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KOSZUL-MORITA DUALITY

JOSEPH CHUANG1 , ANDREY LAZAREV2 & W.H. MANNAN3

Abstract. We construct a generalization of Koszul duality in the sense of Keller–Lefèvre for
not necessarily augmented algebras. This duality is closely related to classical Morita duality
and specializes to it in certain cases.

1. Introduction

Koszul duality is an anti-equivalence between certain subcategories of the derived category
of a quadratic Koszul algebra A and that of its Koszul dual A! [1]. More recently Keller
and Lefèvre [4] gave a general formulation which is valid for a general augmented differential
graded (dg) algebra and its dg Koszul dual (which is in that case naturally a dg coalgebra). The
derived category on the dual side is that of dg comodules over this dg coalgebra; this is a derived
category of the second kind in the sense of [7], in particular acyclic comodules are not necessarily
regarded as trivial. In fact, in the coalgebra-comodule language the Koszul equivalence becomes
covariant, but taking linear duals restores contravariance. We adopt the set-up in which the
Koszul correspondence is contravariant; this allows us to replace coalgebras and comodules with
the dual notions of pseudo-compact algebras and pseudo-compact modules, cf. [11] concerning
these notions. This language is of course equivalent to the language of coalgebras and comodules.

It is natural to ask whether the assumption that A be augmented is essential for constructing
Koszul duality. One answer which completely removes this assumption is provided by the work
of Positselski [7], but at a price: the Koszul dual object op. cit. is no longer a pseudo-compact
dg algebra but a more general one, called a (pseudo-compact) curved dg algebra. The category
of modules also needs to be appropriately modified.

We provide a different answer, which ensures that (the analogue of) the Koszul dual object
is still an (ordinary, not curved) pseudo-compact dg algebra, even though the original A is
not necessarily augmented. It is however, required to possess a non-zero finite-dimensional dg
module M (in the case M = k, the ground field, this reduces to the Keller-Lefèvre treatment).
We prove further, that such a dg module always exists, at least if we replace A by a quasi-
isomorphic dg algebra. The unexpected conclusion is that the derived category of dg modules
over a dg algebra is always equivalent to some derived category of pseudo-compact modules.

Conversely, we give a necessary and sufficient condition for the derived category of pseudo-
compact dg modules over a pseudo-compact dg algebra to be anti-equivalent to the derived
category of dg modules over some dg algebra. In contrast, this condition does not always hold,
i.e. there are derived categories of pseudo-compact modules which are not equivalent to any
derived module category.

Furthermore, the functor associating to a dg A–module an appropriate pseudo-compact mod-
ule on the Koszul dual side is given as a kind of (derived) Hom into M . It is, thus, reminiscent
of the (derived version of) the classical Morita duality [6, 5]. It turns out that our duality
could indeed be viewed as an extension of Morita duality in the case when A is an ordinary
finite-dimensional algebra of finite global dimension.

It seems likely that a large portion of our results could be extended to dg modules over
dg categories, however we refrained from working in this generality to keep exposition simple.
Related results, in the context of dg categories, are contained in the recent preprint [8]. The
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main difference in our approach is that the use of the reduced Hochschild complex allowed us
to avoid additional assumptions present in e.g. Proposition 3.9 of op. cit.

It also is worth noting that equivalences between categories of pseudo-compact modules
(phrased in the language of comodules) were studied in the work of Takeuchi [10] and so our
results could be viewed as linking (derived versions of) Morita theory and Takeuchi theory.

1.1. Organization of the paper. In sections 2 through 7 we formulate and prove our main
result: a Quillen anti-equivalence between categories of dg modules over a dg algebra A, possess-
ing a finite-dimensional non-zero dg module M , and the category of pseudo-compact dg modules
over a pseudo-compact dg algebra E, which is the reduced Hochschild complex of A with coeffi-
cients in EndM . We note that E computes the derived endomorphisms of M as an A–module,
just as (for example) the corresponding unreduced complex. However we cannot replace E with
the corresponding unreduced complex or use some other resolution of M since that will change
the derived category of pseudo-compact modules. We do not have a satisfactory explanation
of this striking phenomenon; perhaps it is related to the lack of an appropriate closed model
category structure on all pseudo-compact dg algebras (or, equivalently, all dg coalgebras).

Our main tool in proving the mentioned Quillen equivalence is Koszul duality as developed
by Positselski [7]. One minor modification that we introduce is the systematic use of (pseudo-
compact) dg modules and their Maurer-Cartan twisting which might be of some independent
interest. It is worth remarking that the end result does not involve curved dg algebras and
modules even though Positselski’s results and our use of them do.

In Section 8 we consider the question of when the category of pseudo-compact dg modules
is Quillen equivalent to some (ordinary) derived category of dg modules; a particularly simple
criterion is formulated in the case of an ungraded pseudo-compact algebra. Finally Section 9
explains how our results essentially reduce to (derived) Morita duality in the case when A is
finite-dimensional and of finite global dimension.

2. Formulation of the main result

Let A be a dg algebra over a field k and let M be a non-zero finite-dimensional (dg) module
over A (the adjective ‘dg’ will typically be omitted when applied to a module over a dg algebra).
All dg algebras and modules will be cohomologically graded (so the differential will have degree
1). Recall (cf., for example [7, Theorem 8.1a]) that the category of A–modules has the structure
of a closed model category where weak equivalences are quasi-isomorphisms and fibrations are
the surjective maps. All A–modules are fibrant and cofibrant objects are retracts of cell A–
modules; the latter are the A–modules having a filtration whose associated factors are free
A–modules. We can form the reduced Hochschild complex of A with coefficients in End(M):

Hoch
n
(A,EndM) ⊂ Hom(A⊗n,EndM)

consisting of the reduced cochains; that is multilinear maps (over k) A×n → EndM which

vanish if any of the arguments is 1 ∈ A. The complex Hoch
•
(A,EndM) is a dg algebra which

we will denote by E.
To see that it is a dg algebra first define multiplication of a degree n element α with a degree

m element β by setting application to elements a1, · · · , an, b1, · · · , bm ∈ A to be given by:

(αβ)(a1, · · · , an, b1, · · · , bm) = (−1)stα(a1, · · · , an)β(b1, · · · , bm),(2.1)

where s is the sum of the degrees of the ai and t is the degree of β. The multiplication on the
right hand side of his equation is just composition in End(M).

Note that E has a differential d which is the sum of:

1) The internal differentials on the copies of A in A⊗n,
2) The differential on End(M) coming from the internal differential on M ,
3) Contractions on the copies of A, including the two ‘end terms’ represented by taking the
commutator [δ, ] in E, where δ : A → End(M) is just the A–action on M .
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Without these ‘end terms’, the differential of a reduced cochain would no longer be reduced.
Moreover, E can be identified (disregarding the differential) with T̂Σ((A/k)∗)⊗EndM where

here and elsewhere in the paper the tensor product is understood in the appropriate completed
sense. Here Σ denotes the suspension operator, which raises the degree of each homogeneous
element in a graded algebra/module. Recall from [11] that a dg algebra is pseudo-compact if it
is an inverse limit of finite-dimensional dg algebras (or. equivalently, is dual to a dg coalgebra).
Since M is finite-dimensional, the dg algebra E is pseudo-compact. In the case M = k, the
pseudo-compact dg algebra E is also local (which is the same as saying that its dual dg coalgebra
is conilpotent).

We also consider the category of left pseudo-compact (dg) modules E-mod; these are just
inverse limits of finite-dimensional E-modules (or comodules in the dual setting). It has the
structure of a closed model category in which the weak equivalences are strictly stronger than
quasi-isomorphisms and fibrations are surjections [7, Theorem 8.2a]. All E–modules are fibrant
and the cofibrant E–modules are the retracts of free E–modules (disregarding the differential).

Here is our main result; its proof is given is section 7, after laying the groundwork in previous
sections.

Theorem 2.1. The categories A-mod and (E-mod)op are Quillen equivalent. The functor
F : A-mod → (E-mod)op, effecting this equivalence, associates to an A–module N the following
E–module:

F (N) = Hoch(A,Hom(N,M)),

the reduced Hochschild complex of A with coefficients in Hom(N,M).

Remark 2.2. (1) We use (2.1) to define a left E–action on F (N), with multiplication on
the right hand side of (2.1) now coming from the EndM–action on Hom(N,M).

(2) The complex Hoch(A,End(M)) is quasi-isomorphic to the unreduced Hochschild com-
plex Hoch(A,End(M)). However these pseudo-compact dg algebras do not have equiv-
alent derived categories of pseudo-compact modules. For example, taking A = k and
M = k we have Hoch(A,k) ∼= Hoch(A × k,k); thus the category of pseudo-compact
Hoch(A,k)–modules is Quillen equivalent to the category of (k × k)–modules. On
the other hand, Hoch(A,k) ∼= k. Thus, the derived categories of pseudo-compact
Hoch(A,k)–modules and of pseudo-compact Hoch(A,k)–modules cannot be equivalent
and the reduced Hochschild complex cannot be replaced with the unreduced one in the
definition of the pseudo-compact dg algebra E.

(3) It is possible to describe the adjoint functor G : (E-mod)op → A-mod explicitly (and
this will be done later). However for this we need to develop the language of twistings
and it will be in less traditional terms than the functor F .

If the A-module M is the ground field k (so that A is augmented) then Theorem 2.1 is the
ordinary dg Koszul duality. However we stress that M could be an arbitrary non-zero finite-
dimensional A-module; in particular it could be acyclic. This leads to the following result.

Corollary 2.3. For any dg algebra A the category A-mod is Quillen equivalent to the category
(E-mod)op for some pseudo-compact dg algebra E.

Proof. Let C be any finite-dimensional acyclic dg algebra; the smallest example is a two-
dimensional one having basis {1, x} with x2 = 0 and d(x) = 1. Then the projection A×C → A
is clearly a quasi-isomorphism and leads to a Quillen equivalence between the categories of
A-modules and A × C-modules. But the dg algebra A × C has a non-zero finite dimensional
module, namely C via the projection A×C → C. We conclude, by Theorem 2.1, that the cate-
gory A×C-mod and thus, the category A-mod, is Quillen equivalent to the category (E-mod)op

where E = Hoch(A× C,EndC). �
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3. Curved algebras and modules

Recall from [7] that a curved dg algebra is a graded algebra A together with a ‘differential’
d : A → A, a derivation of A of degree one such that d2(a) = [h, a] where a ∈ A and h ∈ A is
an element of degree two such that d(h) = 0, called the curvature of A.

A morphism of curved dg algebras f : B → A is a pair (f, a) consisting of a morphism of
graded algebras f : B → A and an element a ∈ A1 satisfying the equations:

f(dB(x)) = dA(f(x)) + [a, f(x)],

f(hB) = hA + dA(a) + a2,

for all x ∈ B, where B = (B, dB, hB) and A = (A, dA, hA).
The composition of morphisms is defined by the rule (f, a)◦ (g, b) = (f ◦g, a+f(b)). Identity

morphisms are the morphisms (id, 0).
A morphism (f, 0) as above is called strict; thus strict morphisms preserve curvature elements.
Note that a morphism (f, a) of curved dg algebras is an isomorphism precisely when f is

invertible, since the inverse map is then given by the pair (f−1,−f−1(a)). Any dg algebra can
be viewed as a curved dg algebra with the zero curvature. There are non-isomorphic dg algebras
which are isomorphic as curved dg algebras.

A left module (M,dM ) over a curved dg algebra A is a graded left A–module M endowed
with a derivation dM : M → M compatible with the derivation dA and such that d2M (x) = hAx
for any x ∈ M . Equivalently, a graded k–vector space M with degree 1 derivation dM : M → M
is a left A–module if it is equipped with a strict map A → EndM . Here the ‘differential’ on
EndM is taking the commutator with dM and the curvature is d2M .

Remark 3.1. A curved dg algebra A is not necessarily a left (or right) module over itself.
Indeed if it were, then d2A = [h,−] = lh, where lh is the operator of left multiplication by h;
clearly this holds if and only if h = 0. On the other hand, it is consistent to consider A as
an A-bimodule, i.e. a module over the curved dg algebra A ⊗ Aop with the curvature element
h⊗ 1− 1⊗ h.

We will be interested in the pseudo-compact versions of the above notions, i.e. pseudo-compact
curved dg algebras and modules over them.

Example 3.2. Let A be a unital dg algebra. Choose a k-linear map ǫ : A → k, to be regarded
as an ‘augmentation’, even though not required to be multiplicative nor differential. Then
the pseudo-compact graded algebra T̂Σ((A/k)∗) has the structure of a curved pseudo-compact

algebra. To define it, view T̂Σ((A/k)∗) as a ‘Hochschild complex’ of A with coefficients in k.

In other words, define the ‘differential’ on T̂Σ((A/k)∗) by the formula:

df(a1, . . . , an) = ǫ(a1)f(a2, . . . , an)(3.1)

+

n
∑

k=1

(−1)kf(a1, . . . , akak+1, . . . , an)

+ (−1)n+1f(a1, . . . , an−1)ǫ(an).

(here for simplicity it is assumed that all elements and f are of even degree).
Since ǫ is not necessarily an augmentation, d may not square to zero; however this will define

a curved dg algebra structure on T̂Σ((A/k)∗). If ǫ is chosen to be a dg map, the curvature

element is the ‘homutator’ of ǫ; h ∈ T̂ 2Σ((A/k)∗): h(a, b) = ǫ(ab) − ǫ(a)ǫ(b). It vanishes iff ǫ

is a genuine augmentation in which case T̂Σ((A/k)∗) becomes uncurved and is isomorphic to
Hoch(A,k).

If A is acyclic then one cannot choose ǫ to be a dg map. In this case the curvature element
has an additional term - the differentiator hd ∈ Σ(A/k)∗), satisfying hd(a) = ǫ(da).

The last example is the main reason (for us) to consider curved dg algebras. For any unital

dg algebra A it determines a (local) pseudo-compact algebra T̂Σ((A/k)∗). The correspondence
4



A 7→ T̂Σ((A/k)∗) depends on choosing a fake augmentation but any two choices are canonically
isomorphic and thus, it could be viewed as a functor from dg algebras into local curved pseudo-
compact dg algebras. Positselski shows that this gives a Quillen anti-equivalence between dg
algebras and local pseudo-compact curved dg algebras [7]. This is a unital analogue of Keller-
Lefevre’s correspondence. There is also a Quillen anti-equivalence between A–modules and
T̂Σ((A/k)∗)–modules which will be instrumental in establishing our main result.

4. Twisting

The notion of Maurer-Cartan (MC) twisting of dg algebras or dg Lie algebras is well-
documented [2]. Here we will discuss twistings of curved algebras and modules over them.
Note that Positselski (and others) work with twisted cochains rather than with MC elements;
our point of view is essentially equivalent but more convenient since it allows one to avoid
coalgebras and comodules.

Definition 4.1. (1) Let A = (A, d, h) be a curved dg algebra and ξ ∈ A1. The twisting of
A by ξ, denoted by Aξ, is the curved dg algebra having the same underlying space as
A, the twisted differential dξ = d+ [ξ, ] and the twisted curvature hξ = h+ dξ+ 1

2 [ξ, ξ].
(2) Let M,dM be a module over a curved dg algebra A as above. The twisting of M by ξ,

denoted by M [ξ], is the module over Aξ having the same underlying space as A and the
twisted differential d[ξ] := dM + ξ.

Remark 4.2. An uncurved dg algebra A may be viewed as a module over itself, so given ξ ∈ A1

we have that A[ξ] is a module over Aξ; here A[ξ] 6= Aξ as they have different differentials.

Definition 4.3. Let (A, d, h) be a curved dg algebra; then ξ ∈ A1 is called MC if h+dξ+ 1
2 [ξ, ξ] =

0.

Remark 4.4. The twisting of a curved dg algebra by an MC element is an uncurved algebra.

Example 4.5. (1) Let A be a unital dg algebra, then BA := T̂Σ(A∗) is an (uncurved)
acyclic local pseudo-compact algebra. Tensoring it with A we get another dg algebra
(although not pseudo-compact unless A is finite dimensional): C = BA⊗A. The algebra
C has a canonical MC element; choosing a basis {ei} in A and the dual basis {ei} in
Σ(A∗) it is:

ξ :=
∑

ei ⊗ ei ∈ BA⊗A.

Then (BA ⊗ A)ξ is isomorphic to Hoch(A,A), the (unreduced) Hochschild complex of
A with coefficients in itself. If C is a (unital) dg algebra supplied with a dg algebra map
A → C then Hoch(A,C) can similarly be constructed as an algebra twisting of BA⊗C.

Furthermore, let M be an A-bimodule. Then viewing BA ⊗ M as a bimodule over
BA ⊗ A we can form the twisted module (BA ⊗ M)[ξ⊗1+1⊗ξ]. Here ξ ⊗ 1 + 1 ⊗ ξ ∈
(BA ⊗ A) ⊗ (BA ⊗ A)op. This results in what normally is denoted by Hoch(A,M),
the unreduced Hochschild complex of A with coefficients in M ; it is thus naturally a
bimodule over Hoch(A,A).

(2) Let A be as above and consider a fake augmentation ξ : A → k as an element in BA.
Twisting by ξ gives a local curved pseudo-compact algebra BAξ with curvature denoted
by w.

The reduced bar-construction BA := T̂Σ((A/k)∗) is a (curved) subalgebra in BAξ;
in fact there is an isomorphism BAξ ∼= BA〈〈x〉〉 mapping ξ 7→ x, where dx = x2 + w.

In the case when ξ is a genuine augmentation we have w = 0 and the inclusion
BA →֒ BA is a quasi-isomorphism as BA is the coproduct (in the category of associative
k-algebras) of BA with an acyclic dg algebra.

(3) Let again A be a unital dg algebra and consider the curved pseudo-compact algebra

BA = T̂Σ((A/k)∗). Let A+ be the kernel of the (fake) augmentation ǫ : A → k. Then

(A/k)∗ can be identified with A∗
+ and BA with T̂Σ(A∗

+). Thus, consider the curved dg
5



algebra T̂Σ(A∗
+)⊗A. It has a canonical element ξ =

∑

ei⊗ ei where ei is a basis in A+

and ei is the dual basis in Σ(A∗
+). It turns out to be an MC element so twisting by it

results in an uncurved dg algebra (T̂Σ(A∗
+)⊗A)ξ. The latter dg algebra is Hoch(A,A),

the reduced Hochschild complex of A with coefficients in itself. If C is a (unital) dg
algebra supplied with a dg algebra map A → C then Hoch(A,C) can similarly be
constructed as an algebra twisting of BA⊗ C.

If M is an A-bimodule one can similarly form Hoch(A,M) as a bimodule over
Hoch(A,A).

(4) Let M be a left dg module over a dg algebra A and consider Hoch(A,A) = (BA⊗ A)ξ

as above and its left module (BA⊗M)[ξ]. This module looks similar to Hoch(A,M) but
the differential is slightly different: one has to omit the last term in (3.1). The complex

(BA ⊗M)[ξ] is acyclic and is the dual of the standard bar-resolution of M∗ as a right
A–module.

Similarly we can form the dg algebra Hoch(A,A) = (BA ⊗ A)ξ and its left module

(BA⊗M)[ξ], which can be identified with the dual reduced standard bar-resolution M∗

as a right A–module.

Proposition 4.6. Let A be a curved pseudo-compact algebra and ξ ∈ A1. Then the category
of A–modules and the category of Aξ–modules are Quillen equivalent. To an A–module N we
associate an Aξ–module M [ξ] and to an Aξ–module N we associate the module N [−ξ].

Proof. Clearly the categories are isomorphic: the A–module (M [ξ])[−ξ] is equal to M and simi-
larly with an Aξ–module N .

As both the categories are of pseudo-compact modules, cofibrations are characterized as the
injective morphisms with projective cokernels (disregarding differentials). Clearly this property
is preserved by both the functors described in the proposition. �

5. Koszul duality

Let A be a unital dg algebra and B := BA be its reduced bar-construction, a curved local
pseudo-compact dg algebra.

Definition 5.1. We define a pair of (contravariant) functors between the categories of A–
modules and of B–modules as follows. The functor F associates to an A–module N , the twisted
module:

F (N) = (B ⊗N∗)[ξ].

Here we view B⊗N∗ as a B⊗Bop ⊗Aop–module and ξ is the canonical element in Bop ⊗Aop.
Thus, (B⊗N∗)[ξ] becomes a B⊗ (Bop ⊗Aop)ξ = B⊗Hoch(A,A)op–module and forgetting the
Hoch(A,A)op–action we get a B–module.

The functor G in the opposite direction associates to a B–module L the twisted module:

G(L) = (A⊗ L∗)[ξ].

Here we view A⊗L∗ as a Bop⊗Aop⊗A = BAop⊗Aop⊗A–module; ξ is the canonical element
in BAop ⊗ Aop. Thus, (A ⊗ L∗)[ξ] is a (BAop ⊗ Aop)ξ ⊗ A = Hoch(A,A)op ⊗ A–module and
forgetting the Hoch(A,A)op–action we get an A–module.

Explicitly then, if α ∈ F (N) is a map A×k ×N → k, then dα maps:

(a1, · · · , ak+1, n) 7→ ǫ(a1)α(a2, · · · , ak+1, n)

− α(a1a2, · · · , ak+1, n)

+ · · ·

+ (−1)k+1α(a1, · · · , ak+1, n),

where as before ǫ denotes a fake augmentation and the elements ai, i = 1, . . . , k + 1 are under-
stood to be even, as before. It is clear that d2 induces application of the curvature element in
B rather than commutation with it, so F (N) is indeed a B–module.

6



From [7, Theorem 6.3a] we know that F,G form a mutually inverse pair of equivalences of
categories. This equivalence is then a Quillen equivalence with respect to the closed model
category structures on A-modules and B-modules. Thus we have:

Theorem 5.2. The functors F,G form a (contravariant) Quillen equivalence between the cat-
egories of A–modules and B–modules.

Remark 5.3. (1) The action of Hoch(A,A) was not mentioned in [7] and the functors
F and G were described in a different, although equivalent, language. The role of
the additional right action of Hoch(A,A) is not completely clear. One can speculate
that since Hoch(A,A) is quasi-isomorphic to a strictly commutative dg algebra, its left
and right actions coincide in some strong homotopy sense and moreover, are formal
consequences (again in an appropriate strong homotopy sense) of the actions of A or B.

(2) The action of the curved dg algebra B on F (N) is obtained as a restriction using the
inclusion of curved dg algebras B →֒ B⊗Hoch(A,A) : b 7→ b⊗1. Note that this required
the twist: the corresponding map B → B⊗Bop⊗Aop is not a map of curved dg algebras
and B ⊗N∗ is not a B–module, just as B is not a B–module.

6. Covariant Morita equivalence for modules over a pseudo-compact algebra

Let B be a pseudo-compact curved dg algebra and M be a non-zero finite-dimensional vector
space over k. Then E′ := B ⊗ EndM is a curved dg pseudo-compact algebra. We have:

Proposition 6.1. The categories of B–modules and of E′–modules are Quillen equivalent. To
a B–module N we associate the E′–module F ′(N) := N ⊗M . To an E′–module L we associate
a B–module G′(L) := HomE(B ⊗M,L) ∼= HomEndM (M,L).

Proof. We have natural isomorphisms:

G′F ′(N) = HomEndM (M,N ⊗M)
∼= HomEndM (M,M)⊗N ∼= k⊗N = N,

F ′G′(L) = HomEndM (M,L)⊗M
∼= Hom(M∗,HomEndM (M,L))
∼= HomEndM (M∗ ⊗M,L)
∼= HomEndM (EndM,L) = L.

It remains to verify that F ′ preserves cofibrations and that G′ preserves fibrations. As a
module over itself EndM is a direct sum of copies of M . So M is a projective EndM module.

Thus given a surjective map f : L1 → L2, the induced map G(f) is surjective, as we may lift
any element g ∈ HomEndM (M,L2):

M

g

��~~

L1
f

// L2

Thus G′ preserves fibrations.
A cofibration of B–modules f : N1 → N2 is characterized by being part of an exact sequence:

0 → N1
f
→ N2 → P → 0,

for some B-module that is projective as a graded B-module, forgetting differentials. Applying
F ′ we obtain the exact sequence:

0 → N1 ⊗M
f⊗1M→ N2 ⊗M → P ⊗M → 0.

To deduce that F ′ preserves cofibrations we need only note that P ⊗M is a summand of the
projective module E′–module P ⊗ EndM . �
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7. Composing the equivalences

We now have all the ingredients to prove our main theorem. We have the following chain of
Quillen equivalences:

A-mod ↔ (BA-mod)op ↔ (BA⊗ EndM -mod)op.

Note that both BA and BA⊗ EndM are curved pseudo-compact algebras. Using Example
4.5 (3) we recognize Hoch(A,EndM) as an appropriate twisting (BA ⊗ EndM)ξ and using
Proposition 4.6 conclude that E′ := BA ⊗ EndM–modules are Quillen equivalent to E :=
Hoch(A,EndM)–modules.

Moreover, the composition of functors from left to right is clearly F as defined in Theorem
2.1. This completes the proof of Theorem 2.1.

Tracing the functors going in the opposite direction we can give the following explicit de-
scription of the inverse equivalence (E-mod)op → A-mod. Let L be in E-mod. Considering the

canonical element ξ in E we have E−ξ = BA⊗EndM and so L[−ξ] is a module over the curved
dg algebra BA⊗ EndM .

Applying G′ returns the BA module HomEndM (M,L[−ξ]). In order to dualize this we employ
the following lemma.

Lemma 7.1. Given an EndM–module K we have: HomEndM (M,K)∗ ∼= HomEndM (K,M).

Proof. Replacing B in Proposition 6.1 with k gives us the Morita duality between k and EndM :

HomEndM (K,M) ∼= Homk(HomEndM (M,K),k) ∼= HomEndM (M,K)∗.

�

Thus applying G to HomEndM (M,L[−ξ]), we get a twist of the A⊗Aop ⊗BAop–module:

A⊗HomEndM (L[−ξ],M).

Applying this (un)twist, we obtain that (A ⊗ HomEndM (L[−ξ],M))[η] is a module over A ⊗
(Aop ⊗ BAop)η = A ⊗ Hoch(A,A)op (where η is the corresponding MC element). Finally,

forgetting the action of Hoch(A,A), we obtain an A–module (A⊗HomEndM (L[−ξ],M))[η]. This
is the value of our composite functor (E-mod)op → A-mod on L.

8. Equivalences between categories of modules and pseudo-compact modules

We saw that the category of modules over a dg algebra is always Quillen equivalent to some
category of pseudo-compact modules (Corollary 2.3). It is natural to ask when, conversely, the
category of pseudo-compact modules over a pseudo-compact dg algebra is Quillen equivalent
to the category of modules over some dg algebra. The following result gives an answer to that
question; here and later on D(A) and D(B) stand for the derived categories of A-modules and
of pseudo-compact B-modules respectively, i.e. the homotopy categories of the corresponding
closed model structures. The category D(B) is the derived category of the second kind ; even
when B is finite dimensional, it does not coincide, in general, with its usual derived category
(more on that later).

Theorem 8.1. Let B be a pseudo-compact dg algebra. The following are equivalent:

(1) There exists a dg algebra A and an equivalence F : D(A) ∼= D(B)op,
(2) D(B)op admits a compact generator,
(3) D(B)op admits a finite-dimensional (necessarily compact) generator.

If any of these conditions holds then in fact there exists a dg algebra A and a Quillen equivalence
between A-mod and (B-mod)op.

In case B = B0, i.e. B is an ordinary pseudo-compact algebra, any of the three conditions
above is equivalent to the following statement:

(4) There are finitely many isomorphism classes of simple (non-dg) B–modules.
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Lemma 8.2. Let B be pseudo-compact dg algebra. Then D(B)op is compactly generated, and
an object of D(B)op is compact if and only if it is in the thick subcategory of D(B)op generated
by (totally) finite-dimensional modules.

Proof. By [7, §5.5], the finite-dimensional B–modules form a set of compact objects that gener-
ate D(B)op. It follows that the compact objects in D(B)op are generated as a thick subcategory
of D(B)op by the finite-dimensional modules [3, Theorem 2.1.3(c)]. �

Proof of Theorem 8.1. Given an equivalence F , we have that F (A) is a compact generator of
D(B)op. Hence, by Lemma 8.2, F (A) is obtained from a finite set of totally finite-dimensional
B–modules by a sequence of shifts, extensions and retractions. Thus the direct sum of these
finite-dimensional modules is a compact generator of D(B)op. This proves that (1) implies (3),
and (3) obviously implies (2).

Now suppose (2) holds: let N be a compact generator of D(B)op. Without loss of generality
we may assume N is cofibrant. Define a dg algebra A := EndB(N). Then the functor

F (−) = HomA(−, N) : A-mod → (B-mod)op

is left adjoint to the functor

G(−) = HomB(−, N) : (B-mod)op → A-mod .

Recall [7] that cofibrations in A-mod are the injective maps with cofibrant (in particular projec-
tive) cokernel, whereas fibrations are the surjective maps. Similarly fibrations in (B-mod)op are
the injective maps with projective cokernel, and fibrations are the surjective maps. It is then
easy to see that F preserves cofibrations and G preserves fibrations. Moreover F (A) ∼= N and
G(N) ∼= A. Since A and N are compact generators in D(A) and D(B) respectively, it follows
that F and G induce inverse equivalences of D(A) and D(B)op.

Suppose now that B is an ordinary pseudo-compact algebra. Simple (non-dg) B–modules
may be regarded as simple dg B–modules concentrated in degree 0, and any simple dg B–module
arises in this way, up to grading shift. If B has finitely many isomorphism classes of simple
modules, their direct sum is then a compact generator, as any finite-dimensional dg B–module
has a finite composition series.

Conversely suppose B has a finite-dimensional (compact) generator N . It suffices to show
that any simple B–module S is a composition factor of the cohomology H(N), regarded as
a (finite-dimensional) ungraded B–module. To confirm the latter, note that S, as a compact
object in D(B)op, is contained in the thick subcategory of D(B)op generated by N , and observe
that shifts, retracts and extensions of dg B–modules cannot create new composition factors in
cohomology. �

Remark 8.3. The obvious generalisation of condition (4) in Proposition 8.1 to arbitrary pseudo-
compact dg algebras B would be the following:

(4’) There are finitely many isomorphism classes of simple dg B–modules, up to grading
shift.

We do not know whether Proposition 8.1 holds in this generality. As a case in point, the pseudo-
compact dg algebra E = Hoch

•
(A,EndM) of Theorem 2.1 has a unique simple (dg) module up

to isomorphism and grading shift – the module M .

Remark 8.4. Let G be an affine group over a field k; denote its coordinate ring by k[G]. The
category of G–modules may be identified with the category of k[G]-comodules, or equivalently,
with the category of modules over the pseudo-compact algebra k[G]∗. Thus it is natural to
consider the derived category D(k[G]∗) and to ask for which G it admits a compact generator.
By Theorem 8.1 this holds if and only if there are finitely many isomorphism classes of simple
G–modules.

In case G is a smooth affine algebraic group over an algebraically closed field, we can give
the following answer: G has finitely many simple modules if and only if G0, the connected
component of the identity, is unipotent. Indeed, since G0 is a normal subgroup of finite index
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in G, the standard arguments of Clifford theory imply that G has finitely many simple modules
precisely when G0 does. If G0 is unipotent it has a unique simple module. On the other hand if
G0 is not unipotent, it has a nontrivial reductive quotient and thus infinitely many isomorphism
classes of simple modules.

9. Comparison with classical Morita duality

Our main result, Theorem 2.1, is a Quillen anti-equivalence, or duality between two module
categories; it is given as a kind of derived Hom functor. This suggests a close relationship with
Morita duality [6, 5] which also studies contravariant equivalences between various categories of
modules. We will see that that our result can indeed be viewed as an extension of Morita duality
in the case when the algebra in question is finite dimensional and of finite global dimension.

Let us first present a kind of derived Morita duality when A is an ordinary (i.e. non-dg)
finite-dimensional algebra; this will be our standing assumption in this section. If M is a finite-
dimensional injective cogenerator of the category of A-modules and Γ := EndA(M) then the
category of finite-dimensional A–modules is anti-equivalent to the category of finite-dimensional
Γ–modules via the functors F : N 7→ HomA(N,M) and G : L 7→ HomΓ(L,M) (see e.g. [9,
Theorem 7.11]). Note that since Γ is a finite dimensional algebra, it makes sense to consider
the category of its (left) pseudo-compact modules which we will denote by Γps–mod; note that
its opposite category is naturally identified with the category of Γ∗-comodules. The following
result is an easy extension of this version of Morita duality.

Theorem 9.1. The functors F and G determine an anti-equivalence between the abelian cate-
gories A–mod and Γps–mod.

Proof. The functor G : Γps–mod→ A–mod can be factored as a composition,

Γps-mod −→ Γ-mod −→ A-mod,

as follows:

L 7→ L∗ 7→ HomΓ(M
∗, L∗) ∼= HomΓ(L,M),

where L is a pseudo-compact Γ–module. The functor of linear duality L → L∗ is clearly an
anti-equivalence between Γps–mod and Γ–mod whereas the functor HomΓ(M

∗,−) is the usual
covariant Morita equivalence between Γ–mod andA–mod (note thatM∗ is a projective generator
of A–mod since M is an injective cogenerator). �

Remark 9.2. It follows that F and G determine an anti-equivalence between the homotopy
categories of complexes in A-mod and Γps-mod. Taking the Verdier quotient by the acyclic
complexes, we conclude that D(A), the derived category of A, is anti-equivalent to DI(Γps),
the derived category of pseudo-compact Γ–modules of the first kind (cf. [7] concerning this
terminology). Note that our previous results were concerned with the derived categories of
pseudo-compact modules of the second kind.

Recall from [7] that a complex of A-modules is absolutely acyclic if it belongs to the minimal
thick subcategory of the category Hot(A-mod) of A-modules up to homotopy, containing acyclic
bounded complexes. The Verdier quotient of Hot(A-mod) by the subcategory of absolutely
acyclic complexes is called the absolute derived category of A and denoted by Dabs(A). In the
same way we can define the absolute derived category Dabs(Γps) of pseudo-compact Γ-modules.
It follows similarly that the functors F and G determine an anti-equivalence between Dabs(A)
and Dabs(Γps).

We observe that there is a simple criterion for the two types of derived categories to coincide.

Lemma 9.3. If a finite-dimensional algebra Γ has finite global dimension then the following
categories coincide:

(1) Dabs(Γ) and D(Γ);
(2) Dabs(Γps), D(Γps) and DI(Γps).
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Proof. Note first of all that (1) =⇒ (2) by Remark 9.2. Thus, it suffices to prove (1). To this
end let M be an acyclic complex of Γ–modules; we have to show that Γ is absolutely acyclic.
Let M〈n,m〉 be the complex of Γ–modules such that:

M〈n,m〉i =



















M i if n < i < m

ker d : Mn → Mn+1 if i = n

Coker d : Mm−1 → Mm if i = m

0 if i < n or i > m

Then clearly M〈n,m〉 is absolutely acyclic and

M ≃ holimn hocolimmM〈n,m〉.

It follows by [7, Theorem 3.6] that the category of absolutely acyclic complexes is closed with
respect to arbitrary direct sums and direct products (this is where the finite global dimension
assumption is used), and therefore also with respect to homotopy limits and colimits along
directed systems . Therefore M is absolutely acyclic. �

Remark 9.4. If Γ is a pseudo-compact dg algebra of finite global dimension then Positselski
[7, Theorem 3.6 and 4.5] showed that various derived categories of second kind of Γ coincide.
The result above shows that under the additional assumption that Γ is concentrated in degree
zero, these derived categories of second kind also coincide with the ordinary derived categories.

We can now formulate the main result of this section.

Theorem 9.5.

(1) Let A be a finite-dimensional algebra of finite global dimension. Then the categories of
dg A–modules and of pseudo-compact dg A–modules are Quillen anti-equivalent.

(2) Conversely, suppose that there exists a finite-dimensional algebra Γ such that the cate-
gories D(A) and D(Γps)op are equivalent. Then A and Γ both have finite global dimen-
sion, and D(A) and D(Γ) are equivalent.

Proof. Note that the k-linear duality functor L 7→ L∗ determines an anti-equivalence between
the abelian categories A-mod and Aps-mod; it is also a Quillen functor between the correspond-
ing closed model categories. Now the homotopy category of A-mod (in the sense of closed model
categories) is the derived category D(A). By Lemma 9.3 the homotopy category of the closed
model category Aps-mod is the same as DI(Aps) which is then equivalent to D(A) under the
functor of linear duality. This proves (1).

Now suppose that D(A) and D(Γps) are equivalent. Then arbitrary products and coproducts
exist in D(Γps). Since absolutely acyclic pseudo-compact Γ–modules vanish in D(Γps), arguing
as in the proof of Lemma 9.3 we see, that the same is true of all acyclic pseudo-compact Γ–
modules. Thus D(Γps) coincides with DI(Γps), and is thus anti-equivalent to D(Γ) via linear
duality. Now recall from Lemma 8.2 that finite-dimensional Γ-modules are compact objects
in D(Γps)op. We deduce from the equivalence D(Γ) ∼= D(Γps)op : M 7→ M∗ that any finite-
dimensional dg A–module is compact in D(A), which implies that A has finite global dimension,
and therefore so does Γ. �

Remark 9.6. For a finite-dimensional algebra A there are two natural choices for a finite-
dimensional module M ; namely one can take M = A or M = A∗; the latter choice having
the advantage of being an injective cogenerator. Then Theorem 2.1 states that the category
A–mod and E–mod where E := Hoch(A,End(M)) are Quillen equivalent. Since E is quasi-
isomorphic to RHomA(M,M), for M = A or M = A∗ it is further quasi-isomorphic to A. One
can ask whether the above equivalence simplifies to a Quillen equivalence between A–modules
and pseudo-compact A–modules. Theorem 9.5 says, in particular, that this is the case only
when A has finite global dimension.
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