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Abstract

This paper proposes a new bivariate modeling approach for setting daily equity-trading risk

limits using high-frequency data. We construct one-day-ahead Value-at-Risk (VaR) forecasts by

taking into account the different dynamics of the overnight and daytime return processes and their

covariance. The covariance is motivated by market microstructure effects such as price staleness and

news spillover. Among the competitors we include a simpler bivariate model where the overnight

return is redefined by moving the open price further into the trading day, and a univariate model

based on the close-to-close return and an overnight-adjusted realized volatility. We illustrate the

different approaches using data on the S&P 500 and Russell 2000 indices. The evidence in favour

of modeling the covariance is more convincing for the latter index due to the lower trading volumes

and, relatedly, the less efficient price discovery at market open for small-cap stocks.
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1 INTRODUCTION

The world’s major stock exchanges are open for a limited number of hours each trading day. Hence,

although investors receive news on a continuous basis they are able to trade immediately for only a part

of the day in those exchanges. The overnight ‘surprise’ or close-to-open return reflects local market

news accumulated during non-trading hours, such as earnings announcements, and foreign news which

are immediately reflected in prices in stock exchanges from other time zones. The information flow

is greater during trading (daytime) hours than during non-trading (overnight) hours.1 However, both

the increasing globalization of securities markets and the proliferation of electronic trading systems are

likely to emphasize the importance of the overnight information flow, as events from around the globe

can trigger investor reactions in all markets.2 The events that occur during overnight non-trading

hours will typically be impounded into prices very rapidly as an exchange opens for a new trading day.

There is ample evidence that the return process exhibits different dynamics during non-trading

and trading hours (French and Roll, 1986; Lockwood and Lin, 1990; Hasbrouck, 1991; Masulis and

Ng, 1995; George and Hwang, 2001). The contrast has been acknowledged already in various theo-

retical models of security returns (Oldfield and Rogalski, 1980; Slezak, 1994; Hong and Wang, 2000).

Assuming an absence of (or thin) trading during the overnight period, a relevant question is how best

to exploit the observed close-to-open price variation for daily equity tail-risk forecasting.

Our main goal is to compare various methods for embedding overnight information into forecasts

of equity portfolio tail-risk behavior. Value-at-Risk (VaR) has become a standard risk management

tool for setting day-to-day loss limits of trading desks, and it is widely employed by commercial banks.

VaR is the αth quantile of a portfolio’s value change over a given day, expressed in probability terms

as the value V aRt,α for which P (rt ≤ V aRt,α|ℑt−1) = α, with rt the return on day t, and ℑt−1 the

conditioning information set at the time the forecast is made. Thus for nominal coverage α equal to

0.01 the VaR is, effectively, the lower end of a 99% confidence interval. Appropriate day-ahead VaR

forecasts can aid risk managers in ensuring that trading desks stay within predefined risk limits.

Many studies in the high-frequency equity volatility forecasting literature “bundle” the squared

overnight return and the daytime realized volatility into an overnight-adjusted realized volatility mea-

sure that is unconditionally unbiased for the 24-hour daily price variation. This adjustment has

been usually done either by upward-scaling the realized volatility, by summing together the squared

overnight return and the realized volatility, or by forming a weighted average of the squared overnight

return and the realized volatility. For instance, Hansen and Lunde (2005) suggest to optimally weight,

in a minimum mean-squared-error sense, the squared overnight return and the daytime realized vari-

1We use the terminology daytime, open-to-close, and trading period interchangeably to refer to the regular trading
hours in the U.S. market from 9:30am to 4:00pm EST. Likewise, we use the terminology overnight, close-to-open, and
non-trading period interchangeably to refer to the time interval from 4:00pm to 9:30am EST.

2In order to predict the opening price of an index in a home market, de Gooijer et al. (2012) exploit information
conveyed by high-frequency stock price patterns in foreign markets during non-trading hours in the home market.
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ance. We refine this approach by modeling the overnight and daytime processes separately.

This paper contributes to the parametric VaR modeling literature by proposing a novel bivariate

approach that not only models the dynamics of the overnight and daytime returns separately, but also

accommodates their covariance. Setting trading limits using VaR forecasts has become a routine task

for risk managers in banks and other financial institutions. Our approach is motivated by continuous-

time price theory where each 24-hour period is explicitly decomposed into an overnight and a daytime

segment. Bivariate VaR modeling has two theoretically appealing features. One is that it acknowledges

different return generating processes during trading and non-trading hours (and hence, different degrees

of predictability for the overnight and daytime variation), and another is that it accommodates the

potentially non-zero covariance between overnight and daytime returns. During the overnight segment,

equity markets are closed for trading, although news do not cease. Market microstructure effects such

as price staleness and news spillover can induce a non-zero ex-ante covariance between overnight and

daytime returns which may contain useful information for establishing 1-day-ahead equity VaR limits.

After the market officially opens, it takes some time before all stocks begin trading. Thus, the stock

index quotes available in the first k minutes of each trading day can contain numerous stale prices,

namely, individual transaction prices from the previous day.3 The fact that the first index quotes

are stale means that their values do not yet fully reflect all overnight news. Put another way, the

impounding of overnight information into the prices of all portfolio constituents can spill into the

trading day, inducing a non-zero ex-ante covariance between overnight and daytime returns.

We formulate and test two main hypotheses. Hypothesis I states that the overnight-daytime co-

variance component of a bivariate VaR model has merit for setting 1-day-ahead equity trading limits.

Hypothesis II states that modeling the overnight and daytime segments of the day separately pro-

duces VaR forecasts superior to the widespread univariate modeling of an overnight-adjusted realized

volatility measure. To the best of our knowledge, Hypothesis I is novel in the literature, and the

original aspect of Hypothesis II is its formulation in the context of VaR for setting day-ahead equity

trading limits.4 An important aspect of the paper is that the merit of the bivariate modeling approach

is assessed through the lens of equity portfolio risk management rather than statistical predictability.

Thus the paper not only contributes to academic research on tail risk prediction but also speaks to

the managers of VaR-based trading books at banks and other financial institutions.

The hypotheses are examined through the lens of two distinct VaR backtesting methods. One is the

unconditional Equal Predictive Ability test proposed by Giacomini and White (2006) which assesses

the significance of differences in out-of-sample forecasting performance. This test has several appealing

aspects: it naturally controls for parameter estimation uncertainty, it can be used to confront nested

3Stoll and Whaley (1990) document empirically that in the 1980s it took around 5 to 6 minutes for large stocks to
open for trading in the NYSE. With the advent of electronic trading, the average time for stocks to commence trading
in today’s markets is much shorter, but large cap stocks will typically begin trading faster than small cap stocks.

4Studies that model both the overnight and daytime processes include Taylor (2007) and Andersen et al. (2011).
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or non-nested models, and it can be deployed for any loss function. In our context, the test uses

the ‘tick’ loss function implicit in quantile regression theory, and provides a formal statistical answer

to the question of whether the expected forecast error losses associated with the proposed bivariate

VaR model are smaller than those from simpler VaR models. The second backtesting method is the

Correct Conditional Coverage test of Engle and Manganelli (2004), which we deploy in its original

version and as a probit-based test to address the distinct question of whether a VaR model is correctly

specified out-of-sample. The null hypothesis is that the actual losses in excess of the predicted VaR

are independently distributed and occur at a frequency equal to the nominal coverage rate.

The analysis is based on high-frequency data on the large-cap S&P 500 and the small-cap Russell

2000, over the 14-year period beginning in November 1997 and ending in September 2011. All the mod-

eling approaches under comparison condition the out-of-sample 1-day-ahead VaR forecasts on histories

of five-minute returns during the daytime period and the previous-close-to-open return to capture the

overnight non-trading period. Seeking to acknowledge time-variation in the degree of downside risk

predictability, the comparative evaluation of VaR forecast accuracy is conducted dynamically by de-

ploying the Equal Predictive Ability test and Correct Conditional Coverage tests sequentially over

rolling and non-overlapping windows of out-of-sample forecasts. An important landmark of the recent

financial crisis, the collapse of Lehman Brothers in September 2008, is chosen as the start of the VaR

evaluation period in order to make the forecasting task more challenging.

Our paper produces two main empirical findings which add to current knowledge on tail risk mod-

eling and have practical relevance for market practitioners in search of a good short-term equity VaR

forecasting approach. First, the evidence does not refute Hypothesis I, which suggests that modeling

the covariance between overnight and daytime returns can prove beneficial for setting accurate daily

equity trading risk limits. This finding stems from formal comparisons of the proposed bivariate VaR

model and simpler bivariate models that do not account for the overnight-daytime covariance. One

such model arises from moving the opening price k minutes further into the trading day (several k

values are considered) to avoid the strong impact of market microstructure inefficiencies such as price

staleness and news spillover at the beginning of the trading day. This modeling approach is empirically

motivated by various studies which acknowledge a slight delay in equity price discovery at the market

open (Chan et al., 1991; Stoll and Whaley, 1990; Hecq et al., 2012; Ahoniemi and Lanne, 2013).

Second, the evidence is also in favor of Hypothesis II, which conveys that the separate modeling of

overnight and daytime returns has economic value for setting 1-day-ahead equity trading limits relative

to the widespread univariate modeling approach. Indeed, it is shown that even simpler bivariate models

that neglect the covariance are able to produce superior VaR forecasts than univariate models fitted

to an overnight-adjusted realized volatility series. In this sense, our findings add a risk management

perspective to extant evidence on the merit of modeling separately the overnight and daytime returns.

The remainder of the paper is organized as follows. Section 2 introduces the proposed bivariate
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model alongside the competing models to obtain parametric location-scale VaR forecasts. Section 3

outlines the forecast evaluation tests. Section 4 discusses the empirical results. Section 5 concludes.

2 HIGH-FREQUENCY PARAMETRIC VALUE-AT-RISK

Risk managers face the task of setting risk limits for separate business lines or trading desks (e.g.,

equity, FX, fixed income) which amounts to predicting a specific quantile of the close-to-close return

distribution. The 1% VaR quantile of a portfolio is the maximum daily loss that is expected to be

exceeded only once every 100 days. VaR has a long history dating back to the 1990s when banks

started using it as a one-dimensional snapshot of downside risk and real-time risk monitoring tool.

The widespread use of VaR was formally acknowledged by the Basel Accord in 1996 when it introduced

a VaR-based capital requirement framework for positions held for trading intent (BCBS, 1996).

VaR measures can be non-parametric (e.g., historical simulation VaR), semi-parametric (e.g.,

CAViaR) or parametric (e.g., GARCH-based VaR) depending on the assumptions the risk manager is

prepared to make. Parametric VaR measures from location-scale models remain widely used; see, e.g.

Giot and Laurent (2004), Clements et al. (2008), Brownlees and Gallo (2010), and Fuertes and Olmo

(2012). In the parametric modeling strategy, under the assumption that the daily volatility process

is independent of the return innovation process εt, the quantile process for the 24-hour return rt is

obtained as a simple location-scale transformation of the quantile process of εt.

Next we discuss several modeling approaches within the parametric location-scale framework to

obtain 1-day-ahead VaR forecasts. The novel bivariate approach that we propose models separately the

daytime and overnight returns, and their ex-ante covariance. As reasonable competitors, we consider

two simpler bivariate modeling approaches that neglect the covariance, and a univariate modeling

approach that relies on the close-to-close return and an overnight-adjusted realized volatility measure.

2.1 Bivariate Modeling Approach

As in the continuous-time finance literature, the diffusion of the log price process is assumed to belong

to the class of semimartingales and formalized by the stochastic differential equation

dpt = µtdt+ σtdWt + κtdNt, 0 ≤ t ≤ T (1)

where µt denotes the instantaneous deterministic drift term, σt the instantaneous or spot volatility

process which is stationary and independent of the random Brownian motion Wt, and dNt a counting

process for the jumps of size κt such that dNt = 1 if a jump occurs at time t and dNt = 0 otherwise.

To establish notation, let Ot and Ct represent the official market opening and closing times of day

t, respectively. Thus, the time period from Ct−1 to Ct represents the entire 24-hour day t, comprising
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an overnight period during which the market is closed from Ct−1 to Ot, and an official trading period

from Ot to Ct referred to as daytime. Likewise, the 24-hour period from Ct to Ct+1 is called day t+1

and so forth. The daily return is rt ≡ pCt
− pCt−1

where prices are measured in logarithms. From the

above equation, it follows that the quadratic variation of the daily return process is given by

QVt ≡ V (rt) = IVt + Jt =

∫ Ct

Ct−1

σ2
sds+

nt∑

Ct−1<j≤Ct

κ2t,j (2)

where the integrated variance (IVt) and the jump component (Jt) represent the contribution of the

continuous-time and discrete processes, respectively; nt is the random number of jumps on day t.

This model can be extended to accommodate the different dynamics of the overnight and daytime

components of the continuous-time log price process. The original aspect of the proposed modeling

approach for VaR is to accommodate co-variation between the log-price differentials corresponding to

the overnight and daytime periods. This is done by assuming the following model for dpt for 0 ≤ t ≤ T ,

dpt =

{
µo,tdt+ σo,tdWo,t + κo,tdNo,t, if Ct−1 < t ≤ Ot,

µd,tdt+ σd,tdWd,t + κd,tdNd,t + ρtdWo,t−s̄, if Ot < t ≤ Ct,
(3)

where the subscripts o and d denote overnight and daytime, respectively; t− s̄ for t = Ot represents the

first point in the overnight period from when any news arriving will spill over into the daytime period;

and the term ρtdWo,t−s̄, with ρt an instantaneous covariance term, represents the spillover effect from

the overnight news onto the daytime prices. This effect vanishes after t = Ot + s̄ by construction, and

it could vanish earlier if ρt is equal to zero within the interval (Ot, Ot+ s̄]. Hence, the random process

ρtdWo,t−s̄ captures dependence between the overnight and daytime returns. It is important to note

that the processes dWo,t in the overnight period and dWo,t−s̄ in the daytime period reflect the same

random events implying that E[dWo,sdWo,t−s̄] = ds, with Ct−1 < s ≤ Ot and Ot < t ≤ Ct.

It follows from equation (3) that the daily return can be expressed as rt = ro,t + rd,t where

ro,t ≡ pOt
− pCt−1

and rd,t ≡ pCt
− pOt

are, respectively, the overnight and daytime return processes

ro,t =

∫ Ot

Ct−1

µo,sds+

∫ Ot

Ct−1

σo,sdWo,s +

∫ Ot

Ct−1

κo,sdNo,s, (4a)

and

rd,t =

∫ Ct

Ot

µd,s∗ds
∗ +

∫ Ct

Ot

σd,s∗dWd,s∗ +

∫ Ct

Ot

κd,s∗dNd,s∗ +

∫ Ot+s̄

Ot

ρs∗dWo,s∗−s̄. (4b)

For notational simplicity, we define µo,t ≡
∫ Ot

Ct−1
µo,sds as the integrated deterministic drift driving the

overnight return, and εo,t ≡
∫ Ot

Ct−1
σo,sdWo,s+

∫ Ot

Ct−1
κo,sdNo,s as its random component; similarly, for the

daytime return, µd,t ≡
∫ Ct

Ot
µd,s∗ds

∗ and εd,t ≡
∫ Ct

Ot
σd,s∗dWd,s∗ +

∫ Ct

Ot
κd,s∗dNd,s∗ +

∫ Ot+s̄

Ot
ρs∗dWo,s∗−s̄.

6



The latent quadratic variation of rt can thus be expressed as

QVt = QVo,t +QVd,t + 2Cov(ro,t, rd,t) (5)

where QVo,t = IVo,t+Jo,t with IVo,t ≡
∫ Ot

Ct−1
σ2
o,sds and Jo,t ≡

∑no,t

Ct−1<j≤Ot
κ2o,j ; no,t denotes the number

of jumps occurring overnight. Similarly, QVd,t = IVd,t + Jd,t with IVd,t ≡
∫ Ct

Ot
σ2
d,s∗ds

∗ +
∫ Ot+s̄

Ot
ρ2s∗ds

∗

and Jd,t ≡
∑nd,t

Ot<j≤Ct
κ2d,j ; nd,t denotes the number of daytime jumps. It follows that

Cov(ro,t, rd,t) ≡
∫ Ot

Ot−s̄

ρs+s̄ds.

This decomposition of the daily variance is obtained by applying the properties of Brownian motions,

E[dWo,sdWd,s∗ ] = 0 and E[dWo,sdWo,s∗ ] = 0 with s < s∗, and the property of independence between

Brownian motions and jump processes, E[dWo,sdNi,s∗ ] = 0 and E[dWd,sdNi,s∗ ] = 0 with i = o, d.

2.1.1 Bivariate Daily Return Level and Volatility Forecasts

In order to formalize the bivariate modeling approach for VaR prediction, let the conditional mean

and variance of the daily return process, rt, be written as

µt|t−1 = µo,t|t−1 + µd,t|t−1, (6)

and

QVt|t−1 = QVo,t|t−1 +QVd,t|t−1 + 2Cov(ro,t, rd,t| ℑt−1), (7)

respectively, where ℑt−1 is the sigma-algebra generated by the information available to the forecaster

at time t−1; the individual components are defined as µo,t|t−1 ≡ E[ro,t| ℑt−1], µd,t|t−1 ≡ E[rd,t| ℑt−1],

QVo,t|t−1 ≡ V (ro,t| ℑt−1) and QVd,t|t−1 ≡ V (rd,t| ℑt−1). Equation (7) is the forecasting counterpart of

the daily quadratic variation decomposition formalized in equation (5).

We model both overnight and daytime returns as location-scale processes. Forecasts of the overnight

return and its variance are obtained, respectively, from the following AR and GARCH equations

ro,t = a0 + a1rd,t−1 + b1ro,t−1 + εo,t (8a)

ho,t = α0 + α1ε
2
o,t−1 + β1ho,t−1 + γ1ε

2
t−1 + γ2I

−
t−1

ε2t−1 (8b)

where εo,t ≡
√
ho,t · ǫo,t, and ǫo,t are i.i.d. standardized skewed Student-t(0, 1, ξo, ηo) innovations.

The parameters ξ0 and ηo capture, respectively, asymmetry and fat-tailedness in the overnight return

distribution. Equation (8a) is an AR(1) parameterization for ro,t augmented with the lagged daytime

return. Equation (8b) is a threshold GARCH specification where εt are innovations in a standard
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AR(1) model for the daily return rt, and I−t = 1 if εt < 0 and I−t = 0 otherwise; γ2 > 0 implies that

bad news increase future volatility more than good news (leverage effect). The parameters of this

overnight price variation model can be obtained by Quasi Maximum Likelihood (QML).

Forecasts of the daytime return and variance are obtained from the AR-ARIMA model

rd,t = ã0 + ã1rd,t−1 + b̃1ro,t−1 +
√
σd2 ·RVt · ǫd,t (9a)

(1− L)d(lnRV t − τ0 − τ1rt−1 − τ2I
−
t−1

rt−1) = (1 + θL)ut (9b)

where ǫd,t is an i.i.d. standardized skewed Student-t(0, 1, ξd, ηd) innovation, and σd
2 is a scaling

parameter. This location-scale formulation treats the daytime volatility as observable ex-post by

constructing (from high frequency open-to-close data) the daytime realized variance measure

RVt =
M∑

j=1

r2j,t, (10)

where M is the number of equal-length intraday intervals, and rt,j ≡ pt,j − pt,j−1 is the jth intraday

return on day t; a large literature has established that realized volatilities exhibit long-range depen-

dence and log-normality. Equation (9a) is an AR(1) parameterization for rd,t augmented with lagged

overnight returns. Equation (9b) is an ARFIMA(0, d, 1) parameterization for the realized variance

where ut are i.i.d.(0, σ2
u) innovations, and the leverage indicator is defined as I−t = 1 if rt < 0 and

I−t = 0 otherwise; τ2 < 0 implies that bad news increase the future daytime volatility more than good

news. The parameters can be consistently estimated following Giot and Laurent’s (2004) two-step

approach. First, the ARFIMA equation is estimated by Maximum Likelihood (ML) under a normality

assumption for ut. Second, the parameter vector (ão, ã1, b̃1, σd
2, ξd, ηd) of the AR equation is estimated

by QML assuming that all the dynamics in the conditional variance is of ARFIMA type.5

Finally, we adopt the Dynamic Conditional Correlation modeling framework introduced by Engle

(2002; DCC) to accommodate time-varying dependence between ro,t and rd,t which is formalized as6

qo,d,t = ρo,d(1− α− β) + αǫo,t−1ǫd,t−1 + βqo,d,t−1, (11)

where ǫo,t and ǫd,t denote overnight and daytime standardized innovations, respectively, associated to

the AR-GARCH and AR-ARFIMA models outlined above; ρo,d ≡ E[ǫo,t · ǫd,t] denotes unconditional

5Explicit long-memory modeling of log realized volatilities via ARFIMA specifications is a well-established approach
dating back at least to Andersen et al. (2001, 2003). Alternative easier-to-handle approximations to long memory have
been put forward in the recent literature. Examples include the heterogeneous autoregressive (HAR) model of Corsi
(2009) and the multiplicative error model (MEM) of Brownlees and Gallo (2010).

6Engle (2002) proposes a DCC framework based on individual GARCH processes, but notes that nothing would
change if this was generalized. Given the data available over each of the two daily segments, the overnight variance is
latent and modeled as GARCH, and the daytime ex-post observed (realized) variance is modeled as ARFIMA.
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correlation. The conditional covariance of interest is Cov(ro,t, rd,t| ℑt−1) ≡ qo,d,t
√

ho,t ×RVt|t−1 where

ho,t and RVt|t−1 are the conditional variances derived from equations (8b) and (9b), respectively.

2.1.2 Bivariate VaR Forecasts

Let Ft(·) be the conditional distribution of the daily return process rt given ℑt−1. The goal is to

forecast the α-quantile of Ft(·) defined as V aRt,α ≡ F−1
t (α) with P (rt ≤ V aRt,α|ℑt−1) = α.7 The

bivariate approach facilitates the VaR forecast at nominal coverage level α

V aRt,α = µt|t−1 +
√

QVt|t−1F
−1
ǫ (α) (12)

where µt|t−1 and QVt|t−1 are obtained from (6) and (7) by exploiting the daily return decomposition

rt = ro,t + rd,t, and F−1
ǫ (α) is the α-quantile of the skewed Student-t daily standardized innovation

ǫt(= ǫo,t + ǫd,t) which is estimated sequentially over rolling windows.

2.2 Univariate ‘Bundling’ Modeling Approach

When applied to individual stocks or equity cash indices that are only traded for part of the day,

the realized variance estimator RVt is based on prices observed from market open (Ot) to close (Ct).

Hence, it can underestimate the true notional daily quadratic variation QVt. To mitigate this problem,

numerous volatility forecasting studies resort to ‘bundling’ the squared overnight return and daytime

RVt into an overnight-adjusted realized volatility measure that spans a full 24-hour period.

Hansen and Lunde (2005) propose the overnight-adjusted realized estimator variance

RV HL
t ≡ ω∗

1r
2
o,t + ω∗

2RV t, (13)

where ω∗
1 and ω∗

2 are weights that minimize the variance of RV HL
t subject to ω1µ1 + ω2µ2 = µ0 with

µ1 ≡ E[r2o,t], µ2 ≡ E[RV t] and µ0 ≡ E[QVt], t = 1, ..., T . For applications, see Martin et al. (2009),

Fleming and Kirby (2011), Fuertes and Olmo (2012), and Ahoniemi and Lanne (2013) inter alia.

Other studies employ more ad hoc overnight adjustments aimed towards scaling the RVt measure

upwards so that it spans a 24-hour period; for instance, the estimator RV SC
t ≡

∑T
t=1

r2
d,t

+
∑T

t=1
r2o,t

∑T
t=1

r2
d,t

RVt

is employed by Koopman et al. (2005) and Angelidis and Degiannakis (2008) inter alia. Another ad

hoc overnight adjustment treats the 17.5-hour overnight return (from 4:00pm to 9:30am) in the same

way as each of the 5-minute intraday returns, RV +ON
t ≡ r2o,t + r21,t + r22,t + ... + r2M,t = r2o,t + RV t,

which amounts to using the naive weights (ω1, ω2) = (1, 1) in equation (13) above; for applications,

see Blair et al. (2001), Giot and Laurent (2004), and Bollerslev et al. (2009) inter alia.

7Our interest is in long trading positions. For short trading positions one would analyze instead the right tail, i.e.
F−1
t (1− α). Commercial banks are required to report VaR at confidence level 99% to regulators but most banks adopt

the 95% level for internal backtesting. We consider both levels using α = {0.01, 0.05}.
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Ahoniemi and Lanne (2013) confront the above three overnight-adjusted realized variance estima-

tors. By proxying the true daily volatility of the S&P 500 index with the daily squared return, they

show that RV HL
t stands out as the most accurate estimator in a purely statistical sense.

2.2.1 Univariate Daily Return Level and Volatility Forecasts

We parameterize the long memory behaviour of RV HL
t with an ARFIMA(0, d, 1) equation. An AR(1)

equation is fitted to a time-series of daily (close-to-close) returns under the assumption that all the

dynamics in their conditional variance is ARFIMA type. This AR-ARFIMA model can be written as

rt = c0 + c1rt−1 +
√
σ2 ·RV HL

t · ǫt (14a)

and

(1− L)d(lnRV HL
t − τ0 − τ1rt−1 − τ2I

−
t−1

rt−1) = (1 + θL)ut, (14b)

where ǫt is an i.i.d. standardized skewed Student-t(0, 1, ξ, η) innovation. This approach is relatively

parsimonious but restrictive in that it does not acknowledge the different predictability of the overnight

and daytime return processes, and therefore also precludes modeling their covariance.

2.2.2 Univariate Bundling-based VaR Forecasts

The forecasts obtained from the ‘bundling’ univariate approach serve as building blocks to construct

1-step-ahead VaR predictions for the daily return process as follows

V aRbundle
t|t−1,α = µ̃t|t−1 +

√
Q̃V t|t−1F

−1
ǫ (α) (15)

where µ̃t|t−1 is the conditional mean forecast of the close-to-close return, obtained from the AR equa-

tion (14a) and Q̃V t|t−1 is the close-to-close variance forecast from the ARFIMA equation (14b).

2.3 Alternative Bivariate (Without Covariance) Approaches

As noted earlier, one goal of this paper is to assess the validity of Hypothesis I, which maintains

that modeling the covariance between overnight returns and daytime returns can be beneficial for

setting equity-trading risk limits. This assessment cannot be carried out by comparing the bivariate

and bundling approaches (outlined in Sections 2.1 and 2.2, respectively) since it would then not be

possible to ascertain whether any improvements in VaR forecast accuracy afforded by the proposed

bivariate approach stem from the separate modeling of overnight and daytime returns or from modeling

the covariance. To disentangle these effects, we deploy two simpler bivariate modeling approaches.

Firstly, the ‘bivariate without (w/o) covariance’ modeling approach constructs the VaR predictions
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via equation (12), as before, with the only difference that the daily variance forecastQVt|t−1, is obtained

from a more restrictive version of equation (7) that excludes the conditional covariance component,

i.e. Cov(ro,t, rd,t| ℑt−1) ≡ 0. The second bivariate approach (also without covariance) redefines the

overnight and daytime segments by moving the open price k minutes further into the trading day. The

aim is to mitigate market microstructure effects at the market open such as (overnight) news spillover

and price staleness. VaR forecasts from this ‘bivariate kmin further’ approach are constructed with the

individual components of (12) obtained from the AR-GARCH equations (8a)-(8b) and AR-ARFIMA

equations (9a)-(9b) fitted to the redefined overnight and daytime returns, respectively.

3 VALUE-AT-RISK FORECAST EVALUATION

3.1 Predictive Ability Tests

Competing VaR models can be compared through Equal Predictive Ability (EPA) tests given that

VaR measurement is an out-of-sample forecasting exercise. The main idea is to evaluate a predictive

loss function for each of two competing models and gauge the significance of the difference. This

literature was initiated by Diebold and Mariano (1995) and West and McCracken (1998) inter alia,

and extended to a conditional framework by Giacomini and White (2006).

Let the in-sample (estimation) and out-of-sample (evaluation) periods comprise P and n days,

respectively, with P + n = T . The forecasting object, V aRt,α, is the α-quantile of the conditional

distribution of the daily return, rt. A natural evaluation tool is the piecewise-linear ‘check’ loss function

Lt(et(θ̂P,t−1)) = (α− 1(et(θ̂P,t−1) < 0))et(θ̂P,t−1) (16)

where et(θ̂P,t−1) ≡ rt − V aRt,α(θ̂P,t−1) is the forecasting error, and θ̂P,t−1 is a rolling estimator of the

vector θ0 that collects the parameters of the conditional mean and variance equations (including the

parameters that define the innovation distribution) used to compute the VaR forecasts.

We utilize the unconditional EPA test developed by Giacomini and White (2006) which extends

the original Diebold and Mariano (1995) test by controlling for parameter uncertainty. This is ac-

complished by letting n go to infinity while P remains finite; thus, recursive forecasting is precluded.

Following Giacomini and White (2006), we employ a rolling forecasting scheme which has the addi-

tional advantage of providing some shield against instability in the data generating process. It follows

that, since the EPA test considers the effect of estimation method and in-sample size, it serves to

assess the relative performance of VaR forecasting methods, not just VaR forecasting models.

In the present context, the null hypothesis of the unconditional EPA test can be expressed as

H0 : E[Lt(e
biv
t (θ̂P,t−1))− Lt(e

M
t (θ̂P,t−1))] = 0 a.s. for t = P + 1, . . . , T (17)
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where ebivt and eMt are the errors associated with the V aRbiv and V aRM forecasts, respectively; biv

denotes the proposed bivariate (with covariance) model and M is any of the alternative models. This

null hypothesis can be expressed more compactly as H0 : E[∆Lt] = 0 with ∆Lt ≡ Lt(e
biv
t (θ̂P,t−1)) −

Lt(e
M
t (θ̂P,t−1)). The test is based on an out-of-sample t-statistic computed as

√
n times the ratio of

the sample mean of ∆Lt to its sample standard deviation using the Newey-West variance estimator

to account for autocorrelation. Under H0 the asymptotic distribution of the test statistic is N(0, 1).

We focus on the one-sided test version, H0 : E[∆Lt] ≤ 0 against HA : E[∆Lt] > 0. EPA test rejection

implies that on average over the out-of-sample period (n days) the loss associated with V aRbiv exceeds

that of V aRM and hence, the alternative model M at hand has superior predictive ability.

3.2 Correct Conditional Coverage Tests

We deploy two backtesting approaches to assess whether the following criterion of correct specification

of an αth VaR model for daily portfolio returns rt is satisfied out-of-sample

P (rt ≤ V aRt,α(θ0) | ℑt−1) = α, almost surely (a.s.), α ∈ (0, 1), ∀t ∈ Z. (18)

This criterion, often referred to as Correct Conditional Coverage, is central to many theoretical

discussions on VaR modeling; see e.g., Christoffersen et al. (2001), Engle and Manganelli (2004),

and Fuertes and Olmo (2012). Let the out-of-sample demeaned hits or violations be denoted by

Hitt,α(θ0) ≡ 1(rt ≤ V aRt,α(θ0)) − α. If criterion (18) is met, then the expected value of Hitt,α(θ0)

conditional on the information set ℑt−1 is α which, in turn, implies that Hitt,α(θ0) is independent of

any function of the variables in ℑt−1. Intuitively, the VaR violations should be unpredictable; if future

violations can be predicted then there is useful information that has not been incorporated in ℑt−1.

Our first backtesting approach is the dynamic quantile (DQ) test of Engle and Manganelli (2004).

It can be cast as a test for overall statistical significance of the linear probability regression

Hitt,α(θ̂P,t−1) = xt−1(θ̂P,t−1)γ + vt, t = P + 1, . . . , T, (19)

where γ is a k × 1 parameter vector and vt a zero-mean iid error sequence. The Correct Conditional

Coverage hypothesis, H0 : E[Hitt,α(θ̂P,t−1) | xt−1(θ̂P,t−1)] = 0 where xt−1(θ̂P,t−1) is a vector of k

regressors including a constant, can be stated as H0 : γ0 = γ1 = ... = γk−1 = 0. The Wald test

statistic suggested by Engle and Manganelli (2004) can be expressed as

DQ = n
γ̂′n[Mn(θ̂P )]γ̂n

α(1− α)
(20)

where Mn(θ̂P ) = 1

n

T∑
t=P+1

x′t−1(θ̂P,t−1)xt−1(θ̂P,t−1) is a k × k matrix; and γ̂n is the consistent and
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asymptotically normal OLS estimator of γ. Under H0, it can be shown that DQ
d→ χ2

k as n → ∞.

The binary nature of the hits implies heteroskedasticity in regression (19) by construction. Non-

linear probit or logit regressions have been employed recently as refinements of the original DQ test

since the asymptotic ML standard error formulae takes the heteroskedasticity into account naturally,

and the fitted values (probabilities) are bounded between 0 and 1; see e.g., Berkowitz et al. (2011)

and Dumitrescu et al. (2012). In our analysis, we adopt the dynamic binary (DB) probit regression

E[1(rt ≤ V aRt,α(θ̂P,t−1)) | xt−1(θ̂P,t−1)] = Φ(xt−1(θ̂P,t−1)β), t = P + 1, . . . , T (21)

where Φ(·) is the cumulative standard Normal distribution, and β ≡ (β0, β1, ..., βk−1)
′ the parameter

vector. In this probit setting, the Correct Conditional Coverage criterion (18) amounts to

E[1(rt ≤ V aRt,α(θ̂P,t−1)) | xt−1(θ̂P,t−1)] = Φ(β0) = α (22)

or equivalently H̃0 : β0 = Φ−1(α), β1 = ... = βk−1 = 0, and assessed via the likelihood ratio statistic

DB = 2(L − L0) (23)

with L =
T∑

t=P+1

[Hitt,α(θ̂P,t−1)ln Φ(xt−1(θ̂P,t−1)β̂n)+(1−Hitt,α(θ̂P,t−1))ln (1−Φ(xt−1(θ̂P,t−1)β̂n))] the

log-likelihood of model (21), and β̂n is the consistent and asymptotically normal ML estimator of β.

Under the null hypothesis it follows that L0 =
T∑

t=P+1

[Hitt,α(θ̂P,t−1)ln α+(1−Hitt,α(θ̂P,t−1))ln (1−α)],

and it follows that DB
d→ χ2

k as n → ∞. Dumitrescu et al. (2012) show that the probit-based test has

less size distortions and better power properties than the original DQ test for small samples.

We follow Engle and Manganelli (2004) and Dumitrescu et al. (2012) in adopting the regressor set

xt−1(θ̂P,t−1) = (1, rt−1, r
2
t−1, V aRt−1,α(θ̂P,t−1), Hitt−1,α(θ̂P,t−1)),

as ℑt−1 which allows the hit on day t to depend on the previous return, volatility, VaR and hit.

4 EMPIRICAL RESULTS

4.1 Data and Descriptive Statistics

Two stock market indices are chosen as well-diversified portfolios for our VaR forecasting analysis.

One is the S&P 500 index, which is by far the most common benchmark for exchange traded, mutual,

and pension funds that identify themselves as large cap. The other index is Russell 2000, a typical

small-cap benchmark. The high-frequency prices are from Disk Trading at sampling frequency of 5
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minutes from 9:30-16:00 Eastern Standard Time (EST) which amounts to M = 78 intraday intervals.8

The closing price, pCt
≡ pt,M , is the last price observed before 16:00. The jth intraday price, pt,j with

j = 1, ...,M − 1, is the last seen tick before the jth 5-minute mark. The opening price, pOt
≡ pt,1, is

the first index quote published after 9:30 when trading officially begins. The indices are observed over

the 14 years from November 12, 1997 to September 30, 2011 (T = 3491 trading days).

In order to make the VaR forecasting task more challenging, the out-of-sample period begins on

September 2, 2008 (n = 778 days), an important landmark of the late 2000s global financial crisis

due to the market turbulence resulting from the Lehman Brothers bankruptcy and other events.9

Figure 1 plots the time-series of squared overnight returns and realized variances, and a histogram

(alongside the theoretical Normal density) of the logarithmic realized variances. Table 1 provides

summary statistics for overnight and daytime returns over pre-Lehman and post-Lehman periods.

[Insert Figure 1 and Table 1 around here]

The standard deviation of daytime returns (rd,t) is substantially higher than that of overnight

returns (ro,t), a finding well aligned with the wisdom that there is greater information flow during

regular trading hours; both volatility measures increase dramatically post-Lehman. The relatively mild

(negative) skewness and kurtosis of daytime (versus overnight) returns observed in the pre-Lehman

period become notably more exacerbated post-Lehman. Overnight and daytime returns pertaining to

the same day (ro,t, rd,t) are significantly positively correlated over the two sample periods; however,

the correlation increases substantially post-Lehman. The overnight and daytime squared returns, as

crude ex-post volatility proxies over the two segments of the day are summarized in Panel B of Table 1.

To make the comparison more informative, we report the hourly volatility given by the mean squared

return scaled by the total hours spanned by each segment of the day, 17.5 hours (overnight) or 6.5

hours (daytime). Higher daytime return volatility is thus confirmed.10 The autocorrelation function

of squared returns shows a slower decay (i.e., more persistence) at daytime than overnight. In sum,

there are important contrasts between the overnight and daytime return generating processes.

High positive skewness and kurtosis of RV in Panel C of Table 1 corroborate that investors face non-

normally distributed risks. The coefficient of variation is larger in the out-of-sample (post-Lehman)

period indicating a decrease in the signal-to-noise ratio during the late 2000s financial crisis. The

logarithmic RV time series for both S&P 500 and Russell 2000 are approximately Gaussian, both pre-

8http://disktrading.is99.com. For highly liquid assets, the 5-minute frequency is short enough for the daily volatility
dynamics to be picked up with reasonable accuracy (small estimation error) and long enough for the adverse effects of
market microstructure noise (e.g., bid-ask bounce, discrete price observations, irregular trading) not to be excessive.

9Fannie Mae and Freddie Mac, two U.S. government sponsored enterprises, owned or guaranteed nearly $5 trillion in
mortgage obligations at the time they were placed into conservatorship by the U.S. government on September 7, 2008.

10Although unreported to preserve space, we also confirm that the overnight volatility (proxied by the squared overnight
return) increases when the overnight segment is lengthened by waiting k mins after the market officially opens at 9:30
EST, for k = {5, 15, 30}. Likewise, the daytime volatility (proxied by either the mean squared open-to-close return or
the mean realized variance) decreases when the daytime segment excludes the first k mins after the market opens.
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and post-Lehman, as suggested by (unreported) skewness coefficients ranging from 0.17 to 0.50, and

kurtosis coefficients ranging from 3.29 to 3.72.

Over the 14-year sample period, the amount of daily volatility ascribed to the non-trading hours

according to the ratio r2o,t/(r
2
o,t +RVt) is 5.95% for Russell 2000 and 2.83% for S&P 500. For Russell

2000, the ratio more than doubles from 4.70% in the pre-Lehman period (2713 days) to 10.28% in the

post-Lehman period (778 days); the increase is milder for S&P 500 from 2.77% to 3.02%.

4.2 VaR Predictions Combining Overnight and Intraday Information

We first proceed with the rolling forecasting exercise which involves n(=778) out-of-sample 1-day-

ahead VaR predictions from each of the modeling approaches described in Section 2. The estimation

window length is P = T − n = 2713 days. The first forecast is based on the model parameter vector

estimated with data from day 1 to P , denoted θ̂P , the second forecast is based on θ̂P+1 from days 2

through P + 1, and so forth. The construction of the ‘bundled’ overnight-adjusted measure RV HL

requires weights which are estimated in a way that avoids look-ahead bias and preserves the out-of-

sample nature of the exercise; the weights to obtain {RV HL
t }Pt=1 are based on information up to day

P , those to obtain {RV HL
t }t=P+1

t=2
exploit information from day 2 through day P + 1, and so forth.11

Then we proceed with the formal evaluation of VaR models through the backtesting methods

described in Section 3 which are deployed sequentially over windows of ñ < n = 778 forecasts (as

opposed to backtesting all n forecasts at once). This dynamic evaluation approach allows us to gauge

the extent to which changes in market conditions influence VaR performance. We employ J = 279

overlapping windows with ñ = 500 forecasts in each; the first window begins on September 2, 2008.

In addition, we conduct the tests over J = 10 non-overlapping windows which implies a much smaller

number of forecasts, ñ = 78, in each. Hence, there is a trade-off between the (non)overlapping aspect

of the evaluation windows and the (small) large number of VaR forecasts available in each window.

Table 2 summarizes the unconditional EPA test that assesses the accuracy of VaR forecasts from

the bivariate model vis-à-vis each of three competitors – the nested ‘bivariate w/o covariance’ model,

the ‘bivariate 15min further’ model, and the ‘bundling’ RV HL model.12 The null hypothesis of the

EPA test is that the forecasts from the proposed bivariate (with covariance) model are at least as good

as those from the competitor at hand. Rejection rates are computed as
∑J

j=1
wj1(pj < 0.05) where

pj is the test p-value associated with the jth window, j = 1, ..., J , and wj ≡ 1/J . Panel A and Panel

B pertain to the rolling and non-overlapping evaluation exercises, respectively.

[Insert Table 2 around here]

11The estimation and forecasting are carried out in Oxmetrics 6 using the G@RCH 6.1 and ARFIMA 1.04 packages.
12The results for k = {5, 30} are qualitatively similar to those for k = 15 and hence, we do not report them to preserve

space. We also deployed the ‘bundling’ univariate model using RV +ON
t and RV SC

t but the resulting VaR measures had
inferior predictive ability to those from RV HL

t . This is in line with the statistical ranking of the three overnight-adjusted
measures provided in Ahoniemi and Lanne (2013). Detailed results are available from the authors.

15



The rejection rates of the EPA test for Russell 2000 are 0% for all competitors except the ‘bivariate

w/o covariance’ model for which they reach 11%. Thus the proposed bivariate model yields significantly

more accurate VaR forecasts than any of the competing models for the small-cap portfolio. The

evidence for the S&P 500 portfolio also favors the proposed bivariate model although the ‘bivariate

15min further’ model now emerges as the strongest competitor; the rejection rate of the EPA test in

favor of the latter model reaches 24.7% over rolling windows and 30% over non-overlapping windows.

Panels A2-A3 and B2-B3 of Table 2 suggest that only over the first 10% of the J out-of-sample

windows denoted 1/10J (the first window begins on September 2008 when Lehman Brothers filed for

bankruptcy) the ‘bivariate 15min further’ model dominates the proposed bivariate model; over the

subsequent 90% of windows the proposed bivariate model strongly outperforms all the competitors.

To sum up, the rejection rates of the EPA test reported in Table 2 represent very little evidence

against Hypothesis I, which leads us to conclude that there is considerable merit in modeling the

covariance between overnight and daytime returns. Also, we observe that the VaR forecasts from the

proposed bivariate model are clearly superior to those from the ‘bundled’ model. This evidence cannot

refute Hypothesis II, and so we conclude that risk managers can benefit from modeling the overnight

and daytime volatilities separately. This is confirmed by unreported EPA tests to assess the null that

the bivariate w/o covariance model has superior predictive ability over the bundling model, which

produce 0% rejection rates across both rolling and non-overlapping evaluation schemes. This is an

important finding given the popularity of overnight-adjusted (bundled) estimators in the literature.

The inferior performance of this coarse approach for tail risk forecasting can be ascribed to the fact

that it assumes that the overnight and daytime returns are generated by the same process.

We now turn to the Correct Conditional Coverage tests, namely, the DQ test based on the linear

probability regression and the counterpart test based on the nonlinear probit regression. Table 3

reports the VaR backtesting rejection rates (over J sequential windows) obtained as
∑J

j=1
wj1(pj <

0.05) where pj is the estimated p-value of the corresponding test over the jth window and wj ≡ 1/J .

[Insert Table 3 around here]

As shown in Panel A1 of the table, for the Russell 2000 portfolio the proposed bivariate model

always produces the lowest VaR backtesting rejection rate over the J = 279 rolling windows. By

contrast, the ‘bivariate 15min further’ model performs rather poorly, failing to meet the Correct

Conditional Coverage criterion over most of the rolling windows. In the context of the S&P 500

portfolio, the proposed bivariate model does not always produce the lowest backtesting rejection rate.

For 5% VaR, the ‘bivariate 15min further’ model and the ‘bundling RV HL’ models alternate as those

that meet the Correct Conditional Coverage criterion most often. However, their rejection rates are

only slightly smaller than those of the proposed bivariate (with covariance) model.

In order to assess the significance of differences in backtesting rejection rates across models, we
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deploy a difference-in-proportions (DIP) test based on the statistic

ΠJ,P ≡
√
J

P̂biv − P̂M√
P̂biv(1− P̂biv) + P̂M(1− P̂M)

, (24)

where Pbiv and PM are the population rejection rates of the bivariate model and a given competitor,

respectively, estimated as (weighted) averages of the binary backtesting outcomes 1(pj < 0.05) over j =

1, ..., J rolling windows. The hypothesis of interest isH0 : Pbiv ≤ PM versusHA : Pbiv > PM. A thorny

issue is that the binary backtesting outcomes are dependent across models and autocorrelated which

invalidates the asymptotic approximation of the DIP test statistic distribution by the standard Normal.

A well-established solution is to approximate the finite-sample distribution of the unstandardized

test statistic by bootstrap techniques. More specifically, we construct the moving-block bootstrap

distribution of
√
J(P̂biv − P̂M) by resampling pairs of binary backtesting outcomes for each (biv,M)

combination. The block length is selected using Patton et al.’s (2009) data-driven method.13

In Panel A of Table 3, the rejection rate of criterion (18) by each competitor is marked with

asterisks if it turns out to be significantly smaller (at the conventional 10%, 5% or 1% levels) than

that of the proposed bivariate model according to the bootstrap DIP test. For Russell 2000, the

unreported p-values of the DIP test range from 0.933 to 1.000 and so there are no rejections; hence,

the proposed bivariate model is at least as good as any of the competitors. For the S&P 500 portfolio,

the only significant DIP test statistic is associated with the probit-based backtesting of 5% VaR; in

this case, the VaR forecasts from the ‘bundling RV HL’ model fail to meet criterion (18) at a rate of

0.387 which is significantly smaller than the rejection rate of the bivariate model at 0.566. The same

qualitative finding is shown in Panel A3. For the conservative 1% VaR, the proposed bivariate model

meets the conditional coverage criterion (18) at least as often as any of the competitors.14

The rejection rates of the Correct Conditional Coverage criterion (18) reported in Panels B1-B3

pertain to the dynamic non-overlapping evaluation scheme. These rejection rates do not radically

challenge the main evidence that modeling separately the daytime and overnight return processes

as well as their covariance is likely to be beneficial for tail risk management. However, the number

of binary backtesting outcomes, 1(pj < 0.05), j = 1, ..., J , to estimate the rejection rates is too

small (J = 10 non-overlapping windows) which obviates the DIP test because neither the asymptotic

standard Normal distribution nor the moving-block bootstrap distribution are applicable.

As borne out by Panels A2 and B2 of Table 3, the period spanned by the first 10% windows of out-

of-sample forecasts (from September 2008 onwards) represents a clear challenge for all VaR forecasting

models in meeting the Correct Conditional Coverage criterion (18). This is particularly visible in Panel

B2 where the rejection rates associated with the 1/10J windows (an evaluation period spanning the 78

13The Matlab code for implementing this method is available from Andrew Patton’s web page.
14The specific p-values of the DIP test obtained for each pair of models (biv,M) are available from the authors.
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days inmediately post-Lehman) are 100% in all cases, which is unsurprising given that this subperiod

epitomizes the brunt of the late 2000s financial crisis. The frequency with which the VaR modeling

approach fails to deliver forecasts that meet criterion (18) drops sharply from the first 1/10J windows

(Panels A2 and B2) to the subsequent 9/10J windows (Panels A3 and B3). This means that as more

of the extremely volatile post-Lehman days are included in model estimation, the accuracy of the

out-of-sample VaR forecasts improves. The 1980-2011 analysis of VaR forecasts in Frey et al. (2013)

leads to a similar observation on the adverse influence of abrupt changes in market conditions on VaR

forecast performance, despite important methodological differences with the present study.

The conditional coverage rejection rates examined thus far assign equal weights to all VaR back-

testing outcomes. However, the actual economic loss function of a risk manager may penalize rejections

according to the size and the sign of the coverage error. Panels A1 and B1 of Table 4 summarize the

dynamic conditional coverage backtesting by weighting each rejection with the size of the coverage

error, i.e. wj ≡ |α̂j − αj | for j = 1, ..., J , appropriately standardized so that the weights add to unity.

Panels A2, A3, B2 and B3 take also into account the direction of the error. Panels A2 and B2 are

relevant for active asset management when there is more aversion towards underpredicting downside

tail risk (which entails uncovered losses) than towards overpredicting it (opportunity costs). Thus, the

penalty is ‘large’ at |α̂j−αj |, j = 1, ..., J1 for underpredictions and ‘small’ at (α̂j−αj)
2, j = 1, ..., J2 for

overpredictions (J = J1+J2). Panels A3 and B3 reverse the above asymmetry, namely, overpredictions

are weighed more heavily than underpredictions. This weighting scheme is broadly evocative of loss

functions of large banks which have permission to calculate the capital they must hold against their

trading books if they are less inclined to maintain idle capital than to bear out regulatory penalties.15

[Insert Table 4 around here]

As shown in Panels A1-A3 of Table 4, the proposed bivariate (with covariance) model still domi-

nates the competitors for the Russell 2000 portfolio when the backtesting outcome over each rolling

window is weighted by the magnitude of the losses in excess of the predicted VaR. With the non-

overlapping windows (Panel B) there is also clear evidence from both the DQ and probit-based tests

suggesting that the bivariate model yields superior 5% VaR predictions for the Russell 2000 portfolio.16

However, the weighted backtesting results are less clearcut for the large-cap portfolio. The weighted

rejection rates of the conservative 1% VaR for the S&P 500 portfolio still remain the lowest with the

proposed bivariate model in Panel A but the results for 5% VaR tend to favor the ‘bivariate 15min

15Details on the Basel trading book rules can be found at http://www.bis.org/publ/bcbs158.pdf.
16Following Andersen et al. (2011), we considered a specification for the overnight return volatility that exploits the

immediately preceding realized variance, ho,t = α0 + α1ε
2
o,t−1 + β1ho,t−1 + γ1RVt−1 + γ2I

−

t−1RVt−1, instead of equation
(8b). The main findings are unchallenged, namely, the Equal Predictive Ability tests and Correct Conditional Coverage
tests still point to the VaR forecasts from the bivariate modeling approach as superior. Furthermore, we deployed the
evaluation tests over post-June 2009 windows of forecasts and the results are qualitatively similar, which rules out the
recent financial crisis as the driver of our findings. Details of both robustness checks are available from the authors.
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further’ model. The DIP test confirms that the rejection rates of the latter are significantly lower than

those yielded by our model in four cases. With the non-overlapping windows the results are also tilted

towards the ‘bivariate 15min further’ modeling approach for the S&P 500 portfolio although in this

case the DIP test to assess significance of the difference is not feasible.

To further illustrate the relative merit of the proposed bivariate model for setting equity-trading

risk limits, Figure 2 plots the sequential p-values of the DQ test (for the null hypothesis of correct

conditional VaR coverage) obtained over J=279 rolling windows of ñ = 500 out-of-sample days.17

[Insert Figure 2 around here]

The figure reveals substantial instability in absolute and relative out-of-sample VaR forecast ac-

curacy from the lens of the Correct Conditional Coverage criterion (18), which endorses our dynamic

forecast evaluation scheme; see also Frey et al. (2013). For the small-cap portfolio, with the exception

of the initial part of the out-of-sample period that captures the brunt of Lehman’s debacle, the p-values

of the DQ test tend to be the largest (leading to less rejections) for the proposed bivariate model;

this finding is aligned with the relatively low rejection rates reported for this model in Table 3. For

the large-cap S&P 500 portfolio, the graphs produce less clearcut evidence on the superior forecast

accuracy of the bivariate model, particularly, for the 5% VaR measure.

Overall, the Russell 2000 portfolio analysis has produced stronger evidence in favor of the proposed

bivariate (with covariance) model than the S&P 500 portfolio analysis. The contrast may stem from the

distinct trading volumes of large- versus small-cap stocks, which has price discovery implications. The

literature has documented greater efficiency of price discovery at the market open for high trading

volume stocks; see e.g. Barclay and Hendershott (2008). The finding that the proposed bivariate

approach appears particularly useful for setting small-cap equity trading limits indirectly confirms

the presence of market microstructure effects (i.e., price staleness and news spillover) at the market

open for relatively low trading volume stocks. In contrast, for large-cap stocks any news accumulated

during non-trading hours are likely to be impounded into prices more rapidly as the market opens,

which naturally dilutes the merit of modeling the covariance between overnight and daytime returns.

Thus, our findings are in line with the evidence in Barclay and Hendershott (2008). If indeed

the opening price of large-cap stocks conveys more information than that of (relatively lower volume)

small-cap stocks, then it is plausible to find that the proposed bivariate (with covariance) modeling

approach clearly excels for setting equity trading limits with the Russell 2000 portfolio.

17The graphs of p-values for the probit variant of the test, available on request, are qualitatively similar.

19



5 CONCLUSION

Risk managers of banks and other financial institutions face the task of establishing mark-to-market

loss limits for their different trading desks or business lines. Although accurate forecasts of downside

risk cannot per se prevent losses, they provide risk managers of financial institutions with objective

measures to act upon. Since the 1990s, commercial banks have routinely estimated daily Value-at-Risk

(VaR) for this purpose. Given its practical relevance, various VaR modeling approaches have been

put forward in the literature, but the issue of how to incorporate overnight information for predicting

1-day-ahead VaR has been largely neglected. This paper seeks to contribute towards filling this gap.

We propose modeling the dynamics of the overnight and daytime returns, and their covariance.

Cross-dependencies between overnight and daytime returns can be theoretically motivated by market

microstructure frictions, such as price staleness and news spillover, that are likely to occur at the

beginning of the trading day and represent price discovery inefficiencies. The proposed model is

confronted with simpler bivariate models that disregard the covariance, and with the widely-used

univariate modeling approach that relies on an overnight-adjusted realized volatility measure.

The analysis is based on 14-year samples of intraday data for the S&P 500 and Russell 2000

indices. The first key finding is that modeling the covariance between daytime and overnight returns

can be useful to set appropriate equity-trading risk limits, particularly, in the context of the small-cap

Russell 2000 portfolio. The superior accuracy of the 1-day-ahead VaR forecasts for Russell 2000 from

the proposed bivariate modeling approach, as borne out by dynamic Equal Predictive Ability tests and

Correct Conditional Coverage tests, indicates that the overnight-daytime return covariance contains

useful information for daily downside risk prediction. The contrasting findings for the two indices

represent indirect evidence that the price discovery at market opening is more efficient for large-cap

stocks. The contrast can be rationalized by the role of trading volume in price discovery. The low

trading volume associated with small-cap stocks makes the impounding of overnight news into the

opening price less efficient which, in turn, brings out the economic merit of modeling the covariance.

Our second key result is that the empirical evidence overwhelmingly favors the separate modeling

of overnight and daytime return processes over the univariate modeling of overnight-adjusted realized

variances for 1-day-ahead VaR prediction. This second result provides support for existing theoretical

models of security returns that are built upon the premise that, in asset markets with periodic clo-

sures, the return generating process changes substantially from trading to non-trading hours implying

different predictability. Therefore, in order not to compromise the solvency of trading positions mon-

itored by VaR models, a recommendation for risk managers that arises from this analysis is to model

the two segments of the day separately, and possibly account for their covariance. Finally, we confirm

previous research in finding that all VaR models are seriously challenged when financial conditions

change abruptly between the estimation and the forecasting periods.
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Figure 1. Overnight and daytime volatility of Russell 2000 and S&P 500 indices. The figure reports the squared previous-day-close to 
open log returns (first column), realized variance computed from 5-minute returns from 9:30 to 16:00 EST (second column) and histogram of logarithmic 
realized variance alongside theoretical Normal density (third column). The sample period begins on November 12, 1997 and ends on September 30, 2011. 
The out-of-sample period for VaR forecast evaluation begins on September 2, 2008.   
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Figure 2. Dynamic quantile tests on the Correct Conditional Coverage of Value-at-Risk (VaR) forecasts.  The figure 
reports p-values of the DQ test for correct conditional coverage over J=279 rolling windows of ñ=500 out-of-sample days each. 



26 

 

Table 1. Daily returns and variance during overnight and daytime. 

The table summarizes the empirical distribution of daily overnight and daytime returns (Panel A) and 
the volatility measured as the squared return (Panel B) or realized variance (Panel C). The sample 
period is divided into a pre-Lehman (in-sample) period from November 12, 1997 to August 29, 2008, 
and a post-Lehman (out-of-sample) period from September 2, 2008 to September 30, 2011. Returns 
are in percentages. The table reports sample correlations between the overnight return on day t and 
day t-1, between the daytime return on day t and day t-1, and between the overnight return on day t 

and the daytime return on day t. Q20(AC) is the Ljung-Box statistic for the null of no autocorrelation 
up to 20 lags. *, ** and *** indicate significance at the 10%, 5% or 1% levels. Mean (hourly) reports 
the mean squared return divided by the total hours spanned by each segment of the day. The daytime 
realized variance (RV) summarized in Panel C is computed as the sum of 5-minute squared returns 
from market open at 9:30am to market close at 4:00pm. d is the fractional integration parameter 
estimated via the Gaussian semi-parametric approach proposed by Robinson (1995). 

Summary r o,t r d,t r o,t r d,t r o,t r d,t r o,t r d,t

statistics night day night day night day night day

Mean 0.020 0.000 0.007 0.005 -0.004 -0.014 -0.012 -0.004

Median 0.005 0.040 0.003 0.047 0.007 0.138 0.000 0.095

StDev 0.234 1.271 0.190 1.092 0.572 2.136 0.249 1.780

Skewness -0.525 -0.074 -0.249 -0.031 -0.283 -0.358 -0.254 -0.362

Kurtosis 19.80 4.026 14.99 5.600 6.930 6.015 7.774 8.586

Correlation structure:

r o,t- 1 -0.089 *** -0.028 -0.092 *** 0.001 -0.149 *** -0.064 * -0.118 *** -0.026

r d,t 0.162 *** 0.202 *** 0.273 *** 0.390 ***

r d,t -1 0.041 ** 0.015 -0.011 -0.038 ** -0.040 -0.085 ** -0.048 -0.122

Q20 (AC) 60.60 38.64 60.78 35.21 36.62 28.07 37.12 52.53

Mean (hourly) 0.003 0.248 0.002 0.183 0.019 0.701 0.004 0.487

Median 0.006 0.597 0.004 0.361 0.096 1.120 0.011 0.457

StDev 0.237 2.810 0.135 2.556 0.797 10.223 0.162 8.724

Skewness 14.163 4.661 11.578 7.089 8.880 5.307 6.353 5.905

Kurtosis 254.6 39.42 196.5 89.15 117.3 43.48 57.41 46.17

Correlation structure:

(r o,t- 1)
2

0.067 *** 0.175 *** 0.100 *** 0.077 *** 0.235 *** 0.199 *** 0.144 *** 0.218

(r i,t )
2

0.152 *** 0.130 *** 0.197 *** 0.366 ***

(r i ,t- 1)
2

0.087 *** 0.132 *** 0.049 ** 0.158 *** 0.103 *** 0.304 *** 0.170 *** 0.192 ***

Q20 (AC) 156.4 1697 247.9 1058 186.8 1151 441.3 1107

Mean 1.091 1.189 3.735 3.295

Median 0.658 0.736 1.590 1.109

StDev 1.372 1.512 6.211 6.389

Skewness 4.368 4.584 4.208 4.359

Kurtosis 34.78 37.35 26.17 26.75

d 0.476 0.492 0.493 0.495

Panel C: realized variance (RV)

Panel B: squared returns

Panel A: returns 

In-sample: Nov 1997 - Aug 2008 Out-of-sample: Sep 2008 - Sep 2011 

Russell 2000 S&P 500 Russell 2000 S&P 500 
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Table 2. Rejection rates of unconditional Equal Predictive Ability tests. 

This table summarizes the unconditional Equal Predictive Ability tests deployed sequentially over 
J=279 rolling windows of ñ=500 out-of-sample forecasts (Panel A) and J=10 non-overlapping 
windows of ñ=78 out-of-sample forecasts (Panel B). The first forecast is for September 2, 2008 and 
the last forecast for September 30, 2011. The proposed bivariate model is confronted with three 
competitors: two simpler bivariate models without (w/o) covariance  the nested bivariate model and 
a bivariate model for redefined overnight and daytime returns by moving the open price 15 minutes 
into the trading day  and the univariate `bundling’ model based the close-to-close return alongside 
the overnight-adjusted RVHL measure. The null hypothesis is that the proposed bivariate model is 
superior to a given competitor. The figures reported in Panel A and  Panel B are rejection rates over 
the 279 rolling windows or the 10 non-overlapping windows, respectively; for instance, the figure 
0.000 means that the null hypothesis is never rejected. Panels A2 and B2 report the rejection rates for 
the first 10% of the J windows of out-of-sample forecasts, which represents the height of the recent 
financial crisis. Panels A3 and B3 report the rejection rates for the remaining 90% of the J windows. 

Bivariate Bivariate Bundling Bivariate Bivariate Bundling

w/o covariance 15 min further RVHL w/o covariance 15 min further RVHL

5% VaR 0.000 0.000 0.000 0.000 0.247 0.000

1% VaR 0.000 0.000 0.000 0.000 0.104 0.000

5% VaR 0.000 0.000 0.000 0.000 1.000 0.000

1% VaR 0.000 0.000 0.000 0.000 1.000 0.000

5% VaR 0.000 0.000 0.000 0.000 0.163 0.000

1% VaR 0.000 0.000 0.000 0.000 0.004 0.000

5% VaR 0.000 0.000 0.000 0.100 0.100 0.000

1% VaR 0.100 0.000 0.000 0.200 0.300 0.200

5% VaR 0.000 0.000 0.000 0.000 1.000 0.000

1% VaR 0.000 0.000 0.000 0.000 1.000 0.000

5% VaR 0.000 0.000 0.000 0.111 0.000 0.000

1% VaR 0.111 0.000 0.000 0.222 0.222 0.222

Panel B2: 1/10J windows 

Panel B3: 9/10J windows 

Panel A1: All J windows 

Panel A2: 1/10J windows

Panel A3: 9/10J windows 

Panel B: Dynamic non-overlapping evaluation (J=10 windows of ñ =78 days)

Russell 2000 S&P 500

Panel A: Dynamic rolling evaluation (J=279 windows of ñ =500 days)

Panel B1: All J windows
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Table 3. Rejection rates of Correct Conditional Coverage tests. 

This table summarizes the dynamic quantile (DQ) and probit tests for the null hypothesis of Correct 
Conditional Coverage. The tests are deployed sequentially over J=279 rolling windows of ñ=500 out-
of-sample forecasts (Panel A) and J=10 non-overlapping windows of ñ=78 out-of-sample forecasts 
(Panel B). The first forecast is for September 2, 2008 and the last forecast for September 30, 2011. 
The table reports rejection rates; for instance, the figure 1.000 means that the Correct Conditional 
Coverage criterion is rejected over all the sequential windows. Panels A1 and B1 report the rejection 
rates over all J out-of-sample windows. Panels A2 and B2 report the rejection rates over the first 10% 
of the J windows of out-of-sample forecasts, which represents the height of the recent financial crisis. 
Panels A3 and B3 report the rejection rates for the remaining 90% of the J windows.  For each test the 
lowest rejection rate achieved across the four models is shaded. Asterisks in Panel A indicate 
significance of a bootstrap difference-in-proportions (DIP) test statistic where the null hypothesis is 
that the rejection rate of the proposed bivariate model is at least as small as that of a competitor 
model. *** denotes significance at the 1% level.  

 

Bivariate Bivariate Bivariate Bundling Bivariate Bivariate Bivariate Bundling

w/o covariance 15min further RVHL w/o covariance 15min further RVHL

DQ test (5% VaR) 0.222 0.387 1.000 0.462 0.237 0.290 0.211 0.315

DQ test (1% VaR) 0.294 0.484 1.000 0.742 0.251 0.505 1.000 0.305

Probit test (5% VaR) 0.151 0.323 0.964 0.487 0.566 0.559 0.577 0.387***

Probit test (1% VaR) 0.068 0.373 1.000 0.577 0.835 1.000 1.000 0.878

DQ test (5% VaR) 1.000 1.000 1.000 1.000 0.964 1.000 1.000 1.000

DQ test (1% VaR) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Probit test (5% VaR) 0.964 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Probit test (1% VaR) 0.679 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DQ test (5% VaR) 0.135 0.319 1.000 0.402 0.155 0.211 0.124 0.239

DQ test (1% VaR) 0.215 0.426 1.000 0.713 0.167 0.450 1.000 0.227

Probit test (5% VaR) 0.060 0.247 0.960 0.430 0.518 0.510 0.530 0.319***

Probit test (1% VaR) 0.000 0.303 1.000 0.530 0.817 1.000 1.000 0.865

DQ test (5% VaR) 0.200 0.200 0.300 0.300 0.200 0.300 0.200 0.300

DQ test (1% VaR) 0.300 0.300 0.700 0.400 0.300 0.300 0.300 0.400

Probit test (5% VaR) 0.200 0.200 0.200 0.200 0.300 0.400 0.400 0.400

Probit test (1% VaR) 0.700 0.600 0.600 0.500 0.700 0.800 0.600 0.700

DQ test (5% VaR) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DQ test (1% VaR) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Probit test (5% VaR) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Probit test (1% VaR) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DQ test (5% VaR) 0.111 0.111 0.222 0.222 0.111 0.222 0.111 0.222

DQ test (1% VaR) 0.222 0.222 0.667 0.333 0.222 0.222 0.222 0.333

Probit test (5% VaR) 0.111 0.111 0.111 0.111 0.222 0.333 0.333 0.333

Probit test (1% VaR) 0.667 0.556 0.556 0.444 0.667 0.778 0.556 0.667

Panel B1: All J  windows 

Panel B2: 1/10J windows 

Panel B3: 9/10J  windows 

Russell 2000 S&P 500

Panel A1: All J  windows 

Panel A2: 1/10J windows 

Panel A3: 9/10J  windows 

Panel A: Dynamic rolling evaluation (J =279 windows of ñ =500 days)

Panel B: Dynamic non-overlapping evaluation (J =10 windows of ñ =78 days)
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Table 4. Weighted rejection rates of Correct Conditional Coverage tests. 

This table summarizes weighted rejection rates of the dynamic quantile (DQ) and probit tests for the 
null hypothesis of Correct Conditional Coverage, Eq. (18), deployed sequentially over J=279 rolling 
windows of ñ=500 out-of-sample forecasts (Panel A) and J=10 non-overlapping windows of ñ=78 
out-of-sample forecasts (Panel B). The out-of-sample period commences on September 2, 2008. 
Panels A1 and B1 report weighted rejection rates where the rejections are weighted by the absolute 
distance between the empirical conditional coverage probability and the nominal coverage, ˆ| |  , 
appropriately standardized so that the weights add to unity. Panels A2 and B2 weight more heavily 
(by absolute distance) rejections for which ̂  is above α than rejections for which ̂  is below α 
(squared distance). Panels A3 and B3 weight more heavily (by absolute distance) rejections for which ̂  is below α than rejections for which  ̂  is above α (squared distance). For each test the lowest 
rejection rate achieved across models is shaded. Asterisks in Panel A indicate significance of a 
bootstrap difference-in-proportions (DIP) test statistic where the null hypothesis is that the rejection 
rate of the proposed bivariate model is at least as small as that of a competitor model. ** and * denote 
significance at the 5% and 10% levels, respectively. 
 

Bivariate Bivariate Bivariate Bundling Bivariate Bivariate Bivariate Bundling

w/o covariance 15min further RVHL w/o covariance 15min further RVHL

DQ test (5% VaR) 0.191 0.245 1.000 0.803 0.381 0.442 0.181* 0.529

DQ test (1% VaR) 0.242 0.421 1.000 0.927 0.171 0.482 1.000 0.432

Probit test (5% VaR) 0.085 0.217 0.969 0.807 0.726 0.804 0.635* 0.628**

Probit test (1% VaR) 0.021 0.382 1.000 0.855 0.813 1.000 1.000 0.941

DQ test (5% VaR) 0.050 0.179 1.000 0.902 0.329 0.357 0.177* 0.457

DQ test (1% VaR) 0.243 0.418 1.000 0.948 0.143 0.460 1.000 0.375

Probit test (5% VaR) 0.045 0.168 0.969 0.919 0.939 0.810 0.633** 0.705*

Probit test (1% VaR) 0.021 0.390 1.000 0.873 0.807 1.000 1.000 0.932

DQ test (5% VaR) 0.318 0.736 1.000 0.630 0.447 0.736 0.316 0.757

DQ test (1% VaR) 0.184 0.489 1.000 0.580 0.749 0.831 1.000 0.765

Probit test (5% VaR) 0.120 0.582 0.976 0.607 0.482 0.795 0.783 0.411

Probit test (1% VaR) 0.003 0.141 1.000 0.568 0.949 1.000 1.000 0.997

DQ test (5% VaR) 0.232 0.316 0.489 0.543 0.261 0.579 0.268 0.446

DQ test (1% VaR) 0.133 0.118 0.791 0.482 0.159 0.168 0.146 0.536

Probit test (5% VaR) 0.232 0.316 0.463 0.531 0.727 0.595 0.653 0.461

Probit test (1% VaR) 0.562 0.537 0.451 0.485 0.618 0.632 0.154 0.987

DQ test (5% VaR) 0.235 0.322 0.489 0.545 0.268 0.589 0.268 0.450

DQ test (1% VaR) 0.131 0.120 0.798 0.489 0.161 0.171 0.147 0.547

Probit test (5% VaR) 0.235 0.322 0.463 0.545 0.771 0.590 0.653 0.451

Probit test (1% VaR) 0.557 0.537 0.446 0.489 0.618 0.628 0.147 1.000

DQ test (5% VaR) 0.134 0.253 0.662 0.676 0.202 0.577 0.228 0.348

DQ test (1% VaR) 0.028 0.018 0.747 0.443 0.060 0.060 0.048 0.447

Probit test (5% VaR) 0.134 0.253 0.658 0.653 0.834 0.601 0.801 0.370

Probit test (1% VaR) 0.518 0.479 0.463 0.447 0.613 0.631 0.057 0.984

Russell 2000 S&P 500

Panel A: Dynamic rolling evaluation (J =279 windows of ñ =500 days)

Panel A1: Weighted by Absolute Coverage Error

Panel A2: Weighted Asymmetrically Underprediction > Overprediction

Panel A3: Weighted Asymmetrically  Overprediction > Underprediction

Panel B: Dynamic non-overlapping evaluation (J =10 windows of ñ =78 days)

Panel B1: Weighted by Absolute Coverage Error

Panel B2: Weighted Asymmetrically Underprediction > Overprediction

Panel B3: Weighted Asymmetrically  Overprediction > Underprediction

 


