänen, “Definition, structure, content,
use and impacts of electronic health records: A review of the research
literature,” Int. J. Med. Informat., vol. 77, no. 5, pp. 291–304, May 2008.

[2] M. J. Ball, M. Y. Costin, and C. Lehmann, “The personal health record:
Consumers banking on their health,” Stud. Health Technol. Informat.,
vol. 134, pp. 35–46, 2008.

[3] F. L. Maloney and A. Wright, “USB-based personal health records: An
analysis of features and functionality,” Int. J. Med. Informat., vol. 79,
no. 2, pp. 97–111, Feb. 2010.

[4] H. Phipps, “Carrying their own medical records: The perspective of preg-
nant women,” Australian New Zealand J. Obstetrics Gynaecol., vol. 41,
no. 4, pp. 398–400, 2001.

[5] NHS Management Executive, The Care Card Evaluation of the Exmouth

Project. London, HMSO, 1990.
[6] J. Binnersley, A. Woodcock, P. Kyriacou, and L. Wallace, “Establishing

user requirements for a patient held electronic record system in the united
kingdom,” presented at the Human Factors and Ergonomics Society 53rd
Ann. Meeting, San Antonio, TX, Oct. 2009.

[7] V. Rybynok, P. Kyriacou, J. Binnersley, A. Woodcock, and L. Wallace,
“MyCare Card development: The patient held electronic health record
device,” presented at the 9th Int. Conf. on Information Technology and
Applications in Biomedicine (ITAB), Larnaka, Cyprus, Nov. 4–7, 2009.

[8] MyCare Card dev. site. [Online]. Available: http://www.myc2.org/.
[9] Open Source licenses. Open Source Initiative (OSI). [Online]. Available:

http://www.opensource.org/licenses.
[10] E. Raymond, The Cathedral & The Bazaar. Sebastopol, CA: O’Reilly

Media, 2001.
[11] J. Binnersley, A. Woodcock, P. Kyriacou, and L. Wallace, “Public require-

ments for patient held records,” in Contemporary Ergonomics, London,
U.K., Apr. 2009, pp. 159–164.

[12] J. Binnersley, A. Woodcock, P. Kyriacou, and L. Wallace, “An inves-
tigation of health professionals’ attitudes towards patient held records,”
presented at the Int. Ergonomics Association Conf., Aug. 2009.

Victor Rybynok received the Higher Education Dipl.
in computer systems and networks engineering from
Moscow Institute of Electronic Technology, Moscow,
Russia, in 2001, and the M.Sc. degree in medical elec-
tronics and physics from Queen Mary, University of
London, London, U.K., in 2003, and the Ph.D. de-
gree in biomedical engineering from City University
London, London, in 2009.

He is currently a Postdoctoral Research Fellow
in Biomedical Research Group in City University
London. His current work in biomedical technology

includes the development of noninvasive methods for the blood chemical com-
position analysis using diffusion spectroscopy techniques.

Panayiotis Kyriacou (SM’97). He received the
B.E.Sc. degree in electrical engineering from the Uni-
versity of Western Ontario, Canada, and the M.Sc.
and Ph.D. degrees in medical electronics and physics
from St. Bartholomews Medical College, the Univer-
sity of London, London, U.K. His PhD research was
in the field of medical optics and biomedical instru-
mentation. His other academic achievements include
CEng, CPhys, CSci, FIET, FIPEM, FInstP, FRSM.

He is currently a Professor of Biomedical Engi-
neering at City University London, London. He is

also an Associate Dean for Postgraduate studies in the School of Engineering
and Mathematical Sciences and the Director of the Biomedical Engineering Re-
search Group. His research interests include the understanding, the development,
and the applications of instrumentation, sensors and physiological measurement
for the facilitation of the diagnosis and treatment of disease or the rehabilitation
of patients.

Jackie Binnersley is working toward the Ph.D. de-
gree at Coventry University, Coventry, U.K.

Andree Woodcock received the Design degree in
psychology and social biology and the M.Sc. degree
in ergonomics from the University of California.

She is Professor of educational ergonomics and de-
sign at Coventry School of Art and Design, Coventry
University, Coventry, U.K. Her Ph.D. research from
Loughborough University, Loughborough, U.K. in-
volved developing a decision support system to en-
able automotive designers to integrate user require-
ments into concept design. She is Director of the
Centre of Excellence in Product and Automotive De-

sign. She is currently engaged on a number of projects related to the Digital
Economy. Her interests include computer supported co-operative working, age-
ing and health, sustainable transport and digital inclusion.

