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An Investigation of the PAYG (Pay-As-You-Go)  

Financing Method using a Contingency Fund and  

Optimal Control Techniques 

 

 

 

 

Abstract 

In many countries, ageing populations are expected to lead to substantial rises in the 

cost of public pension systems financed by the pay-as-you-go (PAYG) method.  These 

systems will need to be adapted to cope with these changes.  In this paper, we consider 

one approach to reform, described in the literature as ‘parametric’ (see, for example, 

Disney (2000)). We develop a model for adapting the PAYG method using a 

contingency fund and optimal control techniques. The solution of the original model is 

investigated within two different frameworks: a deterministic-continuous one and a 

stochastic-discrete one. Finally, we discuss a worked example applied to Greece, 

leading to a potentially acceptable proposal of a smooth path for contribution rates and 

the age of eligibility for the normal retirement pension.  
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1.  Introduction 

1.1 The Ageing Population 

 

Many developed countries are experiencing, or are expected to experience over the next 

40 to 60 years, the demographic phenomenon called the “ageing population”.  This 

describes the upward trend over time in the aged dependency ratio - the number of 

retired persons relative to the number of working persons in a population.  As is well 

known, there are two demographic causes of this trend – the decline in birth rates and 

the increase in life expectancies (Banks and Emmerson, 2000).  As an illustration we 

quote an extract from the relevant table of Brown (1992), which presents an 

international comparison of aged population ratios combined with the corresponding 

data for the population of Greece, (Table 1.1).  Here, the aged population ratio (65+) is 

defined as the ratio of the number of persons aged above 65 to the total population of 

persons. 

 

Table 1.1 

Aged Population Ratios for a range of countries (%)  

Country 1985 2005 2025 

% 65+ 75+ 85+ 65+ 75+ 85+ 65+ 75+ 85+ 

UK 

USA 

China 

India 

Japan 

15.1 

12.0 

5.1 

4.3 

10.0 

6.3 

4.9 

1.4 

1.1 

3.7 

3.1 

2.6 

0.5 

0.4 

1.7 

15.3 

13.1 

7.4 

6.1 

16.5 

6.9 

6.7 

2.4 

1.8 

6.4 

3.8 

4.1 

1.0 

0.7 

3.0 

18.7 

19.5 

12.8 

9.7 

20.3 

8.1 

8.5 

4.1 

3.1 

8.0 

4.0 

4.8 

1.8 

1.3 

4.9 

Greece 13.4     5.3       1.2 18.4     7.8       1.6 22.2     11.5     3.2 

Sources: 1) U.S. Department of Commerce (1987), 46-62;  

   2) National Statistical Service of Greece (1998), Tables 1995;  

   3) Eurostat (1999), Demographic Statistics, Data 1960-1999 
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1.2   Basic Principles of the PAYG Financing Method 

 

The PAYG financing method requires no accumulation of funds, although normally 

there is a small fund for liquidity purposes.  The insured group of lives is split in two 

subgroups, the active lives (or workers or contributors) and the retired  lives (or 

pensioners). A specific time period is chosen, usually one calendar year, and a balance 

between contribution income and benefit outgo is required to hold, i.e.  

 

                 cWL = bP              (1.1) 

 

where c is the required contribution rate, W is the average wage(salary), L is the 

number of contributors, P the number of eligible pensioners and b the level of average 

pension. 

 

Each active life pays contributions to meet the benefits of the current retired lives while 

relying on the goodwill of future generations of active lives to contribute to the cost of 

his/her retirement benefits. Inter-generational solidarity and equity are two necessary 

requirements for operating a successful PAYG system.  

 

Solidarity is defined as the willingness of different groups of people (in the context of 

public pension systems, the concept refers both to young and old generations) to pa rtic-

ipate in a common pool, sharing actual experience, including any losses emerging (see 

Wilkie (1997) for further discussion). 

 

Inter-generational equity is defined as the situation where, under a certain type of 

measurement (normally a financial one) all generations are equal to each other. A wid e-

ly used metric is the implied rate of return, defined by Lapkoff (1991) to be “the  inter-

est rate that equalizes the stream of contributions to the stream of benefits and would 

have been the interest rate applicable had the contributions actually been invested". 

This rate of return can be calculated either for individuals or cohorts of l ives.  Samuel-
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son (1958) demonstrates that, under certain conditions, the implied rate of return equals 

the population growth plus the growth rate of real wages.  

           

1.3 PAYG Public Pension Systems: Rising Costs 

 

If we apply the international demographic trend described in subsection (1.1), it is clear 

that the public pension systems of all countries operating under the PAYG model will 

be faced with rising costs over the next years. Equation (1.1) demonstrates that, to 

maintain balance, c will have to increase if the decline in fertility rates leads to a de-

crease in L at the same time as a decrease in mortality rates leads to an increase in P 

(assuming also constant values for the parameters Wand b).  

 

As noted by Disney (2000), a range of proposals has been put forward and these can be 

categorized broadly under four headings. 

 

a) “parametric” reforms, where the nature and structure of the PAYG system are 

maintained but changes are made to the key variables in equation (1.1), for ex-

ample, increasing the retirement age, raising contribution rates, limiting the gen-

erosity of retirement benefits; 

 

b) “actuarially fair” reforms where a direct link between contribution and benefit at 

the individual level is introduced (as in a defined contribution pension scheme);  

 

c) privatization; 

 

d) a multi-pillar approach, involving a combination of partial privatization and a 

reduced (residual) public system (i.e. a combination of a) and c)). The World 

Bank (1994) has advocated this specific approach.  

 

Banks and Emmerson (2000) provide a fuller discussion of these options in the context 

of the UK.  Our proposal represents a reform of type a), which involves controlling two 

of the important variables of the system. i.e. the contribution rate and the age of 
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eligibility for normal retirement. Of course, the control and consequently the 

modification of these variables is not an easy exercise as any solution or action should 

be acceptable by society in general and by the lives who are going to meet the costs.  

 

2. Motivation for a New Approach to the PAYG Method 

 

Normally, in the PAYG method there is no reserve fund. In our model, we abandon this 

basic assumption and introduce a contingency fund, which operates as a buffer 

absorbing fluctuations in mortality or fertility patterns. The existence of this fund 

improves significantly the performance of the system with respect to the concept of 

inter-generational equity by smoothing the rates of return produced for each cohort of 

lives. This non-zero reserve fund has two basic characteristics. 

 

(a) It fluctuates deliberately (in the short run) in order to absorb fluctuations in 

mortality, fertility rates or other random events (e.g. stochastic interest rates).  

 

(b) It returns to zero when the fluctuations disappear leaving the system at a new 

equilibrium point regarding the two major control variables mentioned above.  

 

In order to achieve (a) and (b), we build a control model in which the reserve fund has 

the ability to distinguish the varying or constant nature of a certain demographic pa t-

tern. The age of normal retirement and the contribution rate are to be controlled through 

a smooth path over time. The smoothness of the path is determined by a functional, 

which weights changes in the two variables. The weights are key parameters, which r e-

flect the expectations of all participants in the pension system as well as the underlying 

demographic trends.  Below, we briefly comment on each of the two control variables 

under consideration and also put forward some practical aspects with respect to the 

management of such a contingency fund. 

 

2.1  The Age of Normal Retirement 
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The age of normal retirement determines the actual number of active and retired lives 

and consequently the potential wages and pensions. This variable could be linked with 

the post retirement life expectancy.  We could argue that it would be fair that each 

cohort of lives should live in retirement an equal percentage of its total lifetime. That 

means cohorts with high life expectancy should retire at a higher age and cohorts with 

low life expectancy should retire earlier. This would also comply with the view of 

Dilnot et al (1994) who point that "If the population is ageing because of increased 

longevity then individuals will need a longer period in the labor force to obtain a given 

level of average consumption over their lifetime. This might lead to individuals 

prolonging their working lives by postponing retirement...".  

 

As noted by Banks and Emmerson (2000), care is needed with the parametric reform 

approach in terms of defining precisely the meaning of each parameter or component of 

the model.  Thus, the age of retirement could be “the age at which one is first entitled to 

receive benefits at a reduced rate, or the age at which one is entitled to receive full 

benefits, or the age at which one actually retires”.  Since our overriding purpose is to 

discuss and present a methodology, we overlook such detailed points, while 

acknowledging that they would need to be allowed for in any real, practical 

implementation. 

 

2.2  The Contribution Rate 

 

Similarly, the contribution rate could be linked with the fertility rates and the respective 

population growth rate. The higher is the population growth rate, then the smaller is the 

contribution rate which would be applied to the PAYG model. A rule (similar to t hat 

proposed for the age of normal retirement and life expectancy) may be put forward in 

order to link and control the contribution rate with respect to changes in the population 

growth rate. Analogously, the contribution rate may be also linked with the growth rate 

of real wages. 

 

2.3  The Contingency Fund 
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The contingency fund may fluctuate deliberately and can take positive or negative 

values. In the first case (positive) there is a surplus which can be invested (normally 

conservatively, e.g. buying Government Bonds) while in the second case (negative) 

there is a deficit, which may be covered by borrowing (e.g. the supervisory authority of 

the Social Security System issues Bonds with a level of Governmental Guarantee).  

 

3.  Formulation of the Model using Optimal Control Techniques 

 

In this section, we proceed with the presentation of our proposed model, translating the 

general discussion and motivation of the last section into equations. The model is 

initially established as a deterministic one in a continuous framework and then 

reformulated as a stochastic one in a discrete background.  

  

3.1 Notation of the Model 

 

F(t) : reserve (accumulated) fund at time t (“contingency fund”)  

c(t) : contribution rate at time t 

r(t) : normal retirement age at time t 

pl(t,y) : population density aged y (exact) at time t 

s(t,y) : total wage (salary) rate received by  for a person aged y (exact) at        

                    time t 

b(t,y) : total pension benefit rate paid to for a life aged y (exact) at time t 

a : age of entry to the labor force 

ω : limiting age of the life table (lω=0) 

W(t,y) : Total wage rate (where the contribution rate c(t) is applicable to) at         

                   time t if the relevant retirement age has been fixed at age y  

        .dzz,tsz,tply,tW
y

a

   

B(t,y)   : Total rate of  benefits paid at time t if the relevant retirement age      

                    has been  fixed at age y  

                          .dzz,tbz,tply,tB
y

   
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c0 : A standard value for the contribution rate. We may consider it as an  

initial value or average value near to which we aim to place the 

path of the future consecutive values of c(t) using the smoothing 

process. 

r0 : A standard value for the retirement age, with similar meaning to c0. 

δ : The force of investment rate of return applicable to the reserve fund 

  (assumed to be constant). 

θ : The weight applicable to any change of the contribution rate from  

the standard value c0 and (1-θ) is the weight applicable to any  

change of the retirement age from the standard age r0. 

p : The growth rate of real wages, corresponding to improvements in   

   productivity. 

 

We assume that functions B(t,y) and W(t,y) for benefits and wages are known for each 

time t,   ,0t  and for any age, y. These forms may be derived from demographic pro-

jections.  

 

3.2 Formulation of the Respective Equations 

 

 The first equation describes the development of F(t) i.e. 

 

              tr,tBtr,tWtctFtF  .      (3.1) 

 

This is a differential equation for F, which determines a dynamic system where F(t) is 

the state variable and c(t), r(t) are the control (input) var iables. 

 

The supervisory authority of a public pension system has to determine a "smooth" path 

for the control variables guiding the system over time and targeting a zero (or almost 

zero) fund value. The zero value has to be achieved at the end of a specific time period 

say, T (i.e., the ending time point is denoted by T). The existence of a "smooth" path 

requires that the relevant choices for c(t) and r(t) will comply with people’s 

expectations and the other technical criteria described in section (2).  
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Then, the optimal path may be derived by minimization of the following expression 

  

               dtrtr1ctc100min 2
0

2
0

T

0tr,tc
            (3.2) 

 

The coefficient of 100 has been applied to the deviation of the contribution rate in an 

attempt to deal with the metric problems which exist as c(t) is a percentage less than 

unity and r(t) is a number greater than unity (near 65). The weights θ and 1-θ measure  

the impact which occurs when the control variables c(t) and r(t) respectively are 

changed. The parameter θ would be obtained after research and negotiations with all the 

parties involved in the public pension system (i.e. government, employers, employees).  

Hence, expression (3.2) minimizes the effects induced in the public pension system by 

changes in the contribution rate and normal retirement age.  

 

The functional in expression (3.2) is a special case of the more general proposal of 

Haberman and Sung (1994), which in this case would be defined as follows:  

 

               dtrtrctc tt

T

trtc

22

0,
1100min        (3.3) 

 

where τct  and τrt  are the desired contribution rate and normal retirement age at time t.  

In our context,  τct = c0 and τrt=r0  for any value of t. 

 

The functional expression (3.2) does not contain the fund values as we assume that F(t) 

will be varied deliberately in order to absorb fluctuations in experience. Of course, we 

require a small value for the fund level at the end of the respective period of 

examination at time t=T 

i.e.                  γ,γTF  , γ>0       (3.4) 

 

or more strictly                             F(T)=0 .       (3.5) 
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Combining equations (3.1) (3.2) and (3.5) we obtain the typical form of an optimal 

deterministic control problem as below. 

 

  

             
           

    














.0TFandF0F

tr,tBtr,tWtctFtF

dtrtr1ctc100min

0

2
0

2
0

T

0tr,tc

     (3.6) 

 

3.3 The equilibrium point of the model under a stable population pattern 

 

Before going further with the manipulation of system (3.6), we investigate the 

equilibrium point of our model under a stable demographic pattern. We assume that  

)r,a[y,s)y,0(s assuming see)y,0(s)y,t(s 0
ptpt      (3.7) 

],r[y,b)y,0(bassuming  eebeee)y,0(b)y,t(b 0
pyprpt)ry(ppt 00    (3.8) 

i.e. we assume that wages increase over time exponentially at a rate p. Pension benefits 

at the age of eligibility for normal retirement r0 are linked to the final wage/salary 

through the replacement ratio b/s, and subsequently the pension benefit remains 

constant over time. 

 

The stable population (in the sense of Keyfitz (1985)) may be considered as a 

generalization of the stationary population. The number of lives is not constant as time 

passes but increases or decreases at a constant rate, say g (actually the number  of lives 

entering the population at the starting age a increases or decreases at a constant rate, say  

g). A negative g (for a finite period) would be consistent with “demographic ageing” 

(while g=0 would imply stationary population). So, following Keyfitz  (1985), we obtain 

the following formula for pl(t,y): 

 
gt

a
gt ele)a,0(pl)a,t(pl            (3.9) 

assuming, without loss of generality, that  al)a,0(pl  where al  represents the 

underlying life table of the stable population. Then,  

y
gyatg

a

yaytg
a

a

y
lee

l

l
el

l

l
aaytplytpl   )())(()),((),( .    (3.10) 
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Then, we choose the “ideal” pair for (c0,r0) respectively using the formula below, based 

on (1.1): 

      

0

0

r

r

a

0 dz)z,t(bz,tpldz)z,t(sz,tplc    

0

0

0

0

r

pzgz
z

pr
r

a

gz
z dzeelbedzelsc       

            (3.11) 

 

(see Keyfitz (1985) for further details) and if we consider g and g+p as forces of inter-

est we may rewrite equation (3.11) in terms of continuous certain annuity values i.e. 

     )(
:

)()(
:0 00

00

0
aa pg

rr
arg

a

rg
ara e

l

l
bsc  .                        (3.12) 

It is clear from the expression (3.12) above that an increase in the productivity rate, p, 

leads to a reduction in c0 given a constant value for r0, or similarly a reduction in r0 for a 

constant value of c0. 

 

Assuming that 0F0  , then 0c)t(c   and 0r)t(r   for all 0t   is the optimal path that 

satisfies the system (3.6).  This is because the expression (3.2) is minimized with value 

equal to zero.  Then equation (3.1) with the condition (3.5) is satisfied by the function 

0)t(F   for all 0t  . 

 

3.4 Non-Stable Population  

In a non-stable population we may distinguish two cases. 

 

(i) The demographic pattern may be approximated by a combination of stationary 

or stable populations.  For example, we may have a population with a 

decreasing growth rate say )t(g  where 0g)0(g   and   g)t(glim
t

.  

Consequently, the population will be asymptotically stable with a growth rate 

of g . In such cases we may use similar reasoning as before and imagine the 

optimal path lying in the area described by the lines of the initial and ultimate 

growth rates. 
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(ii) The demographic pattern cannot be described by a combination of stable and 

stationary patterns.  Then, in such cases, we have to solve the system (3.6) and 

design the respective optimal path according to the analysis described in 

section 3 for our model. 

 

4.  The solution of the model within a deterministic - continuous framework 

 

The continuous version of the model is described exactly by the  system of equations 

(3.6). The solution is complex as it requires a functional optimization.  Rather than 

tackle the general case, we investigate its solution under a deterministic framework 

while using (for practical reasons) linear approximations for the Wages and Benefits 

functions W(t,y) and  B(t,y).  This linearization technique is widely used to solve co n-

trol problems (see – Kamien & Schwartz (1981) and Benjamin (1989)). 

 

We use the result of Kamien & Schwartz (1981) which states that at least one so lution 

exists if the integrand of the first expression of system (3.6) and the right hand side of 

the respective differential equation of the system are convex in (F,c,r). The solution of 

the problem may be determined using the Hamiltonian of the system which is defined 

as: 

 

            2
0

2
0 rtr1ctc100tH                tr,tBtptr,tWtctptFtp    (4.1) 

 

where p(t) is the relevant costate vector of the system and is given by the following 

equation 

 

F
p 

 H
 ,        so we obtain                t

0eptptptp  .         (4.2) 

 

The optimal c(t) and r(t) controls can be found as the solution of the following system  

 

   0
r

and0
c




 HH
.          (4.3) 



 

 13 

 

Differentiating the Hamiltonian according to (4.3) and equating to zero we obtain  

 

         0tr,tWtpctc1002 0
2                (4.4) 

                      0tr,tB
tr

tptr,tW
tr

tctprtr12 0 


       (4.5) 

 

We use the following linear approximations for W(t,y) and B(t,y)  

 

 

        321 trttr,tW λλλ             (4.6) 

        321 ktrktktr,tB           (4.7) 

 

where k1,k2,k3,λ1,λ2,λ3 are constant coefficients obtained by a standard linearization 

procedure 

  
0

,1
rt

trtW
t 
 ,     

  0rtr

2 tr,tW
tr 
   003 , trtW , and 321 kk,k  are similarly 

defined.  

 

Substituting equations (4.6) and (4.7) into (4.3) and (4.4) we obtain 

 

         0trttpctc1002 3210
2         (4.8) 

            0tpktctprtr12 220   .       (4.9) 

 

We rearrange the terms of the equations above in order to obtain the system in the 

standard format and solve it by using the relevant determinant 

  

          tpttpc1002trtptc1002 310
2

2
2        (4.10) 

            tpkr12tr12tctp 202  .       (4.11) 

 



 

 14 

The solution of the system is given by equations (4.12) and (4.13) below.  These are 

obtained as follows.  We define: 

 

       
D

D
trand

D

D
tc trtC  ,     

          010014
12

1002
det 2

2
2

2

2
2 




 tp
tp

tp
D 


  

 

so that  tCD  and  trD  are the determinants which are produced by substituting the 

column of the relevant index in the determinant D.   Allowing for equation (4.2) for the 

costate variable p(t), we finally obtain 

 

           
    2t

02
2

t
020

t
02

t
03

t
010

2

ep10014

epkr12epepetpc100212
tc 




    (4.12) 

 

          
    2t

02
2

t
03

t
010

2t
02

t
020

2

ep10014

epetpc1002epepkr121002
tr 




     (4.13) 

 

Equations (4.12) and (4.13) should be combined with the second equation of system 

(3.6) and using the third condition of (3.6) we obtain the value of p0. 

 

The sufficiency conditions for the existence of the minimum requires the following 

matrix A to be positive definite 

 

   
    























 






12tp

tp1002

rrc

crcA
2

2
2

2

22

2

2

2

HH

HH

. 

This is equivalent to requiring the minors to be greater than zero, which leads to the 

two inequalities below 

  2θ1002>0 and        011004det 2
2

2
1  tpDA  . 
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The last inequality holds if and only if           


  1
200

,1
200

tp
22

. 

    

Closing this section, we comment on the solution of the system (see equations (4.12), 

(4.13)) and its behaviour as each parameter changes.  Firstly, we observe that  

 

       0
t

0
t

rtrlimandctclim   .     (4.14) 

Hence, the ultimate values for c(t) and r(t) converge to the equilibrium point (c 0,r0). As 

regards the behavior of the solution with respect to the different parameters involved 

we may draw some conclusions observing the position of each parameter (whether it is 

in the numerator or denominator in equations (4.12), (4.13)), its sign (positive or 

negative) and its relevant coefficient.  Thus, we note the following:  

 

(1) The higher is δ, the force of interest, the faster the solution converges to its  

ultimate state of (c0,r0). 

 

(2) c0 appears in the numerator of c(t) with positive sign, so as 0c  increases so does 

the solution for c(t). c0 also appears in the numerator of r(t) but with a negative 

sign and consequently the magnitude of r(t) decreases as c0 increases. 

 

(3) A similar situation (as with comment (2)) applies to the parameter r 0. As 0r  

increases, then r(t) increases while c(t) decreases.  

 

(4) Parameters λ1, λ3 appear in the numerator of c(t) with a negative sign, so higher 

values will result in smaller values for c(t). The opposite result holds for r(t) as 

λ1,λ3 appear in the numerator but with positive sign. These results are as 

expected since λ1, λ3 are parameters in the wages function (4.6). So the bigger 

are λ3 (constant term in the function) or λ1 (the slope of the function with 

respect to time) the lower is the contribution required. 
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(5) Parameter k2 (the slope of benefits with respect to age of normal retirement in 

(4.7)) appears in the numerator of c(t) with a negative sign and in the numerator 

of r(t) with a positive sign (and so similar results as before may be drawn).  

 

(6) Parameter λ2 (the slope of wages with respect to age of normal retirement in 

(4.6)) appears both in the numerator and denominator of c(t) and r(t) with a  

negative sign, so its effect is the same for both control variables while the 

direction of the effect depends on the magnitude of the parameters in the 

expressions. 

 

(7) Finally parameter θ appears both in the numerator and denominator of c(t) and 

r(t). From its pattern we may conclude that c(t) increases and r(t) decreases as θ 

increases, a result that would be expected  by general reasoning as θ is the 

weight given to c(t) in (3.6). 

 

5. The solution of the model within a stochastic - discrete framework 

 

The general model in the continuous form (apart from being very difficult to solve, 

especially within a stochastic background) is not practical because it describes the 

contribution rate c(t) and the age of normal retirement r(t) as continuous functions. 

Obviously, it is impossible in practice to change these variables "continuously". In this 

section, we reformulate the problem within a stochastic – discrete framework in order 

to produce an improved approximation to the real world. This new version of the model 

needs certain adaptations in notation and equations. Firstly, we define the equivalent 

annual accumulation factor Jn for the nth year assuming a non-constant rate of interest in 

 

 nn iJ 1  ,           (5.1) 

Additionally and in order to improve the realistic approach of our model we assume that 

in is a stochastic variable (consequently. Jn  is a stochastic variable).  

 

Then, the other symbols are defined in a similar manner to section 3, keeping in mind 

the discrete format of the process (with the variable t replaced by n) i.e.  
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Fn: reserve fund at time n (at the end of the n-th year). 

cn: contribution rate during the n-th year, (assumed to be constant for the whole 

year) 

rn: age of eligibility for normal retirement during the n-th year (assumed to be constant 

for the whole year). 

W(n,y): Total wages  during the n-th year if the retirement age has been fixed at age y  

B(n,y): Total benefits paid during the n-th year at time n if the retirement age has been  

fixed at age y  

 

The differential equation (3.1) then becomes the difference equation  

 

      nnnnnn rnBrnWcFJF ,,1  .       (5.2) 

 

The minimization criterion of (3.2) becomes (substituting the integral with the summa-

tion operator, changing the notation of the ending point from T to m -i.e. the minimiza-

tion criterion should be fulfilled within a time period of m years- and adding the expec-

tation operator E)  

          2
0

2
0

1
,

1100min rrcc nn

m

n
rc nn

    .      (5.3) 

 

Again, we assume a linear format for the development of the Wages and Benefits as 

described by equation (4.6) and (4.7). Now, in order to improve the realistic approach 

of our model we assume that the constant terms λ3,n, and k3,n are stochastic variables. 

Under this modification, we incorporate a stochastic element into our linear projections 

for Wage W(n,y) and Benefit B(n,y) functions. We restrict the stochastic nature only for 

λ3,n, and k3,n although in general λ1, λ2 , k1  and k2 could also be stochastic variables or 

of a time–varying format. This restriction secures a viable solution for our model and 

focus on the effect of the constant terms of the linear functions. So, we obtain  
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)()( ,321,3211 nnnnnnnn krknkrncFJF   .    (5.4) 

 

At this point, we must stress that Jn , λ3,n,  and k3,n are assumed to be stochastic 

variables.  

The last difference equation (5.4) is still difficult to solve, as it remains a non -linear 

one. We proceed with a standard linearization procedure considering the Δ operator, the 

equilibrium point ),,,,,,( 330 0000
krcJFn nnnn   and small changes for the parameters i.e.  

             nnn FFF 
0

 nnn ccc 
0

 nnn rrr 
0

   (5.5) 

           nnn JJJ 
0 n3n,3  n3n,3 kkk     (5.6) 

As we have stated before, nJ , n,3  and nk ,3  are stochastic variables so, the terms nJ , 

n  and nk  n,3  and nk ,3  are also stochastic variables. 

  nnnnnnnnnnnnnnnn krkkccrccrcncJFFJF 213220111 000000


 

      nnnnnnnnnnnn kcJFkcrkccrnFJF   
000000 112232011n  

     




 nnnnnn

n

n
nnnn kcJFkc

r

c
kcrnnFJF 

000000 112232011   

(5.7) 

The last equation may be rewritten as a matrix difference equation  

nnn1n BuAxx                              (5.8) 

where,  nn Fx     ,   
0nJA  ,          22320121 00

kcrnBBB nn    
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






n

n
n r

c
u  , 11 0

kcn     , nnnnnn kcJF  
00

 

We note that n  is a stochastic variable because it is written as a linear combination of 

the stochastic terms nJ , n  and nk n,3  and nk ,3 . 

Substituting the last two expressions of (5.5) into the objective function (5.3) we obtain  

    








 n

n
2

nn

m

1nrc

2
n

2
n

2
m

1nrc Δr
Δc

θ10

0θ100
ΔrΔcEminΔr)1(Δc100Emin ΣΣ

n
,

nn
,

n

                   (5.9) 

 and assuming 





θ10

0θ1002

Q  we derive     



 n

n
nn

m

1n Δr
Δc

ΔrΔcmin Σ
,

QE
nn

rc
             (5.10) 

 

The optimization (minimization) problem described by (5.10) under the restriction 

imposed by the difference equation (5.8) is fully  investigated in Appendix II and the 

respective solution (in the steady state) is the following 

 1nn Mxu                                                  (5.11) 

where   





2

1
M

M
M  ,  





2

1


g  and H is a real number, satisfying the system below 

   HABQHBBM T1T           (5.12) 

    QMMBMAHBMAH TT         (5.13) 

    HBQHBB TT 1          (5.14) 

 

A certain body of text (and the respective computations) has 

been moved from this point down to the end of Appendix II. We 
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have also modified (slightly) the remaining text (below) of the 

current section 5. 

 

So, the optimal choice (as derived in Appendix II, see formulae (II.15), (II.16)) for the 

control vector 






n

n
n r

c
u  i.e. for the contribution rate cn and the age of eligibility for 

normal retirement rn is obtained via a feedback mechanism and described by the follow-

ing formulae  
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  (5.15) 
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  (5.16) 

 

6. Application of the stochastic-discrete model to the population of Greece  

 

As a case study, we apply the stochastic-discrete model and the respective results to the 

public pension system of Greece, using a recent population projection, (1995 – 2020)  

Total Population in thousands
       Years  --------------------------------------------------------->

Age Bands 1995 2000 2005 2010 2015 2020
20-24 790,6 779,3 707,5 588,7 540,3 568,3
25-29 798,1 800,9 783,5 711,9 593,7 545,4
30-34 751,4 811,0 806,3 788,8 717,7 599,8
35-39 728,1 759,9 813,6 808,9 791,8 721,0
40-44 689,7 733,4 760,6 814,1 809,8 792,8
45-49 655,3 687,5 729,4 756,4 810,1 805,8
50-54 592,1 652,4 682,4 723,7 751,4 804,3
55-59 640,6 584,9 642,3 671,8 713,8 740,9
60-64 642,0 621,4 568,2 623,7 654,2 695,1
65-69 567,1 601,7 587,5 537,3 592,7 621,8
70-74 400,2 504,3 544,3 531,3 490,9 541,4
75-79 274,7 327,5 423,4 456,4 453,4 419,2
80-84 210,8 191,2 241,1 311,0 345,4 342,7
85-89 99,9 111,8 112,5 142,1 193,2 214,0
90+ 43,2 47,1 62,2 66,7 89,0 120,5
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Table 6.1 , National Statistical Service of Greece (1998) 

 

The steps and the respective assumptions of the application are described below.  

 

1) The starting date of our simulation is the year 2000 while the closing date is the year 

2020. 

 

2) The weight θ has been fixed over the whole period equal to 0.5. In other words 

people are indifferent between a change of 1% in the contribution rate and a change of 

one year of age for the age of eligibility for normal retirement.  

 

3) The entry age has been fixed equal to twenty years old (a=20) and the  labor force 

participation rate equal to 100%. 

 

4) The accumulation factor is a stochastic variable (the same as the in terest rates). We 

assume that the fund is conservatively invested (e.g. in Government Bonds) and  

)045.1,035.1(int.1 ervaltheoverDistrUniformiJ nn      i.e. 

)005.0,005.0(int.04.11
00

 ervaltheoverDistrUniformJandiJ nnn . 

 

5)  Using population data (as shown in Table 6.1) and  the following two simplifying 

assumptions: 

 

a/ Each life (active) above 20 years old and up to the age of normal retirement receives 

an annual salary of one money unit. Actually, we assume a labor force participation rate 

equal to 100%; and  

 

b/ Each life (pensioner) above the age of normal retirement receives an annual pension 

of half (0.5) money unit. (This assumption is in line with the typical situation in 

Greece); 

 

We apply linear regression techniques and obtain estimates of the λ1, λ2, λ3, k1, k2, k3 

parameter values.  
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For the regression, we use 30 points for each of W(n,y) and B(n,y) taken from the 

projected values of these functions (according to the data of table (6.1)) for values of 

n=1995,2000,2005,2010,2015,2020 and y=55,60,65,65,70. Regarding the goodness of 

fit of the regressions, we conclude that this is adequate for our purposes since the 

coefficient of determination R2 is very close to 1 in both cases (for the Wage and 

Benefit functions, we have values respectively of 0,9795 and 0,9943). Also the F-

statistic values and the corresponding tests provide satisfactory results revealing that 

the high value of the coefficient of determination R2 has not occurred by chance.  

 

Consequently, we derive approximately linear functions for the total Wages and 

Benefits, with parameter estimates: 

 

    λ1= -2.08,  λ2 = 119.84,  λ3 = 2728.90,  k1= 13.37, k2 = -59.92,  k3 = -21922,95 

 

In order to incorporate a stochastic element into the functions for W(n,y) and B(n,y) we 

assume that  

)200,200(int.  ervaltheoverDistrUniformn  

)100,100(int.  ervaltheoverDistrUniformkn  

 

6) The initial contribution rate is chosen to be 14.35287%, the initial corresponding age 

of eligibility for normal retirement is chosen to be 65 (exactly) and the initial fund 

value is chosen to be zero.  This pair, (14.35287%, 65) almost equalizes the total 

contributions and the total benefits so that the fund at the end of the first year is almost 

zero, and is chosen as the first equilibrium point.  

 

7) After the establishment of the first equilibrium point, we proceed with the design of 

the path for 
0

n
c  and 

0
n

r , for the years 2001 till 2020. Firstly, we observe the overall 

trend for the W(n,y) and B(n,y) functions and anticipate the respective trend of the path 

(for 
0

n
c  and 

0
n

r ), which should be an increasing one. Then, we use a trial and error 
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procedure increasing marginally the consecutive values of 
0

n
c  and 

0
n

r , (initially by 

0,00097 and 0,097 for the years 2001 till 2004 then 0,00096 and 0,096 for the years 

2005 till 2014 and finally 0,00095 and 0,095 for the years 2015-2020 – see the second 

and third column of table (6.2)) targeting to a zero annual cash flow,a zero accumulated 

reserve at the end of 2020 and assuming a constant accumulation factor of 1.04 with no 

stochastic elements for the W(n,y) and B(n,y) functions. This certain pattern for the 

annual increase of the 
0

n
c  and 

0
n

r  coincides with assumption 2) for the θ factor, i.e. 

that people are indifferent between a change in the 
0

n
c from 14.35287% to 14.44987% 

and  a change in the 
0

n
r from 65.000 to 65.097. We then calculate the actual 

contribution and age of eligibility from equations (5.5), (5.15) and (5.16) and then 

execute 500 simulations and the results for the Expectations and Standard Deviations 

for cn, rn  and  Fn which are presented in Table 6.2. 

 

 

 

Table 6.2 

Simulation Results for the Greek population (2000-2020) 
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8) The procedure described in step 7) is then repeated step-wise as we move forward 

year by year. 

 

In the simulations, the optimal path for cn  and rn is smooth, while the resulting path for 

the reserve (contingency) fund exhibits oscillations, which reflects the fund’s absorbing 

of the stochastic fluctuations in mortality patterns, salary inflation and investment 

performance. This is evident from the development of the expectations and the 

magnitude of the standard deviations and is explained briefly in the following 

paragraph. 

 

We observe that the paths of expectations for cn  and rn  are smooth (and very near to 

the designed paths of the equilibrium points) while the St.Dev(c n) and St.Dev(rn) are 

small for each of the years (2000-2020). The path of E(Fn) is also smooth  and remains 

near the zero region (because of the special design of the equilibrium points) but the 

St.Dev(Fn) is quite large, reflecting a highly oscillatory pattern for Fn.  

 

 

 

n cn0 rn0 E(cn) E(rn) E(Fn) St.Dev(cn) St.Dev(rn) St.Dev(Fn)

2000 14,35287% 65,000 14,35287% 65,000 0,51 0,00000% 0,000 59,37

2001 14,44987% 65,097 14,45618% 65,105 -0,88 0,02968% 0,036 85,93

2002 14,54687% 65,194 14,55388% 65,202 -0,92 0,04295% 0,052 101,65

2003 14,64387% 65,291 14,65090% 65,300 -2,33 0,05081% 0,062 113,47

2004 14,74087% 65,388 14,74860% 65,397 -0,10 0,05672% 0,069 128,41

2005 14,83687% 65,484 14,84348% 65,492 0,18 0,06419% 0,078 135,61

2006 14,93287% 65,580 14,93935% 65,588 -0,62 0,06778% 0,082 141,21

2007 15,02887% 65,676 15,03575% 65,684 -4,77 0,07058% 0,086 151,31

2008 15,12487% 65,772 15,13382% 65,783 -9,76 0,07563% 0,092 155,29

2009 15,22087% 65,868 15,23231% 65,882 -8,29 0,07762% 0,094 158,70

2010 15,31687% 65,964 15,32758% 65,977 -2,19 0,07933% 0,096 161,95

2011 15,41287% 66,060 15,42053% 66,069 2,09 0,08095% 0,098 171,75

2012 15,50887% 66,156 15,51439% 66,163 3,81 0,08585% 0,104 175,28

2013 15,60487% 66,252 15,60953% 66,258 4,82 0,08761% 0,106 177,39

2014 15,70087% 66,348 15,70502% 66,353 3,78 0,08867% 0,107 179,00

2015 15,79587% 66,443 15,80055% 66,449 1,29 0,08948% 0,108 176,35

2016 15,89087% 66,538 15,89679% 66,545 -0,67 0,08815% 0,107 179,73

2017 15,98587% 66,633 15,99277% 66,641 4,91 0,08984% 0,109 182,43

2018 16,08087% 66,728 16,08498% 66,733 0,64 0,09119% 0,111 187,61

2019 16,17587% 66,823 16,18212% 66,831 -0,33 0,09378% 0,114 191,99

2020 16,27087% 66,918 16,27760% 66,926 -1,25 0,09597% 0,116 191,98
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  7.  Conclusions  

 

In this paper, we attempt an alternative approach to the standard version of the PAYG 

model. After a brief discussion for the international demographic trend of "ageing 

populations" and the impact on public pension systems financed by the PAYG method, 

we concentrate on three principal variables -the reserve fund, the contribution rate and 

the age of eligibility for normal retirement. 

 

We observe that "inter-generational equity" concept may be well served with the exist-

ence of a contingency fund. Such a fund can absorb the fluctuations in the mortality 

pattern, the fertility rates or the investment performance and consequently can smooth 

the contribution rates and the rates of return for each cohort of lives.  

 

Under the lines described above, we construct a general continuous model in  order to 

design an optimal control path for the contribution rate and age of eligibility for normal 

retirement assuming a fund, which operates as a buffer. We have overcome the 

difficulty of the complicated version of the problem by considering linear functions for 

wages/salaries and benefits obtaining an analytical solution for the two control 

variables within a deterministic framework.  

 

Then the initial model is reformulated by adopting a more realistic stochastic–discrete 

approach. The full solution of this version is obtained by means of linear stochastic 

control theory. The optimal path for the contribution rate and the age of eligibility for 

normal retirement is calculated through a series of equilibrium points and a feedback 

mechanism. 

 

Finally, the second discrete version of the model is applied to the projected population 

of Greece for the years 2000 – 2020. The simulation results are fully compatible with 

the theoretical analysis. An optimal (in terms of the smoothness defined by the 

respective functional) path for contribution rate and the age of eligibility for normal 
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retirement is designed starting from (14.35287%, 65) and ending with (16.27760%, 

66,926) in 2020.  

 

 

Appendix I (Deterministic Optimal Control) 

 

Here, we discuss the functional minimization procedure within a deterministic frame-

work (further analysis is provided in Athans & Falb (1966) p. 237-363).  

 

Let us consider the dynamic differential equation       tu,txftx   and search for the 

optimal u*(t) which minimizes the functional L , i.e.     dttu,txLminLmin
1

0

t

tuu      giv-

en that     00 xtx     and      11 xtx  . 

 

We introduce the Hamiltonian H of the system  

 

                                                      tu,txftptu,txLtH    

 

Then     t,ut*p,t*xH  has an absolute minimum as a function of u when  

 

   10 t,ttt*uu    where   u*(t) is obtained from the following equation 

 

 0
u
H 


  or  
   0


tu

tH
    10 t,tt   while     tx

tH
t*p 

 ,      
p

tH
tx 

  

 

 

Appendix II (Stochastic Linear Optimal Control) 

 

We have modified Appendix II incorporating all computations 
with respect to the minimization problem which appears at the 
end of section 5. 
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Here, we discuss the functional minimization procedure within a stochastic framework 

(further analysis is provided in Kushner (1969) p. 228-236).  

 
Let us consider the linear dynamic difference equation    

nnn1n BuAxx         (II.1)  

 
where xn is the state variable, un is a control variable. A and B are given constant matri-
ces,  is constant vector and ξn denotes a random vector with zero mean and finite sec-
ond moment that is independent of  xn-1. 
 
and search  for the optimal control u (i.e determine u1, u2, …um) which minimizes the 
following expression : 




 
m

n
n

T
n uQuE

1

      (II.2) 

 
If the system is stable (i.e. all the characteristic roots of (A+BM) are smaller than 1 in 
absolute value), then the solution will converge and will be given by 

 

 1nn Mxu       (II.3) 

 

where   





2

1
M

M
M  ,  





2

1


g  and H is a real number, satisfying the system below 

   HABQHBBM T1T           (II.4) 

    QMMBMAHBMAH TT         (II.5) 

    HBQHBB TT 1          (II.6) 

 

We proceed with the solution of the system of matrix equations (II.4) and (II.5)  
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Firstly, we solve equation (II.8) i.e. 
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Then from equation (II.7) we derive the following analysis  
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Combining equations (II.10) and (II.12) we obtain 
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Combining equations (II.4) and (II.6) we derive that  

          
g          and consequently,        11  

g       22  
g   (II.14) 

 So, the optimal choice for the control vector 
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u  i.e. for the contribution rate cn 

and the age of eligibility for normal retirement rn is obtained via a feedback mechanism  
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