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Simultaneous Measurement of Strain and

Temperature Using a Single Emission Line
Daniel Leandro, Martin Ams, Manuel López-Amo, Senior Member, IEEE, Member, OSA, Tong Sun,

and Kenneth T. V. Grattan

Abstract—In this study, we present and demonstrate a novel
sensor system for simultaneous measurement of strain and tem-
perature through a unique combination of a long period grating
and a fiber laser based on a fiber Bragg grating. In order to achieve
this, a new erbium-doped fiber laser structure is created, showing
an optical signal-to-noise ratio of 55 dB and a peak power mea-
sured on the optical spectrum analyzer between −5 and 0 dBm.
The strain and the temperature information can be obtained by
using a unique emission line through monitoring both the fiber
laser wavelength shift and the change of the power level, both of
which showing a clear linear behavior.

Index Terms—Erbium lasers, fiber Bragg gratings (FPG), fiber
lasers, long period gratings (LPGs), LPG coupling.

I. INTRODUCTION

F
IBER Bragg gratings (FBGs) have played an important

role in communication systems, fiber lasers and optical

fiber sensing since the 1980s. They have been widely used as

optical fiber sensors due to their advantages demonstrated over

their electrical counterparts, such as immunity to electromag-

netic interference, compactness, multiplexing capability, resis-

tance to harsh environments and low cost. As a result, FBGs

have been widely used for structural health monitoring, oil pipe

leak detection and gas detection [1]. Some applications have

involved the use of FBGs to form laser-based sensor systems,

taking full advantage of the narrow spectra of FBGs which are

suitable for laser wavelength selection [2]. Compared to FBG-

based sensor systems, these fiber laser-based sensor systems

have shown many advantages including a higher resolution for

wavelength shift identification, higher optical signal-to-noise ra-

tio (OSNR) and enhanced capability for remote sensing. As an

example a fiber laser-based sensor can be used to monitor as far

as 200 km without any external amplification [3], in contrast, a

FBG-based sensor illuminated by a broadband light source can

only reach a maximum distance up to 25 km, limited by Raylegh

Scattering [4].
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Fig. 1. Schematic diagram of the experimental setup.

A common issue of using FBGs as sensing devices is

the cross-sensitivity between the measurands, i.e. strain and

temperature. A number of techniques have been reported in or-

der to overcome this limitation and thus to achieve simultaneous

measurement of strain and temperature. These systems include

those using photonic crystal fibers [5] and multimode fibers [6],

in combination with FBGs [7] or long period gratings (LPGs)

[8] among others. Most of these systems, however, have a low

resolution and are fragile showing some difficulty in splicing

or handling if a microstructured fiber is used. Other techniques

include the use of specifically designed FBGs [9], [10] or grat-

ings written into special fibers [11] or the combination of a

grating and some other physical property like the dependence

of the modes beating frequency on the laser cavity [12]. Few

papers have been published considering both the simultaneous

measurement and fiber lasers. These schemes have interesting

features, for example, a high signal-to-noise ratio would allow

the sensors to be interrogated over tens of kilometers [12], [13].

In this paper we present a new sensor system based on an er-

bium doped fiber (EDF) laser involving a FBG and coupled with

a LPG, for simultaneous measurement of strain and temperature.

Both parameters can be simultaneously measured, because they

induce both a fiber laser wavelength shift and a change of the

power level coupled out by the LPG. The utilization of a unique

emission line for measuring both parameters allows a more ef-

ficient use of the optical spectrum, which is an important factor

for sensor multiplexing using wavelength division multiplexer

(WDM) techniques [14].

II. PRINCIPLE OF OPERATION

The experimental setup is shown in Fig. 1. The laser gain

medium is a 0.7 m EDF Er110, provided by Liekki and pumped

by a 980 nm laser with a maximum output power of 500

mW. This fiber was chosen due to its flat gain profile around

1535–1540 nm and the high gain provided.

As shown in Fig. 1, a WDM couples the 980 nm pump-

light into the linear laser cavity, with a FBG being connected

to the other end of the EDF. The FBG also acts as a tempera-

ture/strain sensor in this work. The FBG studied is centered at



Fig. 2. Scheme of the experimental setup using a mirror instead of a circulator.

Fig. 3. Superimposed optical transmitted and reflected spectra of LPG and
FBG respectively.

1536–1537 nm with a reflectivity higher than 95% and the free

termination was immersed in a refractive-index-matching gel to

avoid undesired reflections. The reflected laser light travels back

through the WDM and a polarization controller (PC) to the LPG

where the signal is partially attenuated due to the mode coupling

between the fiber core and the cladding of the LPG. The PC is

included in the system to minimize the polarization dependence

of the LPG, which was induced by the UV exposure during the

fabrication process in a non-polarization-maintaining fiber [15].

This polarization dependence may be eliminated by writing the

grating on photosensitive PM-fiber.

Finally, as indicated in Fig. 1, a circulator is used to couple

the light into the cavity and to extract a 10% of the power

to be monitored by an optical spectrum analyzer (OSA). The

circulator shown in Fig. 1 can be replaced by a silver-coated

fiber optic mirror as illustrated in Fig. 2. Both options have been

analyzed in this work showing similar results. Therefore, the

first scheme was used to demonstrate the proof of concept.

The LPG used in the setup is centered at 1532 nm and both

the FBGs and the LPGs were fabricated at City University

London. The grating wavelengths were chosen in order to place

the spectral profile of the signal reflected by the FBG at the linear

slope of the LPG. In this way when the LPG shape shift occurs

due to a temperature/strain change the amplitude of the laser

varies linearly. Fig. 3 shows the superimposed optical spectra

of the LPG and FBG. As can be seen in the figure, the reflected

peak of the FBG is placed at the slope of the LPG.

In order to validate the sensing technique a series of experi-

ments has been undertaken. Even though the system is designed

to discriminate temperature from strain when both FBG and

LPG were subject to the same strain and temperature condi-

tions, there is, however, some difficulty in performing these

measurements thus in this work an indirect method is used

for verification of the sensing principle proposed. First of all,

the sensitivities of the wavelength and peak power of the laser

Fig 4. Relationship between temperature and transmitted power of the LPG
for different FBG wavelengths.

Fig. 5. Spectrum of the laser output signal on the OSA.

to strain and temperature were measured independently. After-

wards the proper behavior of the laser was verified when both

sensors are subjected to changes simultaneously. Finally the

equations to obtain ∆ε and ∆T from the wavelength and the

peak power of the emission line are described.

III. EXPERIMENTAL VERIFICATION

Before setting up the fiber laser, in order to obtain an optimal

wavelength value for the FBG, a study of the attenuation given

by the LPG at different FBG wavelengths was carried out as

a function of the temperature. To perform the study a LPG

centered at 1532 nm was heated in a climatic chamber from 30

to 100 °C. The attenuation given by the LPG was measured at

different wavelengths every 10 °C (see Fig. 4) This study shows

that a higher dynamic range and sensitivity can be achieved

by using a FBG with a central wavelength situated at around

1536 −1537 nm as indicated in Fig. 4. Thus these were the

wavelengths chosen for the FBGs fabricated for this work. In

addition to the sensitivity discussed, the sensing range has also

been considered by carefully locating the Bragg wavelength of

the FBG within the linear slope of the LPG thus to optimize

both the sensitivity and sensing range.

By using the set-up shown in Fig. 1, the laser output can be

measured on the OSA as shown in Fig. 5. The properties of the

EDFL were studied resulting in an OSNR that is higher than

55 dB and a peak power measured on the OSA between −5

and 0 dBm. This peak power coupled out of the LPG, however,



Fig. 6. Relationship between the fiber laser wavelength and temperature ap-
plied to the FBG (LPG was kept steady at room temperature).

Fig. 7. Relationship between the fiber laser wavelength and strain applied to
the FBG (LPG was kept steady at room temperature).

depends on the temperature and strain of the LPG although its

wavelength is still dependent both on the temperature and the

strain applied to the FBG.

Four tests were undertaken in order to obtain the wavelength

and the peak power response of the system to temperature and

strain variations applied to one sensor independently each time.

For the strain tests, the gratings were glued to a translation stage

which allowed the strain to be set with an error of ±6 µε. The

temperature tests were performed in a climatic chamber with a

resolution of ±0.1 °C.

The first two tests studied the dependence of the laser wave-

length as a function of the strain and temperature variation sur-

rounding the FBG. The FBG was heated in a climatic chamber

while the LPG was kept at room temperature. No strain was ap-

plied to any of them. The response is clearly linear with a typical

sensitivity kλT = 8.97 pm/°C with a square of the correlation

coefficient R2 = 0.997 (see Fig. 6). Similarly a strain sweep

was conducted to the FBG while the LPG remained steady. Both

of them were kept at room temperature. The strain sensitivity

from the FBG had a linear behavior with a sensitivity kλε =
0.824 pm/µε with a R2 = 0.999 (see Fig. 7).

In the same manner, two tests were carried out to study the

changes on the peak power of the laser caused by the variation

of temperature and strain applied on the LPG. In the first test

the LPG was heated in the climate chamber while the FBG

was kept at room temperature (both of them suffered no strain).

Again a linear behavior can be observed with a power sensitivity

Fig. 8. Relationship between the fiber laser peak power and temperature ap-
plied to the LPG (FBG was kept steady at room temperature).

Fig. 9. Relationship between the fiber laser peak power and strain applied to
the LPG (FBG was kept steady at room temperature).

kP T = 0.0112 mW/°C with a R2 = 0.998 (see Fig. 8). In the last

experiment the LPG was placed on the translation stage where

a strain sweep was performed. Meanwhile the FBG remained

steady and both of them were kept at room temperature. As

shown in Fig. 9 the sensitivity measured was kP ε = −3.09 ×
10−5 mW/µε, R2 = 0.994.

After the completion of the performance evaluation of indi-

vidual sensitivities, a study of the combined sensor response

to temperature/strain variations was carried out. It is important

to stress that the aim of this test was to assure the proper re-

sponse of the laser when both the laser wavelength and power

variation occurred due to changes in the two sensors simultane-

ously. Given the sensitivity of both FBG and LPG on strain and

temperature and for ease of the implementation, in this work

the power change induced by the LPG was controlled by the

temperature variation and the shift of the FBG was controlled

by strain variation. To achieve this, the LPG was heated in the

climatic chamber meanwhile the FBG was strained using the

translation stage.

In the first test 63 samples were taken for both temperature

and strain sensing using the LPG and the FBG respectively (see

Fig. 10). The temperature of the LPG was set between 25 and

85 °C with a step change of 10 °C (no strain was applied to the

LPG). For every temperature step a strain sweep was performed



Fig. 10. Power and wavelength variation of the output signal when different
temperature and strain was applied to the FBG and LPG respectively (no strain
or temperature changes applied to the LPG and FBG respectively).

to the FBG centered at λ = 1537.3 nm from 0 to 3200 µε with

a step change of 400 µε (FBG remained at room temperature).

As shown in Fig. 10, the wavelength and the power of the

output signal change linearly with the strain applied to the FBG.

Based on the experimental data obtained, the LPG sensitivity

for strain kλε is 0.824 pm/µε and for temperature kP T 0.011

mW/°C, as it was expected.

However, even though the power variations for a fixed wave-

length are linear, there is also an additional power growth

with the wavelength increase. As can be seen in the Figs. 10

and 11, as the wavelength of the laser increases because of a

strain change in the FBG at a constant LPG temperature, the

power of the emission line rises slightly too. This is due to the

fact that a positive displacement of the laser wavelength in the

linear slope of the LPG (because of a change in the FBG sen-

sor) increases the power in the same manner as if a negative

displacement of the LPG shape occurred due to a temperature

or strain variation at the LPG.

Consequently, when the wavelength varies, the power varies

as well apart from the variation related to the temperature

increase at the LPG. This increment must be quantified and

corrected in order to get a proper temperature reading from

the sensor. This linear dependence was measured as kc =
0.0369 mW/nm.

Because of this, as it is shown in Fig. 11(a) if the peak power

of the laser is represented for every strain (on the FBG) and

temperature (on the LPG) value, a shift can be seen in the

power measured for an identical temperature. However, after

subtracting the correcting factor, a unique fit line can be used

with a sensitivity of kP T = 0.011 mW/°C [see Fig. 11(b)].

At this point the sensitivities of the wavelength and the peak

power of the emission line due to temperature and to strain

variations can be measured. In addition, the linear behavior of

the wavelength and peak power of the laser when both vary

simultaneously has been observed as a function of physical

changes at the LPG and FBG. Finally, the relationship between

the sensitivities and the output signal has been studied when

both sensor are subjected to identical strain and temperature

values simultaneously.

Fig. 11. Output power variation for different temperature and strain applied
to the FBG and LPG respectively before (a) and after the correction (b).

The variation of the wavelength (∆λ) and the peak power

(∆P) coupled out of the LPG as a function of the variation of

the temperature (∆T) and strain (∆ε) measured can be written

as follows:

∆λ = ∆T · kλT + ∆ε · kλε (1)

∆P = ∆T · kP T + ∆ε · kP ε + kc · ∆λ (2)

where kλε and kλT are the laser wavelength sensitivities to strain

and temperature respectively. Similarly kP ε and kP T are the

laser peak power sensitivities to strain and to temperature. The

power increase due to the wavelength shift is given by the cor-

recting factor kc .

Equivalently, this relationship can be deducted from (1) and

(2) and represented using a matrix form:

(

∆λ

∆P − kc∆λ

)

=

(

kλT kλε

kP T kP ε

)

·

(

∆T

∆ε

)

= [K] ·

(

∆T

∆ε

)

.

(3)

Accordingly the temperature and the strain are given by

(

∆T

∆ε

)

=
1

|K|

(

kP ε −kλε

−kP T kλT

)

·

(

∆λ

∆P − kc∆λ

)

= . . .

=
1

kλT · kP ε − kλεkP T

(

kP ε + kλεkc −kλε

−kP T − kλT kc kλT

) (

∆λ

∆P

)

.

(4)



Fig 12. Power instability of the laser in 1 h.

Finally, using the previously measured sensitivities, temper-

ature and strain applied simultaneously to the sensors can be

deducted from the laser wavelength and peak power as follows:
(

∆T

∆ε

)

=

(

0.052 86.682

121.303 −943.617

) (

∆λ

∆P

)

(5)

where wavelength shift ∆λ is expressed in nanometers (nm),

the peak power variation ∆P is in miliwatts (mW), the strain

variation (∆ε) in microstrain (µε) and the temperature variation

(∆T) is expressed Celsius degrees (°C).

To ensure the accuracy and repeatability of the measurements,

it is important to assess the fiber laser power instability as the

LPG sensor information is encoded in the amplitude of the sig-

nal obtained. Therefore, an instability study was carried out

by measuring the output peak power once every minute until

1 h (see Fig. 12). This study shows that the peak power of the

laser had very good power stability with an average variation of

1.31 µW and a maximum variation of 3.17 µW in 1 h. Conse-

quently, the peak power instability of the laser is not a limiting

factor and the peak power of the laser can be used for sensing

applications.

The same experimental process has been repeated multiple

times and it is good to see that repeatable results have been

obtained, showing a good repeatability of the measurements.

In the final test, a FBG centered at 1536.2 nm was used to

replace the FBG at 1537.2 nm. The results agreed well with

those obtained in the first test, although the measurement range

and the constants used in the above equations were slightly

different.

It is worth mentioning that once this technique has been val-

idated, the results obtained can be easily adapted and improved

by means of changing the gratings specifications. Since the

sensing technique relies on the wavelength and the power of the

laser, there are some key parameters of the gratings that must

be taken into account for an appropriate design of the system.

One of these parameters is the bandwidth of the LPG that de-

termines the span of the linear slope in which the FBG must be

constantly placed in order to get a correct reading. Therefore,

the highest and the lowest possible wavelength of the emission

line must be placed at the right and at the left limit of the linear

slope of the LPG respectively in a worst case scenario. That is

the reason why the Bragg wavelength of the FBG is also a criti-

cal parameter. In the proposed experiment, the FBG centered at

1537 nm was proved to stay within the linear part of the LPG

shape from 0 µε and 25 °C (lowest emission wavelength, Fig. 3)

to 3200 µε and 90 °C (highest emission wavelength). Another

important parameter that is required to be considered for the

design of the laser is the attenuation of the rejected band of the

LPG. A higher attenuation implies an increase in the slope of

the linear part of the LPG shape; consequently it increases the

sensitivities related to the power kP ε and kP T .

As a result, different gratings must be employed depending

on the required accuracy and measuring range of temperature

and strain. In this study the right slope of the LPG rejected band

has been used to modulate the power of the laser but equally the

left slope, with a different sensitivity, can also be utilized.

IV. CONCLUSION

A new sensor system based on an EDF laser has been pre-

sented and demonstrated. The temperature and strain informa-

tion are included in the fiber laser wavelength and in the peak

power level using a unique emission line. The fiber laser has an

OSNR higher than 55 dB and a power instability of 3.17 µW

in 1 h. The temperature and strain applied to the FBG shifts

the wavelength of the laser with a sensitivity of 0.894 pm/µε

and 8.97 pm/°C respectively. On the other hand the peak power

of the laser increases linearly with the LPG temperature with a

sensitivity of 0.0112 mW/°C and also decreases linearly with

the strain applied with a sensitivity of −3.09 × 10−5 mW/µε.

Extensive tests have been undertaken in this work to verify the

sensing principle, underpinning the system operation by ap-

plying physical variations to both sensors simultaneously. The

power increase due to the wavelength shift has been also mea-

sured (kc = 0.0369 mW/nm) and taken into account in the mea-

surements. Finally equations have been derived for the effective

calculation of the strain and the temperature as a function of

the peak power and the wavelength of the emission line. The

main advantage of this technique is that just one emission line

is needed in order to monitor two parameters. This economic

bandwidth usage enables multiplexing of a larger number of

sensors within a certain optical bandwidth. Moreover, the high

OSNR obtained allows the system to be used for remote sensing

applications.
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