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On Type IIA geometries dual to N = 2 SCFTs
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Abstract

We provide explicit solutions of Type IIA supergravity which are believed to be dual to N = 2

superconformal four dimensional gauge theories. These explicit solutions are based on the

general ansatz for such a type of backgrounds introduced by Gaiotto and Maldacena.
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1 Introduction

The gauge/string correspondence [1] has provided us with a fundamentally new way of investigating

strongly coupled phenomena. In its simplest formulation, it asserts that strongly coupled systems,

such as four dimensional gauge theories, have a dual description as a string- or M-theory on a

curved spacetime. While it is not clear whether some form of the gauge/string correspondence

will eventually apply to all strongly coupled (field-theory) systems, large classes of dual theories

have been identified. The best-understood dual pairs involve d dimensional super-conformal field

theories (SCFTs), whose duals are described by string/M-theory on supersymmetric AdSd+1 ×X
spacetimes where X is a Dc − d− 1-dimensional manifold. 1

For each d there are maximally supersymmetric dual pairs such as the celebrated N = 4

super-Yang-Mills (SYM) SU(N) gauge theory and the dual Type IIB string theory on AdS5 × S5

or the more recently found [2] super-Chern-Simons theory coupled to matter and its M-theory

dual AdS4 × (S7/❩k). In these and related examples integrability techniques have provided a

very detailed understanding of anomalous dimensions of operators, or the spectrum of the dual

string theory, at all values (weak, strong and intermediate) of the gauge coupling. 2 These explicit

expressions for generic gauge theory quantities which are not protected by non-renormalisation

theorems should be taken as very strong evidence for the validity of the gauge/string duality for

these dual pairs. More importantly though, it gives one confidence that the gauge/string approach

captures some of the underlying fundamental features of wider classes of strongly coupled systems.

For each d many dual pairs of theories with less than maximal supersymmetry are known. Less

is known about such dual pairs than about the maximally supersymmetric pairs discussed in the

preceding paragraph. Given the recent successes of the gauge/string correspondence in analysing

the maximally supersymmetric examples discussed above, it is likely that examples of dual pairs

with less supersymmetry will provide us with new insights into strongly coupled phenomena in

general. One physically interesting set of such examples are the spacetimes dual to generic N = 2

four-dimensional superconformal YM theories coupled to matter. Building on earlier work on

supersymmetric solutions with AdSm and/or Sn factors [4], [5] and [6], Gaiotto and Maldacena [7]

(GM) have constructed an M-theory spacetime ansatz dual to general N = 2 four-dimensional

super-conformal field theories (SCFTs). The GM solutions are implicit: given a N = 2 SCFT of

the type discussed recently in the work of Gaiotto [8] one has to solve the three-dimensional Toda

equation (
∂2

x1
+ ∂2

x2

)
D(x1, x2, y) + ∂2

ye
D(x1,x2,y) = 0 . (1.1)

with particular boundary conditions. General solutions of the Toda equation required for these

spacetimes appear to be diffucult to find. As already observed in [5], much progress can be made

when a U(1) isometry exists in the (x1, x2) plane. In this case the problem reduces to the solution

of the Laplace equation [9]
1

ρ
∂ρ(ρ∂ρV (ρ, η)) + ∂2

ηV (ρ, η) = 0 , (1.2)

1Dc is the critical dimension of string- or M-theory: Dc = 10 or 11.
2As suggested by ’t Hooft [3], these results are limited to the large N , or planar, limit.
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where the transformation between D, y, xi and V, ρ, η is given below in equation (2.2). Most solu-

tions with a U(1) isometry should not be viewed as exact solutions, but rather as solutions with

smearing; such solutions will be valid on length-scales longer than the typical smearing scale. The

presence of the U(1) isometry does however allow for a reduction of the M-theory solutions to Type

IIA solutions. 3 On the other hand, the Maldacena-Nuñez (MN) solution [11] of equation (1.1) does

have a U(1) isometry in the (x1, x2) plane and is nevertheless an exact solution with no smearing.

As we will see below, this solution will play a key role in our construction.

In this paper we solve explicitly the Laplace equation (1.2) for any boundary conditions given

by [7], and in this way present an explicit Type IIA spacetime solution dual to any of the N = 2

four-dimensional SCFTs discussed in [8]4. These solutions lift in an obvious way to M-theory

solutions up to the smearing discussed above. In section 2 we review the GM solution [7] with and

without the U(1) isometry as well as the boundary conditions that correspond to particular N = 2

SCFTs. In particular, in section 2.2.1 we discuss how the consistent boundary conditions lead to

two classes of solutions. In sections 3 and 4 we present explicit solutions for these two classes

of boundary conditions. In section 5 we discuss asymptotic properties of our solutions and we

conclude in section 6. Some of the technical details of the results in sections 3 and 4 are relegated

to the appendix.

2 A review of the GM solutions

Within the context of the gauge/string correspondence, AdSd+1 solutions of supergravity are leading

candidates for the string or M-theory duals of d-dimensional CFTs. As such, they have received

considerable attention in the literature following Maldacena’s seminal paper [1]. A novel approach

to finding solutions with AdS5 factors and minimal (N = 1) supersymmetry was proposed in [4].

Similar techniques were used by GM [7] to construct N = 2 solutions of M-theory with an AdS5

factor.5 In this section we summarise the main results of [7] as a way of setting the notation

used later in the paper. We pay particular attention to solutions which exhibit an additional U(1)

symmetry and show how this simplifies the problem substantially. We also review the boundary

conditions proposed by GM; we find in particular that there are two distinct types of boundary

conditions for which we construct explicit solutions in sections 3 and 4 below.

3This may prove useful given that there exists an explicit formulation of perturbative IIA string-theory on a

general spacetime [10].
4Recently, a paper [12] appeared on the arXiv which considers U(1) reductions of the Toda equation in the context

of the bubbling geometries considered in [5].
5The GM solutions build on earlier works [5] [6] which dealt with the Wick-rotated version of the problem.
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2.1 The GM solution

The M-theory spacetime metric and fluxes for a background with an AdS5 factor and 16 super-

charges has the form [5], [7] 6

ds2
11 = κ

2
3 e2λ̃

(
4ds2

AdS5
+ y2e−6λ̃dΩ̃2

2 + ds2
4

)

ds2
4 =

4

1− y∂yD
(dχ+ v)2 − ∂yD

y
[dy2 + eD(dx2

1 + dx2
2)]

v = ∗2dD

G4 = κF2 ∧ dΩ2

F2 = 2(dχ+ v) ∧ d(y3e−6λ̃) + 2y(1− y2e−6λ̃)dv − ∂ye
Ddx1 ∧ dx2

e−6λ̃ = − ∂yD

y(1− y∂yD)
(2.1)

where

0 ≤ χ < 2π 0 ≤ y < yc = N −∞ ≤ xi ≤ ∞

The function D = D(y, x1, x2) specifies the solution and satisfies the three-dimensional Toda equa-

tion (1.1). The space with coordinates (y, x1, x2) is topologically H2 ×R1
y, where H2 is the hyper-

bolic plane with coordinates (x1, x2) and ∗2 is the Hodge star on H2. Globally, the coordinates

on H2 are identified by an element of a Fuchsian7 group Γ to give a compact Riemann surface

Σ = H2/Γ. The solution has a manifest SU(2, 2)× SU(2)×U(1) symmetry which comes from the

AdS5, S2 and χ directions. These geometric symmetries are the same as the bosonic symmetries

one finds in N = 2 SCFTs.

General solutions of the Toda equation (1.1) are not presently known. In [9] it was pointed out

that solutions with a U(1) symmetry in the (x1, x2) plane are much easier to find. To see how this

symmetry simplifies the problem it is useful to write the metric on the Riemann surface Σ in polar

coordinates

ds2
Σ = dx2

1 + dx2
2 = dr2 + r2dβ2 ,

and consider solutions independent of β. Changing coordinates and defining ρ = ρ(y, r) and

η = η(y, r) implicitly through a function V (η, ρ)

y = ρ∂ρV ≡ V̇ log(r) = ∂ηV ≡ V ′ ρ2 = r2eD (2.2)

one finds that V (η, ρ) satisfies the Laplace equation (1.2). The potential V can be thought of as a

6As is highlighted already in [5] and [7], it is not completely clear whether this is indeed the most general ansatz

with these superisometries: one can imagine adding four-form flux along the ds2
4 directions; some restrictions on the

form of this flux were presented in [7] but a complete classification is still missing. A recent paper [13] addresses this

issue.
7A discrete subgroup of P SL(2;C).
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generating function for the coordinate transformation. The M-theory solution becomes [5], [7]

ds2
11 = κ

2
3

(
V̇ ∆̃

2V ′′

) 1
3
(

4ds2
AdS5

+
2V ′′V̇

∆̃
ds2

S2 +
2V ′′

V̇

(
dρ2 +

2V̇

2V̇ − V̈ ρ
2dχ2 + dη2

)

+
2(2V̇ − V̈ )

V̇ ∆̃

(
dβ +

2V̇ V̇ ′

2V̇ − V̈ dχ

)2



∆̃ = (2V̇ − V̈ )V ′′ + (V̇ ′)2

C3 = 2κ

(
−2

V̇ 2V ′′

∆̃
dχ+

(
V̇ V̇ ′

∆̃
− η

)
dβ

)
∧ dΩ2 (2.3)

where dΩ2 is the volume form on S2. For solutions with an isometry in the β-direction described

above, one can perform a Kałuża-Klein reduction along the β-direction with β the M-theory circle

to obtain a ten-dimensional IIA background. It will be convenient to set κ = 1 in what follows.

Using the reduction ansatz8

ds2
11 = e−2αϕgµνdxµdxν + e−2γϕ(dβ +Aµdx

µ)(dβ +Aνdxν) ,

one finds the IIA string dilaton φ is

e4ϕ =
4(2V̇ − V̈ )3

V ′′V̇ 2∆̃2
, (2.4)

and the ten-dimensional metric is

ds2
10 =

(
2V̇ − V̈
V ′′

) 1
2
(

4ds2
AdS5

+
2V ′′V̇

∆̃
ds2

S2 +
2V ′′

V̇

(
dρ2 + dη2

)
+

4V ′′

2V̇ − V̈ ρ
2dχ2

)
.

Using the reduction ansatz for the three-form C3 = A3 + B2 ∧ dβ, the IIA B-field and Ramond-

Ramond three-form are

A1 =
2V̇ V̇ ′

2V̇ − V̇ dχ A3 = −4
V̇ 2V ′′

∆̃
dχ ∧ dΩ2 B2 = 2

(
V̇ V̇ ′

∆̃
− η

)
dΩ2

where the Ramond-Ramond one-form comes from the Kałuża-Klein reduction of the eleven-dimensional

metric.

2.2 The GM boundary conditions

In order to find consistent spacetime solutions of the type described in the previous subsection, GM

have identified certain boundary conditions on D, which we review presently. Note in (2.1) that

the 2-sphere shrinks at y = 0. The condition that the metric is well-defined at y = 0 gives two sets

of boundary conditions:

∂yD = 0 and eD ∼ finite (2.5)

at y = 0. Let us translate these into boundary conditions in the (ρ, η, β)-space. Given that the

Laplace equation (1.2) plays a key role in electrostatic problems, the boundary conditions in the

8Where α = −

√
d

2(D−2)(D+d−2)
and γ −

α(D−2)
d

. Here d = 1 and D = 10.
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(ρ, η, β) coordinates will be reminiscent of electromagnetic boundary conditions. Recall that in

these problems the line charge density can be derived using Gauss’s law
∮

E · dS =

∫
µ dM

where the surface S ∼ ∂M is chosen to be a cylinder of height L and coaxial with the η axis and

of radius ρ. dS is an infinitesimal surface element with vector perpendicular to the surface and the

volume element is dM = ρdρdβ dη. The charge volume density is µ = 2πλ(η)δ(ρ)δ(β−β′) so that

Gauss’s law is
∫ L

η=0
dη

∫ 2π

β=0
dβ ρ∂ρV =

∫ L

η=0
dη

∫ 2π

β=0
dβ

∫ ρ

ρ′=0
dρ′ρ′λ(η)δ(ρ′)δ(β − β′)

where the component of the field strength perpendicular to the surface is Eρ = ∂ρV . Comparing

the η integrands we arrive at an expression for the charge density

λ(η) = ρ∂ρV |ρ=0 = y(η, ρ = 0) .

The boundary conditions (2.5) translate in the (ρ, β, η)-space to the presence of an infinite

conducting disc sitting at η = 0 in the (ρ, β)-plane

∂ρV (ρ, η = 0) = 0 ,

and a line charge density at ρ = 0. To see this note that y = V̇ = 0 is satisfied if either ρ = 0

and/or ∂ρV = 0 and each of these gives rise to a different set of boundary conditions. The former

requires the existence of the line charge λ, while the latter will require the presence of, what we

may think of as, an infinite conducting plane at η = 0. We discuss these in turn below.

2.2.1 Consistent λ profiles

Regularity of the space-time imposes the boundary condition that a line charge λ density resides at

ρ = 0. In [7], it was argued that a physically sensible eleven-dimensional space-time theory imposes

stringent constraints on the form of the line charge density. These constraints which we summarise

below, arise from considering the quantisation of flux wrapping non-trivial cycles in the geometry

• The line charge density λ(η) must have a piece-wise integral gradient; i.e. it must be contin-

uous and composed of segments of the form aiη + λi, where ai ∈ Z.

• The positions of the kinks must be at integral values of η.

• λ(0) = 0.

• The change in gradient of line segments at a kink must be integral and the gradient must

decrease with successive line element; i.e. ai − ai−1 ∈ Z+.

A kink in which the gradient changes by k units gives rise to an Ak−1 singularity in the directions

transverse to AdS5×S2. If, in addition, we require that the space-time be smooth, we must impose

the further constraint

6



• The change in gradient only is reduced by one at any kink; ai − ai−1 = 1.

• The gradient of the first line segment should be 1.

An interesting observation in [7] was that the intercept λi of the i’th line element is the total charge

of the M5-branes which cause the kink at the beginning of the line segment. The integrality of

the charges is ensured by the above conditions on the line charge. Generic consistent line charge

densities have profiles of the form given in Figure 1.

λ

η

λ

η

Figure 1: The two types of line charge; the MN-type (left) and the Uluru-type (right)

From the above restrictions on the form of λ we see that there are two types of λ profiles: (i) λ

intercepts the η-axis only at the origin, and (ii) λ intercepts the η-axis at the origin and a second

point η = Λ/2 > 0 for some positive real number Λ. 9 In the former case the physical range of η is

η ≥ 0, while in the latter case it is 0 ≤ η ≤ Λ/2. Given the characteristic shape of the latter profile

we will refer to these as Uluru spacetimes. The solutions we find will be quite different in the two

cases and we construct them respectively in sections 3 and 4.

2.2.2 Infinite conducting disc

We now turn to the ∂ρV = 0 condition. To see how it is equivalent to an infinite conduciting disc

at η = 0 consider first the general condition F (ρ, η) = 0, where F is some function. The vanishing

of this function defines a curve η = η(ρ) in (ρ, η)-space. An infinitesimal variation of this gives

δF = ∂ρFδρ+ ∂ηFδη = 0

so that the gradient of the curve is
δη

δρ
= −∂ρF

∂ηF

In the case at hand we have F (ρ, η) = ∂ρV = 0 so that

δη

δρ
= − ∂2

ρV

∂ρ∂ηV

9This apparently awkward choice of notation will appear more natural in section 4.
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What of the condition ∂yD = 0? We can show that ∂yD = 2ρ−1∂yρ and furthermore, using the

general formulae found in section 3.1, that the 2× 2 Jacobian is given by

J = ρ−1eV ′
(
(V̇ ′)2 + ρ2(V ′′)2

)

The condition ∂yD = 0 at y = 0 (but ρ 6= 0) may then be written as

−1

2
∂yD =

ρ−2∂2
ηV

(∂ρ∂ηV )2 + (∂2
ηV )2

= 0

Therefore at y = 0, the condition amounts to ∂2
ηV = 0 or, using the Laplace equation and the fact

that ∂ρV = 0, to

∂2
ρV = 0

We have seen above that the boundary condition ∂yD = 0 corresponds to the condition ∂2
ρV = 0.

Returning to the discussion above of the gradient of the constraint surface defined by ∂ρV = 0 we

see the condition ∂yD = 0 requires that the constraint surface has zero gradient; δη
δρ = 0. In other

words, the condition describes the radial field strength ∂ρV vanishing on the constraint surface

η =constant. We choose the constraint surface to lie at η = 0. The constraint surface can be

thought of as an infinite conducting disc in the (ρ, β)-plane. The reason for this interpretation of

the boundary condition as a conducting disc is that the surface charge induced by a conducting

disc imposes the boundary condition that the electric field has no component tangential to the

conducting disc at the discs surface; i.e. that ∂ρV and ∂βV vanish at η = 0.

The problem of fixing the boundary conditions at the conducting plate can easily be taken care

of by the method of images. The same field configuration that is caused by the semi-infinite line

charge (we do not consider η < 0) and conducting plane are given by extending the line charge into

negative η such that

λ(η)→ Λ(η) =





−λ(η) if η < 0

0 if η = 0

λ(η) if η > 0

Put simply, the condition ∂yD = 0 at y = 0 is simply the requirement that the potential V (ρ, η)

must be an odd function of η. The physical region will always be restricted to η ≥ 0, but below we

will consider the formal solution over the whole real η line using this method of images.

2.3 Metric Positivity Constraints

The metric (2.1) is mostly plus (–+. . . +) for all values of (r, y). If the coordinate transformation

defined by the function V (ρ, η) is a good one then the metric (2.5) should also be mostly plus for

all values of (ρ, η). In other words we must have

V ′′V̇

∆̃
≥ 0

V ′′

V̇
≥ 0

V ′′

2V̇ − V̈ ≥ 0
2V̇ − V̈

∆̃V̇
≥ 0

which requires that either,

V ′′ ≥ 0 V̇ ≥ 0 or V ′′ ≤ 0 V̇ ≤ 0

8



η

ρ
← Image line charge

η

ρ

տ Conducting disc

β

Figure 2: Two ways of viewing the boundary condition

Using the equations of motion, we can summarise these conditions as

V̈ /V̇ < 0 (2.6)

One immediate consequence of this is that |V̇ | is a decreasing function of ρ.

2.4 Dual gauge theory

The spacetimes described in equations (2.1), (2.5) have been conjectured by GM to be dual to

N = 2 SCFTs. The line charge λ can be used to read-off the generalised quiver [8] of the dual

gauge theory. Explicitly:

• We associate an SU(ni) gauge group with each integer value of η (which we denote as ηi).

These correspond to the circular nodes of the quiver diagram. The rank ni of the gauge

group at that node is given by the value of the line charge corresponding to that point; i.e.

ni = λ(ηi).

• If there is a kink in the line charge profile, an extra ki fundamentals (hypermultiplets) are

attached to the gauge group node. These are denoted by squares in the quiver diagram. The

number of fundamentals ki is equal to the change in gradient at the node ni.

An example of a consistent charge profile λ and the corresponding generalised N = 2 SCFT quiver

is given in figure 3.

3 GM spacetimes on the hyperbolic plane

In this section we present explicit solutions for type IIA spacetimes (2.5) by constructing the

function V (ρ, η) for a general λ profile which intercepts the η-axis only at the origin. Such solutions

can be lifted to (smeared) M-theory solutions on the hyperbolic plane. A precursor of the GM

9



k1 k3k2

η1

λ

η
η2 η3 η6η5η4

n1 n2 n3 n4 n4 n4

n1

n2

n3

n4

Figure 3: There is a correspondence between the quiver diagram and the line charge. The integers

kI ∈ Z+ are the change in the gradient at the kink, given by kI = aI−1 − aI , where aI is the

gradient of the I’th line element. Note that ηI , nI ∈ Z+.

solutions of this type was the Maldacena-Nuñez solution [11], which is in fact an unsmeared M-

theory solution with N = 2 supersymmetry and an AdS5 factor. We will find that the MN solution

will form a fundamental building block of the more general solutions we construct both in this and

next section, and that general IIA solutions can be thought of as superpositions of suitably rescaled

MN solutions.

In section 3.1 we present the general formulæ needed for the change of variables (2.2). Given

the central role of the MN solution in the subsequent analysis, and by way of presenting an explicit

example, we review the MN solution in section 3.2 and write it in terms of ρ, η and V . Following

this, in section 3.3, we show how to construct IIA solutions for a general λ profile with a single

intercept along the η-axis by superposing MN solutions.

3.1 Changing variables

The change of coordinates from y and r to ρ and η as given in (2.2) is implicit and what is more

varies from solution to solution. Explicit solutions for the potential V may be found from the

function ρ(r, y) by the following general method. The starting point are the functions ρ = ρ(r, y)

10



and ln(r) = V ′. Differentiating ρ with respect to η and ρ gives

0 = ∂rρ ∂ηr + ∂yρ ∂ηy

1 = ∂rρ ∂ρr + ∂yρ ∂ρy (3.1)

Differentiating y = V̇ with respect to η, then applying the operator ρ∂ρ to ln(r) = V ′ and equating

these two expressions for V̇ ′ gives

r∂ηy = ρ∂ρr (3.2)

Similarly appying the operator ρ∂ρ to y = V̇ , then differentiating ln(r) = V ′ with respect to η and

finally inserting the resulting expressions into the equation of motion V̈ + ρ2V ′′ = 0 gives

r∂ρy + ρ∂ηr = 0 (3.3)

The four equations in (3.1), (3.2), (3.3) can be solved simultaneously to give

∂ρr =
r2(∂rρ)

M ∂ρy =
ρ2(∂yρ)

M ∂ηr = −rρ(∂yρ)

M ∂ηy =
rρ(∂rρ)

M
where

M = r2(∂rρ)2 + ρ2(∂yρ)2

It is useful to write (
dr

dy

)
=

(
∂ρr ∂ηr

∂ρy ∂ηy

)(
dρ

dη

)

One may then invert the square matrix to get
(

dρ

dη

)
= J−1

(
∂ηy −∂ηr

−∂ρy ∂ρr

)(
dr

dy

)

where J = rρ/M is the 2 × 2 determinant. Given an explicit expression for D(r, y) and therefore

an explicit expression for ρ in terms of r and y, we now find expressions for η and V by integrating

dη = −ρ
r

(∂yρ)dr +
r

ρ
(∂rρ)dy

and

dV =

(
y

ρ
(∂rρ)− ln(r)

ρ

r
(∂yρ)

)
dr +

(
y

ρ
(∂yρ) + ln(r)

r

ρ
(∂rρ)

)
dy

respectively.

3.2 The Maldacena-Nunez solution

As we will see below the MN solution plays a crucial role in our construction. In this sub-section

we review it paying particular attention to its description in terms of the ρ, η and V variables. The

geometry describes the IR fixed point of an M5 brane wrapping the Riemann surface Σ2 and should

be viewed as a suitable quotient by a Fuchsian group acting on r , β. The eleven-dimensional metric

is

ds2
11 = (πNl3p)

2
3
W

1
3

2

(
4ds2

AdS5
+

8

(1− r2)2
(dr2 + r2dβ2) + 2dθ2

+
2

W
cos2 θ(dψ2 + sin2 θdφ2) +

4

W
sin2 θ

(
dχ+

2r2

(1− r2)2
dβ

)2

 (3.4)
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where W = 1 + cos2 θ. This can be found from the general solution (2.1) by the following solution

of the Toda equation

eD =
4

(1− r2)2
(N2 − y2) .

The change of coordinates to the Laplace equation variables takes the form

ρ(r, y) =
2r

(1− r2)

√
N2 − y2 , η(r, y) = y

(
1 + r2

1− r2

)
,

with the potential given by

2VMN(ρ , η ; N) =
√
ρ2 + (N + η)2 − (N + η) sinh−1

(
N + η

ρ

)

−
√
ρ2 + (N − η)2 + (N − η) sinh−1

(
N − η
ρ

)
. (3.5)

The line charge density for this solution is

λMN(η;N) = |η +N | /2− |η +N | /2 =

{
η if 0 ≤ η ≤ 1

N if η ≥ 1
(3.6)

A plot of this profile, together with the η ≤ 0 region obtained by the method of images (see

section 2.2.2), is given in figure 4

η

λ

N

N

−N

−N

Figure 4: The MN line charge density profile

The above solution gives

V̇MN (ρ , η ; N) =
1

2

√
ρ2 + (N + η)2 − 1

2

√
ρ2 + (N − η)2

which is shown in figure 5. We see clearly that the solution gives the correct line charge boundary

condition at ρ = 0. Furthermore, we see that |V̇ | decreases as ρ becomes large, as required by the

metric positivity conditions discussed in section 2.3.

12



Ρ

Η

V
 

Figure 5: V̇ for the MN solution

3.3 General Non-periodic Solution

We now turn to finding V for a general charge profile λ which intercepts the η-axis only at the

origin. The most general such profile that leads to a consistent spacetime is a sequence of n line

segments each of the form λi = aiη + sgn(η)qi for constant ai and qi. The charge density is thus

λ(η) =





a0η if |η| ≤ m1

a1η + sgn(η)q1 if m1 ≤ |η| ≤ m2

...

anη + sgn(η)qn if mn ≤ |η|

(3.7)

where we take the line segment λi to lie between points η = mi and mi+1.

To solve this problem we note two facts. Firstly, observe that any profile of the type given in

equation (3.7) can be viewed as a sum of suitably re-scaled and shifted λMN profiles (3.6)

λ(η) =
n∑

k=0

(ai−1 − ai)λMN(η;mi) . (3.8)

A proof of this statement based on Fourier transforms is presented in the appendix. Secondly, we

note that the Laplace equation (1.2) is linear, and so the solution satisfying the boundary condition

V̇ (ρ = 0, η) = λ(η) may be written as

V (ρ, η) =
n∑

i=0

(ai−1 − ai)VMN(ρ, η;mi)

where VMN(ρ, η;mi) is given in equation (3.5).

4 Uluru spacetimes

In the previous section we constructed spacetimes corresponding to general λ profiles which intersect

the η-axis only at the origin. As explained in section 2.2.1, a different type of profile are the Uluru

profiles; for these, λ intercepts the η axis not just at η = 0 but also at Λ/2 > 0. In this section

13



we construct the general Uluru solution. We present three equivalent expressions for V - each

form is useful in understanding a different feature of the solution. Since the solution for a general

Uluru profile is notationaly involved, we first present the simplest Uluru solution in section 4.1 to

demonstrate the key features of these solutions. The general Uluru solution is given in section 4.2.

λ

η

λ

η

λ

η

Figure 6: Examples of Uluru-type line charge profiles

4.1 A simple Uluru spacetime

The simplest Uluru solution has the following λ profile

λUluru(η) =





Nη if 0 ≤ η ≤ 1

N if 1 ≤ η ≤ K + 1

N(K + 2− η) if K + 1 ≤ η ≤ K + 2

This profile is interesting because the dual gauge theory is a theory with SU(N)K gauge group,

Nf = 2N fundamental ‘quark’ multiplets and K − 1 scalar multiplets in the bi-fundamental. We

can think of it as a distant cousin of N = 2 SQCDK . This theory is conformal and, in the large

N limit, has a large number of fields in the fundamental representation of SU(N). It is also not

an orbifold/orientifold or β-deformation of N = 4 SYM, and so provides perhaps the simplest non-

trivial example of an N = 2 dual pair. Gauge theories of this type have recently received attention

in the works [14].

1 K + 10 K + 2

λ

η

N

Figure 7: A simple Uluru line charge density profile
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The boundary conditions discussed in section (2.2.2) apply equally to the η = 0 and η = K + 2

intercepts in the λ profile. In particular, the method of images implies that we can look for solutions

with η on the whole real line with a periodic λ like in figure 9. To find V in this case we first note

that for a periodic λ profile we have

λUluru(η) =
N

2

∞∑

m=−∞

3∑

i=1

(|η +mΛ + νi| − |η +mΛ− νi|) , (4.1)

where Λ = 2K + 4, ν1 = 1, ν2 = K + 1, ν3 = −K − 2. The above can be seen most easily

by observing that a single Uluru profile and its image as depicted in figure 8 can be written as

the m = 0 part of the above sum; periodicity along the η axis is then achieved by summing over

non-zero m as shown in figure 9.

−K − 2

K + 20

N

−N

λ

η

Figure 8: A simple Uluru-type line charge with its image line charge

−2K − 4

2K + 4

0

N

−N

λ

η

Figure 9: A periodic Uluru-type line charge

Since the Laplace equation is linear and we know the form of V for each constituent in the

sum (4.1) we can write the potential V as

VUluru =
N

2

3∑

l=1

√
ρ2 + (νl + η)2 − (νl + η) sinh−1

(
νl + η

ρ

)
.
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In the spacetime metric and fluxes V itself does not play a role, rather V̇ and its derivatives V̈ , V̇ ′

and V ′′ = −ρ−2V̈ enter the expressions directly. For the periodic Uluru potential above we have

V̇Uluru(ρ, η) =
N

2

∞∑

m=−∞

3∑

l=1

√
ρ2 + (νl +mΛ− η)2 −

√
ρ2 + (νl −mΛ + η)2 (4.2)

This expression is conceptually useful as it shows how an Uluru solution can be ’built-up’ from

a periodic array of MN solutions. In order to analyse its asymptotics and convergence it will be

useful to re-write it as follows

V̇Uluru(ρ, η) =
N

4
∂−1

ρ2

3∑

l=1

∞∑

m=−∞

(ρ2 + (νl +mΛ− η)2)−1/2 − (ρ2 + (νl −mΛ + η)2)−1/2

=
N

2
√
π
∂−1

ρ2

3∑

l=1

∞∑

m=−∞

∫
∞

0
dx e−(ρ2+(νl+mΛ−η)2)x2 − e−(ρ2+(νl−mΛ+η)2)x2

=
N

2Λ
∂−1

ρ2

3∑

l=1

∫
∞

0

dx

x
e−ρ2x2

[
θ3(ξ−

l , q)− θ3(ξ+
l , q)

]

=
N

2Λ

3∑

l=1

∫
∞

0

dx

x3
e−ρ2x2

[
θ3(ξ+

l , q)− θ3(ξ−

l , q)
]

=
NΛ

4

3∑

l=1

∫
∞

0
ds e−ρ2/sΛ2

[
θ3(ξ+

l , q)− θ3(ξ−

l , q)
]

(4.3)

where s = (Λx)−2 and

ξ±

l =
π(νl ± η)

Λ
, q = e−(π/Λx)2

= e−π2s . (4.4)

and θ3 is an elliptic theta function. The integral form of V̇Uluru given in equation (4.3) is useful

to show that V̇Uluru is convergent. To see this we can divide the integral into two integrals with

0 < x < 1 and 1 < x < ∞, respectively. Upon a change of integration variables x → 1/x in the

latter integral it is easy to see that both integrals are convergent. The only potential divergence

comes from the x → ∞ limit. In this limit θ3(ξ±

l , q) → 1 as can be seen from the infinite product

expression for θ3

θ3(z, q) =
∞∏

m=1

(1− q2m)(1 + 2 cos(z)q2m−1 + q4m−2) . (4.5)

As a result, this potential divergence cancels between the two terms in the integral (4.3) above for

each value of l separately. It is also easy to see that the l = 3 part of V̇ in equation (4.3) is zero.

Another useful form for V̇ arises from the use of the following integral representation of the

modified Bessel function of the second kind K1
∫

∞

0
ds e−ρ2/Λ2s e−n2π2s =

2ρ

nπΛ
K1 (ωnρ) , (4.6)

where

ωn ≡
2πn

Λ
.

Inserting the infinite sum expression for θ3

θ3(z, q) =
∞∑

n=−∞

qn2
e2izn , (4.7)
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and using the above integral expression for K1 we arrive at another useful form for V̇

V̇ (ρ, η) =
NΛ

4

2∑

l=1

∫
∞

0
ds e−ρ2/Λ2s

∞∑

n=−∞

e−n2π2s
[
e2inξ+

l − e2inξ−

l

]

= −NΛ
2∑

l=1

∫
∞

0
ds e−ρ2/Λ2s

∞∑

n=1

e−n2π2s sin (ωnνl) sin (ωnη)

= −2N

π

2∑

l=1

∞∑

n=1

ρ

n
K1 (ωnρ) sin (ωnνl) sin (ωnη) . (4.8)

To see how such an expression arises as a solution to the original Laplace problem one may use a

separation of variables ansatz for V̇ with the most general solution consistent with the boundary

conditions at η = 0,Λ/2. This takes the form

V̇ =
∞∑

n=1

ρ {AnK1(ωnρ) +BnI1(ωnρ)} sin(ωnη) , (4.9)

for some constant An and Bn and with I1 being a modified Bessel function of the first kind. The

positivity condition (2.6) implies, in the large ρ limit, that the Bn coefficients have to be zero. The

An coefficients can then be fixed using the Fourier series expansion for λ

λN (η) =
∑

l=1,2

∞∑

n=1

2Λ

n2π2
sin(ωnνl) sin(ωnη) , (4.10)

and the ρ→ 0 expansion of K1

K1(ωnρ) =
1

ωnρ
+O(ρ) .

This expression is perhaps the most natural one to write down for the solution of the Laplace

equation (1.2) on an interval. It should also be clear now how to generalise this form of V̇ for

a general Uluru profile: one simply has to find the correct Fourier coefficients for λ and insert

them into the separation of variables ansatz (4.10). As we will see in the following section, the

expression (4.8) is also useful in extracting the asymptotic behaviour of V̇ . We plot V̇ for this

Uluru solution in figure 10

Ρ

Η

V
 

Figure 10: V̇ for the Uluru solution.
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4.2 General Periodic Solution

The considerations in the previous section generalise in a straightforward way to other Uluru-type

line charge profiles. Given an Uluru-type line charge profile which has zeros at η = 0,Λ/2, one can

construct a periodic line charge of period Λ

λ(η)→ λPeriodic(η) ≡
∞∑

α=−∞

λ(αΛ− η)

and so, due to the linearity of the problem, the solution for the general periodic array is given by

V (ρ, η)→ VPeriodic(ρ, η) ≡
∞∑

α=−∞

V (ρ, αΛ− η)

Using the result of section 3.3, that the general non-periodic line charge density may be written as

a finite sum of MN solutions, we find a corresponding statement for the general periodic solution

VPeriodic(ρ, η) = −
∞∑

α=−∞

L∑

i=0

(ai − ai−1)VMN(ρ, αΛ− η;mi)

where {ai} are the gradients of the line elements and {mi} are the η-position of the kinks of the

non-periodic profile, as described in (3.7). There are L such line elements in the range 0 ≤ η ≤ Λ/2

and Λ = 2
∑L

i=0mi is the period of the line charge density profile. Following the discussion in

section 4.1, V̇ for the general periodic solution can also be written in terms of theta functions

V̇Periodic(ρ, η) =
Λ

4

L∑

i=0

∫
∞

0
ds e−ρ2/Λ2s(ai − ai−1)

[
θ3(ξ+

i , q)− θ3(ξ−

i , q)
]

where

ξ±

i =
π(mi ± η)

Λ
q = e−π2s

The solution may also be written in terms of modified Bessel functions of the second kind

V̇Periodic(ρ, η) =
2

π

L∑

i=0

∞∑

n=1

(ai − ai−1)
ρ

n
K1(ωnρ) sin(ωnmi) sin(ωnη) (4.11)

5 Behaviour at large ρ

In this section we analyse the large ρ behaviour of the ten-dimensional metric and dilaton for the

Uluru solutions found in the previous section. We focus on the example discussed in section 4.1,

and state the corresponding (very similar) results for the general Uluru solution at the end of the

section. We are interested in these asymptotics in order to establish in which regions the IIA

solutions presented in the preceding sections are valid string theory backgrounds.

Consider then the periodic line charge profile given in figure 9 in the domain in which ρ≫ K.

Our starting point is V̇ which, in terms of an infinite sum over Bessel functions, we have shown to

be given by

V̇ = 8N
∞∑

n=1

ρ

nπ
K1

(
nπρ

K + 2

)
sin

(
nπ

K + 2

)
sin

(
nπη

K + 2

)
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Assuming nπρ≫ K + 2, the modified Bessel function may be approximated by

K1(x) ≈
√
π

2x
e−x

We shall also assume that K ≫ 2 is large, but finite. The first term in the series dominates so that

V̇ ≈ NT
√
Kρ sin

(
πη

K + 2

)
e−

πρ

K where T =
8
√

2

π
sin

(
π

K + 2

)
6= 0

From this it follows that

V̈ ≈ −πNT√
K

sin

(
πη

K + 2

)
ρ

3
2 e−

πρ

K

We may also show that

V ′′ ≈ NTπ√
ρK

sin

(
πη

K + 2

)
e−

πρ

K V̇ ′ ≈ πNT√
K
ρ

1
2 cos

(
πη

K + 2

)
e−

πρ

K .

It is useful to write these objects in terms of V̇

V̈ ≈ −πρ
K
V̇ V ′′ ≈ π

Kρ
V̇ V̇ ′ ≈ π

K
cot

(
πη

K + 2

)
V̇

As a consistency check we note that the metric positivity conditions (2.6) are satsfied in this large

ρ domain. The ten-dimensional IIA dilaton is given by

eϕ ≈ 1

NT

√
ρ

π
eπρ/K

and the metric coefficients are
√

2V̇ − V̈
V ′′

≈ 1

ρ2

2V ′′V̇

∆̃
≈ 2K

πρ
sin2

(
πη

K + 2

)
2V ′′

V̇
≈ 2π

Kρ

4V ′′ρ2

2V̇ − V̈ ≈ const

For large ρ, the dilaton grows exponentially without limit. This growth can be slowed by taking a

large K or a large N limit but, however large N or K become (provided they are finite) the dilaton

will become large beyond some value of ρ. We conclude that, for ρ ≪ K, the dilaton is small

and the physics is approximated well by a weakly-coupled ten-dimensional string theory; however,

where ρ becomes much larger than K, the theory becomes eleven-dimensional and the perturbative

string description breaks down. A similar analysis may be carried out for the general periodic case

(4.11). The key point is that V̇ dies off at large ρ - consistent with the positivity conditions of

the space-time metric - and this leads to a growth in the dilaton at large ρ so that, as described

for the example considered above, the solution is well-described by perturbative string theory for

small values of ρ, but M-theory is required to provide a global description of the theory.

6 Conclusions

In this paper we have constructed explicit solutions of Type IIA supergravity with 16 supercharges

and an AdS5 factor. These solutions are conjectured to be dual to general N = 2 SCFTs discussed

recently by Gaiotto [8]. Our construction is completely general: given a generalised quiver describ-

ing an N = 2 SCFTs there is a corresponding line charge profile λ for which we construct explicitly
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the corresponding spacetime metric, dilaton and fluxes. We identify two types of line-charge pro-

files. Firstly, there are the aperiodic profiles, of which the MN solution is the archtypical example,

for which the general solution is given in section 3. Secondly, there are the λ profiles which we

have called Uluru; the solutions of this type are discussed in section 4. It is interesting to note that

both kinds of solutions can be viewed as (finite or infinite) superpositions of MN solutions. This

fits in well with our understanding of the MN solution as a dual description of a stack of M5-branes

wrapping the hyperbolic plane. More general N = 2 SCFTs are given by some intersections of such

stacks of M5-branes and our solutions validate this intuition.

The solutions we have constructed can be viewed as reductions of M-theory solutions with

the GM ansatz. The reduction introduces a smearing along the M-theory circle. As a result the

solutions are valid only on length scales larger than the typical smearing scale. We have seen that a

generic feature of the periodic Uluru solutions are regions of spacetime for which the string coupling

is large. It seems that to understand completely the dual description of these N = 2 SCFTs we

will need to go to the full M-theory. For this one will need to find non-smeared solutions of the

Toda equation (1.1). We leave this problem to a future investigation.
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A The general line charge solution

A.1 The Maldacena-Nunez line charge

We start with the line charge density

λ(η) =

{
η if |η| ≤ N

Nsgn(η) if |η| > N

The charge density may then be written

λ(η;N) =

∫
∞

0
dζ GMN (ζ;N) sin(ζη) where GMN (ζ;N) =

2

π

∫
∞

0
dη λ(η;N) sin(ζη)

The expression for GMN (k) splits into two parts

GMN (ζ) =
2

π

∫
∞

0
dη λ(η) sin(ζη)

=
2N

π

∫ N

0
dη η sin(ζη) +

2N

π

∫
∞

N
dη sgn(η) sin(ζη) (A.1)
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which can be evaluated to give

GMN (ζ;N) =
2

πζ2
sin(ζN)

A.2 The general non-periodic line charge

We consider a line charge satisfying the physicality conditions summarised in section 2. Each line

segment lies in the range mi ≤ |η| ≤ mi+1 and is of the form λi = aiη+ sgn(η)qi. The requirement

that λ(0) = 0, imposes q0 = m0 = 0. The full line charge density if then

λ(η) =
n⋃

i=0

(aiη + sgn(η)qi)

The conditions on the line charge to give a physical spacetime theory with the correct flux quanti-

sation conditions require ai, qi,mi ∈ Z. This line charge can be written in terms of a Fourier sine

integral, as in the Maldacena-Nunez case above. The Fourier integral coefficients are

G(ζ) =
2

π

∫
∞

0
λ(η) sin(ζη)

=
2

π

n∑

i=0

[
ai

(
−η
ζ

cos(ζη) +
1

ζ2
sin(ζη)

)
+ qi

(
1

ζ
(1− cos(ζη))

)]mi+1

η=mi

≡ Gs(ζ) + Gc(ζ)

where

Gs(ζ) =
2

πζ2

n∑

i=0

ai [sin(ζmi+1)− sin(ζmi)]

Gc(ζ) = − 2

πζ

n∑

i=0

[λi(mi+1) cos(ζmi+1)− λi(mi) cos(ζmi)]

and λα(mβ) = aαmβ + qα. In these formal sums we must remember λα = 0 for α outside of the

range 0 ≤ α ≤ L. We first focus on Gc(ζ). Continuity of the line charge means that at the point

η = mi

λi−1(mi) = λi(mi)

means that Gc(ζ) = 0. The remaining contribution to G(ζ) is given by Gs(ζ) which, if we change

the index in the second sum, is given by

G(ζ) = − 2

πζ2

n∑

i=0

(ai − ai−1) sin(ζmi+1)

However, this is simply a finite sum of Fourier integral terms for the Maldacena-Nunez line charge

G(ζ) = −
n∑

i=0

(ai − ai−1)GMN (ζ;mi)

We see then that the general non-periodic line charge may be written as a sum of line charges for

the Maldecena-Nunez solution

λ(η) = −
n∑

i=0

(ai − ai−1)λMN (η;mi)
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Note that since ai < ai−1, this is a sum of Maldacena-Nunez line charges with positive coefficients

and so the metric positivity conditions on spacetimes constructed from such line charges will always

be obeyed.

A.3 General periodic line charge

Consider a charge density profile λΛ which intersects the η-axis at zero and then again at a point

η = Λ/2, one can construct such a profile, as a finite sum of Maldacena-Nunez charge densities as

described above.

λΛ(η) = −
L∑

i=0

(ai − ai−1)λMN (η;mi)

This may then be made aperiodic, with wavelength Λ

λΛ(η)→ λp
Λ(η) ≡

∞∑

α=−∞

λΛ(αΛ− η)

so that the general periodic line charge density may be written in terms of the Maldecena-Nunez

line charge density

λp
Λ(η) = −

∞∑

α=−∞

L∑

i=0

(ai − ai−1)λMN (αΛ− η;mi)
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