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Abstract

Multiplicative chain-ladder (CL) models are characterized by CL factors that explain the
development of claims from one period to the next. In classical CL models every development
period has its own CL factor. In the present paper we give a method describing how some
of these CL factors can be modeled by a joint functional dependence. This joint functional

form reduces the number of model parameters needed.

1 Introduction

Verrall-Wiithrich [14] considered the practical issue of parameter reduction with applications to
claims reserving models. The issue of over-parametrization is often raised in relation to the chain-
ladder (CL) technique because there is an extra parameter (CL factor) for each development
period. This also means that it is not possible to extrapolate individual CL factors to create
“tail factors” without making further assumptions. In this paper and in Verrall-Wiithrich [14]
we tackle this problem by formulating what is often done practically in an ad hoc manner into
a statistical method of model selection. The drawback of Verrall-Wiithrich [14] was that it was
necessary to solve the problem using numerical methods since closed-form solutions do not exist
for the general case. For this reason, reversible jump Markov chain Monte Carlo (RJMCMC)
methods were used. These methods are not straightforward to implement and they can be
unstable and time-consuming. In this paper, we restrict attention to the log-normal distribution
with conjugate priors. This leads to elegant analytical results that allow to do model selection
in a direct manner.

An important feature of the approach, both in this paper and in Verrall-Wiithrich [14], is that
a functional dependence allows for extrapolation of the claims development beyond the latest
observed delay period in the data, and for creation of tail factors in a very natural way. Thus,
these two papers show how the important issue of parameter reduction in claims reserving can
be addressed. The choice is between the more general distributional assumptions and more
complex implementation in Verrall-Wiithrich [14] or the more restricted log-normal case here
with closed form solutions.

The paper is set out as follows: in the next section we define the Bayesian log-normal CL
model and we provide first properties. In Section 3 we discuss parameter estimation, followed

by Section 4 where we describe model selection techniques. In Section 5 we explain claims
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prediction, uncertainty analysis and extrapolation for tail factor estimation. Finally, in Section
6 we revisit the liability example of Verrall-Wiithrich [14].

2 Bayesian log-normal CL model with conjugate priors

2.1 Model assumptions

To study the problem of parameter reduction in CL models we embed Hertig’s [7] log-normal
CL model into a Bayesian modeling framework. Based on this Bayesian approach we aim to
determine the set of CL factors that can be explained by a common functional dependence. For
this purpose we introduce a truncation index k € {1,...,J—1}. Before the truncation index each
CL factor is characterized by an individual development parameter and beyond the truncation
index all CL factors are described by a functional dependence of common parameters. This way
we obtain a whole family of models M®) & e {1,...,J—1}, each model M*) having a different
number of model parameters. Model selection will then be done on this family of models. The
models are set out formally in Model Assumptions 2.1, below.

We introduce the following notation, for detailed background information on claims reserving we
refer to Chapter 9 in Wiithrich [16]. We denote accident years by i € {1,...,I} and development
years by j € {0,...,J}. I is the last accident year considered and .J is the maximal possible
development delay. Throughout we assume I > J. The cumulative claim of accident year ¢ after
development year j is denoted by Cj ;, and C; ; is called ultimate claim or total claim amount

of accident year 7. At time I we have observations
Dr={Ciy; i+j<I, 1<i<I 0<j<J},
and our aim is to predict the inexperienced part of the claims given by
Di={Cij; i+j>1,1<i<I, 0<j<J}.
In order to achieve this task we make the following model assumptions for the claims (Cj ;); ;.

Model Assumptions 2.1 (Bayesian log-normal CL models) Choose a fized truncation

index k € {1,...,J —1}. Model M®E) s given by the following assumptions. There are given

standard deviation parameters o = (0g,...,05) € Ri“.
e Given parameter @ = (6o,...,05), the sequences (C;;)j=o,..; are independent (in i)

Markov processes (in j) with log-link ratios

C. .
;o= log | 2 — 1)
g 5 <Cz',j—1

~ N(0;,07) forj=0,...,J,

{6,Cij-1}
where we set C; _1 = v; for i € {1,...,I} with given constants v; > 0.
o Assume that the parameter @) = (Bo, ..., 0k_1,a,B) has a multivariate Gaussian distri-

bution

Q(k) = (QOa cee 79]6—170476)/ ~ N (l’l’(k:)vT(k)) )

2
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with giwen prior mean p®) = (B0s - - s =1, Ba, 18) € R**2 and positive definite prior
covariance matriz T®*) = diag(3, . .. ,T,?_l,Tg,Tg) e REH2)x(k+2) - [y 5 € {k,...,J} we
set

Gj = — jﬂ

|

The interpretation of Model Assumptions 2.1 will be divided into three parts, see Remarks 2.2,
2.4 and 2.6 below.

Remarks 2.2 (to Model Assumptions 2.1, part 1/3)

e Cumulative claims satisfy the multiplicative structure

Cij=Cij-1(exp{&;}+1). (2.1)

Thus, we have a multiplicative CL structure described by a shifted log-normal distribution,
and the excess claim C;; — C; j_1 has a multiplicative random structure described by a
log-normal distribution. This structure is in particular appealing for inflation modeling on
payments, see Shi et al. [12] and Wiithrich [15].

Property (2.1) might be criticized because it requires non-negative excess claims. If this
is an undesired model property one could also study the model C;; = C;j_1exp{& ;}.
The mathematical techniques would be exactly the same because we will only work on the
log-link ratios §; ;, see Lemma 2.5 below, however the modeling of the tail behavior would
become more sophisticated. Therefore, we refrain from considering the latter model in this

work.

For fixed truncation index k parameter 8 in model M) takes the following form
0= (0o,...,0k_1,a—kB,...,a—JB). (2.2)

The first £ components of @ are modeled by individual parameters ¢; for j < k and the
remaining components are characterized by the two common parameters a and 8 and a
linear functional dependence, that is, 841 = 6; — 8 for j > k. The aim will be to find the
optimal truncation index & and the optimal model M*), respectively, for a given data set
D;.

The distribution @ %) ~ N (,u(k),T (k)) reflects the prior knowledge about parameters.
This can come from expert opinion, from market information or from a regulatory view-
point. If there is only little information available or if we have heterogeneous beliefs we
choose a covariance matrix 7®) with big variances, which reflects heterogeneity and/or

uncertainty.

Note that we have assumed prior independence T*) = diag(Tg, e ,71371,7'2,7'[%) between

the components of parameter ©®) . In view of the following derivations this seems to be
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an unnecessary restriction because the whole theory holds true for any positive definite
covariance matrix 7). We do this choice to more clearly separate the effects coming from
different model characteristics. In practical applications this choice should be revised since

dependence in T™) may also help to incorporate shape constraints in tail factors.

o If there are known differences v; > 0 between the accident years i € {1,...,I} we can
implement these differences by initializing C; —1 = v;. If there is no prior information
available about these differences we set v; = 1 for all 7. These choices will not influence
the prediction of D¢, given the observations D; and the parameters Q(k), under our inde-
pendence assumptions, because C;o € Dy for all #+ < I. This is demonstrated in the next
corollary. However, these differences will become important if we choose more general
correlation structures in T(*) and between the components of (&;;);.;, see (2.5) below, for
the latter we also refer to Shi et al. [12] and Wiithrich [15].

An easy consequence of the model assumptions is the following corollary (the proof is completely
similar to the one of Lemma 5.2 in Wiithrich-Merz [17]).

Corollary 2.3 Choose model M¥). Under Model Assumptions 2.1 we have for i > 1 — J

J
E|Ciy|Dr.®] = i T (exo{;+03/2} +1)
j=I—i+1
k—1 J
= Ci—i J] (exp{tj+02/2}+1) [ (exp{a—jB+c2/2}+1),
j=I—i+1 j=(I—-i+1)Vk

where x V y = max{xz,y} and an empty product is defined to be equal to 1.
Remarks 2.4 (to Model Assumptions 2.1, part 2/3)

e Corollary 2.3 provides the multiplicative CL structure for given parameters ©®) in model
M®) with CL factors defined by f; = (exp{6; + 05/2} +1). It also shows that the choice

of v; has no influence on the prediction under our independence assumptions.

e Before the truncation index k every CL factor is modeled individually by 0;, j < k, after
the truncation index &k the CL factors are modeled by the two common parameters « and
[ using an exponential decay with rate § for j > k, that is,

fj =exp {a —jB+ UJZ/2} +1,
see also (2.2). Thus, we use a curve fitting method by specifying an exponentially decaying
function. From a purely theoretical point of view the fitted curve could have any other
functional form and our theory would still work. Choice (2.2) has the advantage of simplic-
ity and tractability whereas many other functional forms will in general require simulation
based solutions similar to Verrall-Wiithrich [14]. The interested reader is referred to De
Jong-Zehnwirth [4], Section 4 in England-Verrall [5], Verrall [13] and, in particular, Section
5 of Boor [2] for other functional forms. In our numerical example, the exponential decay
seems quite reasonable, see Figure 5 below, an other possible choice is provided in (6.3)

below.



O©CoO~NOOOUTA,WNPE

DO UITUOTOOITOITAORDBRADIMDEADBEDIMNDIEDRERDRDNWWWWWWWWWWNNDNNNNNNNNRERRPERPERPRPRERERE
OORWNRPOOO~NOUODPRWNRPFPOOONOUPRARWNRPRPOOONOURWNPOOO~NOOPAWNPRPOOONODUORMAWNEO

2.2 Properties of Bayesian log-normal CL models

We introduce some notation that simplifies the outline. The cardinality of the set of indexes
Z=A{1,...,1} x{0,...,J} is denoted by d = I(J + 1) and we define the vector of log-link ratios

&= (&j)im1, 1j=0,.0 = (€105 &5 €0, -, E1,0) €RY

The joint density in model M®*) of ¢ and parameters ©*) at position (&, O(k)) is given by

F®) <£79<k>) — (k) (5 ‘g(k)> p®) (9(1@)7 (2.3)
where we have prior density
o) <9(k)> _ 1 exp 4 -2 (0% — p®y (TH)=1 gk _ 1, (k)
(2m)k/241 det(T(K))1/2 2 ’

and likelihood function of the log-link ratios £, given parameters B(k),

" (E ‘e(k)) ~ (2m)i/2 ;et(E)l/z P {_; A A(k)a(k))}’ z4

where we denote the diagonal covariance matrix of the log-link ratios by
¥ = diag(o2,...,0%,...,08,...,0%) € R¥*?, (2.5)

and we define the matrix A®) = (B, ..., B})" € R +2) guch that matrix By € RUFTDx(*+2)

describes the parameters for a single accident year ¢ and is given by

0 ... 0
/ 1
B), = 0 B E
0 0] 1 1
0 0| —k —J

with 1 € R**¥ being the identity matrix. This choice implies, see also (2.2),
=080 crR/  and E [s (@“ﬂ — AWM ¢ RY.

From this we see that A®*) allows the conditional expectation of the log-link ratios &€ to be
expressed in terms of the parameters ©® in model M®*) . An easy consequence of Model

Assumptions 2.1 is the following lemma (we leave the proof to the reader).

Lemma 2.5 Set Model Assumptions 2.1 for model M®) . The joint density f©*) (E,G(k)) of €

and ©%) describes a multivariate Gaussian distribution with
13 N A(k)”(k) Y4+ A(k)T(k)(A(k))/ AR) (k)
ok | u®) ’ T (AR (k) '

The random vector € has in model M®) ¢ multivariate Gaussian distribution with mean m®) =
A® u®) and covariance matriz ©*) = ¥ + AR TE (AF))
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Remarks 2.6 (to Model Assumptions 2.1, part 3/3)

e We have assumed that all log-link ratios ; ; are conditionally independent. This inde-

pendence assumption could be replaced by any multivariate Gaussian distribution and we
would still get closed form solutions, see Merz et al. [11], Shi et al. [12] and Wiithrich [15].
At the current stage we refrain from doing so because we do not want to mix dependence
with tail factor estimation, but it is worth analyzing this extension numerically in future
work. Basically, it means that the covariance matrix X, defined in (2.5), needs to be re-
placed by any symmetric positive definite matrix and then the whole theory, as presented

in this article, still runs through.

Omne might criticize the Gaussian distribution assumption of the log-link ratios &; ; and
the corresponding Gaussian priors ©®). Our model belongs to the Bayesian models with
conjugate priors which have the advantage of staying in the same family of distributions
for the posteriors, see Section 2.5 in Bithlmann-Gisler [3] and Section 8.1 in Wiithrich [16].
Thanks to the multivariate Gaussian assumptions we obtain closed form solutions as seen
in Lemma 2.5 and Corollaries 3.1 and 3.2. Other distributional assumptions, in general,
only allow for simulation results, similar to Verrall-Wiithrich [14], where (complicated) re-
versible jump Markov chain Monte Carlo (RJIMCMC) simulations are used. The purpose
of this paper is to present a model which has a closed form solution, this facilitates sensi-
tivity analysis. The explicit choice of the distributional assumption will become especially
important for the calculation of tail-sensitive risk measures such as Tail-Value-at-Risk.
Our risk measure choice (5.1) is less tail-sensitive and, therefore, the log-normal model is

usually sufficient.

If we relax the distributional assumptions we may consider distributions from the expo-
nential dispersion family with conjugate priors, see Lee-Nelder [9, 10], Gigante et al. [6],
Section 2.5 in Bithlmann-Gisler [3] and Section 8.1 in Wiithrich [16]. In our situation this

would provide the following distributional form

J I
log fiscans (€:0%) = DD = [6usb; — b(6y)) + logel€ig wiy /) (2.6)

j=0 i=1 ¢

k—1
+ ZJ[M@ O EEY wl e — b(a)] + const.

j=0 "7 acfa,B} °
The first term describes the log-likelihood function of the log-link ratios &, given the
parameters 6 = B,0™) . The second term describes the parameters 0%) that model the
first k of the CL factors individually and the remaining CL factors are modeled by common
parameters o and § (using the linear functional dependence). Our Gaussian model uses the
generic choice b(f) = 2 /2. The general form (2.6) is less tractable than the Gaussian one
because marginals do not have explicit forms. Formula (2.6) is very close to hierarchical

generalized likelihood models (HGLMs) and calibration can also be done using maximum
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likelihood estimation (MLE) methods, see Gigante et al. [6]. Since this framework is less

tractable, we have decided to stay within Assumptions 2.1 for the present work.

3 Model calibration in a fixed model M®*)

We fix a truncation index &k and a model M®*) and assume that we have observations D; with
I > J. There are the parameters > = diag(ag, . ,a?,, cee 03, e ,03), ,u(k) and T™) that need
to be specified. As explained in Remarks 2.2, the parameters u*) and T*) correspond to prior
knowledge or a market view and, therefore, cannot be calibrated from individual data Dy. Thus,
we either have this prior knowledge and then p®) and T*) describe this information or there is
no prior knowledge in which case we choose large variances for T®) which make the influence of
the prior distribution negligible (non-informative) for the prediction of Df.

There remains the calibration of 3. This is described in Subsection 3.1 below. In view of the
HGLM approach (2.6) we could also get to a slightly different model interpretation (more in
the light of a frequentist’s approach). This leads to another way of model calibration which we

would briefly like to present in Subsection 3.2.

3.1 Model calibration using an empirical Bayesian approach

By an abuse of notation we set (note that the corresponding o-fields generated by C; ; and &; ;,

i+ j < I, are the same)
Dr={&;; i+j<I, 1<i<I 0<j<J}.

Let ¢ = |Dy| < d denote the cardinality of D;. Then, we define the projections P, : R* — R¢
and P, : R — R4 ¢ such that we obtain a bijective decomposition

¢~ (&p6n;) = (PIEP2E),

with £p, = P1§ containing exactly the components of £ which are in Dy, i.e. are observed at
time I, and £D§ = P& are the remaining components of €. A direct consequence of Lemma 2.5

is that the parameters 0%) can be integrated out in the following sense.

Corollary 3.1 (marginal likelihood functions) Set Model Assumptions 2.1 for model M¥).
The random vector (éDpé’D;) has a multivariate Gaussian distribution with the first two mo-

ments given by

u —E[ep,] = PAOL® a9 = Cov(€p,) = WP,
O ufen] oAt o (6) = AR

The covariance matriz between the components £p, and épf s given by

k k
(E§C?I>/ = E(I,I)C = Cov (51)17517;) = Plz(k)P2/~
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This corollary is an easy consequence of Lemma 2.5 because it only describes a permutation
(relabeling) of the components of £&. However, it is useful for parameter calibration, prediction

and model selection as we will see below.

Corollary 3.2 (predictive distribution) Set Model Assumptions 2.1 for model M®). The
conditional distribution of ED? giwen &p,, is a multivariate Gaussian distribution with condi-

tional mean given by

6] = D+ 5, (519) 7 (n, — ).

and conditional covariance matriz given by

ép,) == - =, (zﬁ’“))_l ..

Proof of Corollary 3.2. The proof is a standard consequence of Corollary 3.1, see for instance Result 4.6 in

t(k
u‘}’? ) {5Dc

et — Cov (&py

Johnson-Wichern [8]. O

In view of Corollary 3.2 we only need to calibrate the standard deviation parameters o which
enter ¥ and X*), respectively, and then we can predict the lower triangle in model M®*). In a
full Bayesian approach we choose a prior distribution for these standard deviation parameters.
However, then we lose analytical tractability. Therefore, we turn here to an empirical Bayesian
viewpoint, estimating these parameters with MLE methods. The marginal likelihood function

of the observations §p, for the standard deviation parameters o is given by, see Corollary 3.1,

£ (olen) = 1Miep,) 1)
1 1
= (27‘1’)0/2 det (2} ( ))1/2 exXp {_2(591 — ugk))/(zgk))—l(gpl B M([k))} .

Maximization of this marginal likelihood function provides the MLE " for o in model M®*). If
we replace the standard deviation parameters o by their MLEs ") then Corollary 3.2 provides
the full predictive distribution of the lower triangle D¢ = {¢; j; ¢ +j > I}, conditionally given
the observations Dy, that is,

(k)
éo; (D1}

~ N (Rt S (3.2)
where ,upOSt( ) and i?SSt( ) correspond to ,u,pOSt( ) and Z}I)?St(k) with o®) replaced by .

3.2 Hierarchical maximum likelihood estimation

The model calibration in the previous section was done using the interpretation of having a
Bayesian model. However, we could also interpret this model as a HGLM, see Lee-Nelder [9, 10]
and Gigante et al. [6]. We explain this in more detail next. For HGLM we assume a hierarchical

model in the sense that there is a first level of effects

9 N (), T,
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This may reflect the regulatory viewpoint where (¥ describes the insurance market in average
and %) the company specific features. Based on this first level, we then have responses | (oM} ~

k) (£|6™*)) according to (2.4). These use the linear predictor given by A®@®) Lee-Nelder [9]
introduced the h-likelihood of the data D; and the effects 8% given by, see also formula (8) in
Gigante et al. [6],

k—1T1—3 1
hk) (&ap x [ ( 5 (& —0;)* —log Ug> — 5305 - uj)2] (3.3)
J

7=0 L:=1
1 9 1 ,
) R DRy

J
+ 2
ac{a,B} “

]: k i=1

I—j

where all remaining normalizing constants are put into the proportionality sign oc. For conjugate
HGLMs, the h-likelihood (3.3) can be viewed as an augmented GLM with data Dy and pseudo-
data p®). Therefore, for given T, the effects 0%) and the standard deviation parameters o
can be estimated by MLE providing the following system equations

Ahk) (Eppg(k)) L, k) (EDI’Q(’“))

= = forj=0,....k—1 4

a0, and 9o, 0 orj=0,...,k—1, (3.4)

®) <€D,,9(k)) 0 . ®) (Eng(k)) . P y .
3o p) = an 9o, = orj=k,...,J. (3.5)

2(k) ~(k
The solution of (3.4)-(3.5) provides the MLEs 8  and 6'( : in model M®). Observe that for

7 <k —1 we can do an optimization for each development year individually, whereas for j > k
we do an optimization over all development years simultaneously.

If there is no market view about pu®, weset 7 = ... =141 = 74 = 78 = oo on the right-hand
side of (3.3). Then the (non-existent) market knowledge p(®) disappears and we are back in the
classical GLM context, optimizing the right-hand side of (3.3) neglecting the terms containing
any additional knowledge (no augmentation).

The random variables &; ; € D in the lower triangle are then approximated by independent (for
i+ j > I) log-link ratios

(k) (k) (k)
£ij ~ N 0, ,o; ). (3.6)
{Dr}
Note that this second estimation approach also works in the more general HGLM situation
(k)

given in (2.6). The disadvantage of (3.6) is that it only considers the point estimator &  and
then simulates conditionally on this estimator according to (3.6). But unlike (3.2), it does not
consider uncertainty in this estimator and the quantification of this uncertainty is only obtained
by rather involved approximations, using asymptotic MLE results (see for instance Section 6.4.3
in Wiithrich-Merz [17] and Gigante et al. [6]) or bootstrap simulations. Therefore, we prefer the

empirical Bayesian approach of Subsection 3.1.
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4 Model selection and parameter reduction

In the previous sections we have defined a whole family of models M®*), k e {1,...,J—1}. We
now try to find the model that fits the data {p, best.

4.1 Model selection: Bayesian approach

The marginal distribution (3.1) has a very appealing form that allows for model selection. The
general difficulty in such model selection problems is that the dimension of the parameter space
may be different in each model M*). Therefore, a simulation approach for model selection
needs a sophisticated design because these simulations need to experience parameter spaces
having (potentially) different dimensions. To overcome this problem state-of-the-art simulation
uses RIMCMC methods as demonstrated in Verrall-Wiithrich [14]. The general design of this
RJMCMC simulation is very involved. The beauty of our model lies in the fact that we can
completely avoid simulations because (3.1) has a sufficiently nice closed form. This we explain
next.

We choose a prior distribution on the models M®) . k e {1,...,J — 1}, themselves, i.e.
J-1
P (M('“)) >0 with  >.p (M(’“)> — 1.
k=1

The posterior distribution on the model space, given observation £y, is given by

_ f®(Ep,) p(MB)
Yo fO(ép,) p (M)

where the marginal f*) (&p,) is explicitly given in (3.1). Thus, model selection tells that we

p(M®]&n,) x fep,) p(MP), (4.1)

should choose the model with the maximal posterior probability weight p(M(k)IEDI) in (4.1).
If there is no dominant model we may also choose model averaging using these posterior model
probabilities. Averaging then also includes a component for model uncertainty within this family
of models M®) ke {1,...,J—1}.

The latter may also raise the question whether we should speak about different models M&)
ke{l,...,J — 1}, or whether we have simply an overall Bayesian model. Following RIMCMC
methods we prefer the first terminology because it emphasizes that parameter spaces may have
different dimensions which need to be experienced. This always needs a rather careful treatment,

in particular, if simulation methods are applied.

4.2 Model selection: HGLM approach

In the previous subsection, we have done model selection in a Bayesian approach. If we use
the HGLM model interpretation of Section 3.2, we could also use other statistical measures
for model selection. In order to find the parameters in the HGLM approach we consider the
h-likelihood A(®) in each model M®*), see (3.3). That is, in model M® =1,...,J—-1, and

with augmented observations (§p,, 1)) we maximize the log-likelihood function

log £(*) <9<k>, U‘ €n,, u(’“)) — (57)[’ g(k)) ,

10
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(k)

~(k
This provides MLEs 6  and 5'( ), see (3.4)-(3.5). Akaike’s information criterion (AIC) [1] of
model M) is given by

a(k)
AIC(k) = —21og £® <e o

gDI,u(’“) +2(k+2)+2(J +1). (4.2)

Statistical theory says that the model with the smallest AIC should be preferred. The second
term in (4.2) accounts for the k + 2 parameters in ©™*) and the last term for the J 4 1 standard
deviation parameters o. Since all models have the same number of standard deviation param-
eters o, the term J + 1 is irrelevant for model selection and can be dropped for our analysis.
Note that the second term in (4.2) punishes more complex models, thus prefers joint functional

dependence in the CL factors which gives parameter reduction in o,

5 Claims prediction and tail factors

5.1 Claims prediction and uncertainty analysis

Having selected a model M) we calculate the predictive distribution in the lower triangle DY,
conditionally given the upper triangle D;, see Corollary 3.2 and formula (3.2). In practical ap-
plications this is done numerically by constructing the empirical distribution of the outstanding

loss liabilities as follows:
~(k
1. Simulate E(D?) according to (3.2).

2. Calculate for each accident year i« = I — J + 1,...,I the ultimate claim C; ; and the

corresponding outstanding loss liabilities given by
d S
Ri=Ci5—Cir-i=Cir H (eXP { (ﬁpg) } + 1) -1,
j=I=i+1 ”

~(k ~(k
where (E;;) ~denotes the component of 5%; that corresponds to cell (i,7) in the lower
Z’J
triangle Df.

3. Calculate the total outstanding loss liabilities in the lower triangle R = ZZI: 1—7+1 Ri

4. Repeat steps 1.-3. and obtain the empirical distribution of the outstanding loss liabili-
ties R in the lower triangle. Its conditional mean is denoted by R = E[R|D;] and the

corresponding conditional mean square error of prediction (MSEP) by

msepp, (B) = E [ = fzﬂ DI} — Var (R|Dy). (5.1)

R is called (best-estimate) claims reserves and is used as predictor for the outstanding loss
liabilities R at time I. The conditional MSEP (5.1) is a measure for quantifying prediction
uncertainty of R. For a detailed explanation and discussion of best-estimate claims reserves and
conditional MSEP we refer to Section 9.3 in Wiithrich [16].

11
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Note that in the above simulation algorithm we have chosen a fixed model M®*) . If one wants to
include model uncertainty within the considered family of models, then we should also integrate
the model selection step with posterior model probabilities given by (4.1) into the simulation

algorithm.

5.2 First order approximation

In the previous section we have estimated the claims reserves using simulations, in this section
we derive an analytical approximation using a first order expansion. Fix accident year i €
{I —J+1,...,I}. The best-estimate claims reserves R = E[R;|D;] = E[C; ;D] — Ci 1 are
in model M®) given by, see also Corollary 2.3,

R = E [E [CN ‘DI,@U“)} ]DI} — s

J
= CiE H (eej+a§/2+1> H (ea—jﬁ+o§/2+1) Dr| — Ciri
j=I—i+1 j=(I—i+1)Vk

For truncation index k the development periods j < k behave mutually independently, given Dy,

and they are also independent of all development periods j/ > k. This provides decomposition

k—1 J
}A% =Ciri H E [69j+0?/2 * 1‘ DI} E H (ea—jﬁ+0]2-/2 + 1) Dri—1]. (52)
j=I—i+1 J=(I—i+1)Vk

The second product in (5.2) cannot easily be decoupled because all terms depend on the same

random variables v and 3. We have the following equality

J A J—((I—i+1)VE)+1 n A
| I (een)n =i S ¥ s [[[ehen)
j=(I—i+1)Vk n=1 J1<<Jn m=1

Thus, we need to calculate the last expected values. They are given by

n
I1 O mBta? /2

m=1

E

n
DI] — H E |:€Of—]mﬁ+0']27n/2)plj| 627n<m' Cov(a—jmﬂ,a—jm/mDI)‘
m=1

If the last (co-)variance terms are comparably small compared to the posterior means we can set
the last terms equal to one. This will be the case in our numerical example below (see narrow

confidence bounds in Figure 5). This then justifies the first order approximation

n
E [H O—imbBta /2
m=1

which provides approximation (and lower bound)

D1] ~ ﬁE[ea—jmﬂ“?m/?‘DI}, (5.3)

m=1

J J
E I1 (ea*ff““?/? n 1) Dl ~ [ E [eaﬂ'ﬁ*f’?/? n 1‘ DI] ,
j=(I—i+1)Vk j=(I—i+1)Vk

12
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. . . 5 Happrox __ .
and, moreover, we obtain approximation R; ~ R;"*"* with

k—1 J
approx i+o2 —Jj 7
RIPPY* = 1 | | E {69J+Uﬂ/2 + 1‘ DI] I | E [ea iBto5/2 4 1‘ DI} —1]. (54)
j=I—i+1 j={I—i+1)VEk

Note that all terms on the right-hand side of (5.4) can be calculated explicitly and no simulations

are needed.

5.3 Tail factors

In view of (5.2) we can also model a tail factor expansion for the claims development beyond
the last observed development period J. This modeling needs some care in the sense that we
choose a final development period J € N that needs to be finite. This then allows to expand
the model to

k—1 Joo
]fz;ﬂt =Ciri H E [66j+"]2'/2 + 1‘ D[} E H <ea_]ﬁ+032'/2 + 1) Dr|—-1],
j=I—it1 j=(I—i+1)Vk

where we set 0]2- = 03 for j > J. The reason for choosing J, finite is that 8 can become negative
with positive probability which would provide an infinite mean in the last term for an infinite
product. In our example below J,, = 50 is sufficient for capturing the tail, this can be seen by

expanding/approximating the tail as in the first order approximation (5.4).

6 Liability insurance example

We consider the liability insurance run-off data from Verrall-Wiithrich [14]. The data is provided
in Table 4, below. The data consists of claims payments for I = 22 accident years and J+1 = 22
development years. We would like to calibrate models M®*) k& = 1,...,20, to this data set.

Thus, we have the choice between 20 different truncation indexes k.

6.1 HGLM model selection without market knowledge

We start the analysis of the data by using classical MLE ignoring any market knowledge pu(*)
in the h-likelihood (3.3). As described in Subsection 3.2 we therefore set 74 = ... = 7,1 =
To = T3 = 00 on the right-hand side of (3.3) and calculate the corresponding MLEs dropping
the prior knowledge part.

Observe that for our data we have I = J + 1, and therefore we have only one observation C' 21
for the last development year J = 21. This implies that we cannot estimate variance parameter

o3, from the data, therefor?k;zve (simply) set in all derivations 03, = 03.
= ~(k
We start with the MLEs 8  and 5'( ) for £ = 20, thus all development periods are estimated

individually, see (3.4). This provides the estimates given in Figure 1. We see a negative slope in
=(20)
the estimates 6,  as a function of j and one is tempted to fit a straight line either at truncation

index k = 7 or at truncation index k& = 10. This we are going to analyze in the sequel.

13
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Figure 1: MLEs @  for k = 20 supported by confidence bounds of two standard deviations (we
=(20)
have excluded #;  for j = 0,1 in the picture because they are much bigger than the remaining

values).

For k € {1,...,20} we estimate 8%) and o*) using the MLE system (3.4)-(3.5) and then we
calculate AIC given in formula (4.2) for each model M®*) (we drop all terms coming from the
market view because at the moment we do not assume market knowledge, i.e. 7; = 00). The
AICs (4.2) are provided in Figure 2. The picture confirms that the optimal truncation index
for our data set is k = 10, closely followed by k£ = 9,7,11. Thus, the analysis explains that we
should model individually the development parameters for j = 1,...,9 and for j > 10 we model

them by the common parameters « and . This choice provides estimates for the intercept
~(10 ~(10)
a7 = —0.9060 and for the slope = 0.2497 in model M19_ In Figure 3 we compare the

model where we estimate each development year j individually to the model with truncation
index k = 10. We see that the straight line fitted for 7 > 10 is close to the individual MLEs
of 0;, with only the last two periods j = 20, 21 differing considerably. These differences should
not be over-stated because the individual estimates are based on 2 observations for j = 20
and 1 observation for j = 21, only. Moreover, the confidence bounds for j = 20,21 may also be
questioned because they are based on 2 observations only, recall that we set 03, = 03, because 03,
cannot be estimated from 1 observation. The latter suggests that also the variance parameters
2

o; may be modeled by a functional form after some truncation index. For the time-being we

refrain from doing so.

6.2 Bayesian model selection with different prior knowledge

We turn to the Bayesian case where we directly work on the marginals {5, given by Corollary

3.1. Then, we only need to estimate the standard deviation parameters o for the different models

M*) using likelihood (3.1). We first specify the prior parameters pu*) and 7). Since for the

14
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Figure 2: AIC(k) for k =1,...,20, see formula (4.2).

present example we do not have this information we make an ad-hoc choice that allows to study
the sensitivities in the reliability of the prior knowledge. We choose the MLEs for pug, ..., pr_1
and we choose prior tail parameters y, = —1 and pg = 0.25, the latter two choices are motivated
by the findings in the previous subsection. For T®) we make three different choices: (1) Prior
Model 1: all coefficients of variation are set equal to 1; (2) Prior Model 2: coefficients of variation
of Oy, ...,0,_1 are set equal to 0.1 and coefficients of variation of tail parameters « and ( are
set equal to 1; (3) Prior Model 3: all coefficients of variation are set equal to 0.1. Prior Model
1 corresponds to vague prior knowledge. Prior Models 2 and 3 put more emphasis on the prior
knowledge, in Prior Model 2 we have informative prior knowledge for the individual parameters
6; and vague prior knowledge for the tail parameters of o and 3, and in Prior Model 3 we have
informative prior knowledge for all parameters.

Finally, we assume that all models M®*) are equally likely a priori, resulting in the choices
p(M®)) =1/(J —1) for k=1,...,J — 1. Under these assumptions we calculate the posterior
model probabilities (4.1) for the three prior information choices Prior Models 1-3, the results
are presented in Figure 4. In Prior Model 2 (informative prior knowledge for 6;’s and vague
prior knowledge for o and () there is not a clear preference, truncation index k& = 7 has the
biggest posterior model probability of about 30% and truncation index k& = 10 receives posterior
model probability of about 20%. In Prior Model 3 (informative prior knowledge for ¢;’s, a and
B) truncation indexes k = 9, 10 are clearly favored with a posterior model probability of almost
40% each. The reason for the differences between Prior Models 2 and 3 is that in Prior Model
3 we have a pre-specified mean of g = 0.25 (with coefficient of variation 0.1) which fits to
models M9 and M©®) . Therefore, these models obtain more posterior probability weight in
Prior Model 3 compared to Prior Model 2 where the information about the prior slope pg has
only little credibility (and may easily be changed by observations).

For vague prior information (Prior Model 1) we clearly favor truncation index k = 6. This might

15
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Figure 3: Individual MLEs @  for k£ = 20 compared to the model with truncation index k = 10.

be a small surprise because intuitively we would prefer £ = 7. The choice k = 6 reflects the fact
that in case of little information about individual parameters we target for models with only few
parameters and hence rather go for a smaller truncation index k due to parameter uncertainty.
These considerations lead to the following conclusions. If we have informative prior knowledge
we choose truncation index k£ = 9. If we have vague prior knowledge we try to reduce the number
of parameters (to reduce parameter uncertainty) and we go for truncation index k = 6.

In Figure 5 we present the posterior estimates of the parameters given by
-1
epost(k) ) |:0(k)‘ ED[] — u(k) + T(k) (A(k))lpll <23k)) (51)1 B IJ‘(Ik)> , (61)

which are surrounded by intervals of two posterior standard deviations obtained from the con-

ditional covariance matrix

TPost(k) — Var (0(’0’ £p ) = 7®) _ 70 (AW p! (zg’“)) T AR, (6.2)

I

On the left-hand side (a) of Figure 5 we plot truncation index k = 9 for Prior Model 3 and on the
right-hand side (b) truncation index k = 6 for Prior Model 1. We observe rather narrow intervals
in both situations, which says that posterior parameter distributions are very concentrated. For
Prior Model 1 they are slightly larger because we have more uncertainty concerning the prior
knowledge. This is partly compensated by the fact that we use more observations for k = 6 to
estimate the parameters of o and 8 compared to k = 9. These intervals for parameters mean
that there is only little tail parameter uncertainty, if we believe into the truncation index model,

and the dispersion in the MLEs in Figures 3 and 5 comes from process uncertainty.

6.3 Claims prediction and uncertainty analysis

Using the previous model selection analysis we calculate the predictive distribution in the lower

triangle D¢, conditionally given the upper triangle Dy, see Corollary 3.2, in the selected model(s).

16
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Figure 4: Posterior probability weights (4.1) for models MW® g =1,...,J—1, for the three
different Prior Models 1-3.

-2.0
-2.5
-3.0
-3.5
-4.0
-4.5
-5.0

-5.5
-6.0
-6.5 -6.0

¢ MLE

theta post ====- conf+ ====- conf - * MLE

theta post ----- conf+ ====- conf -

Figure 5: Resulting estimates 6P*(%) surrounded by intervals of two posterior standard devia-
tions, see (6.1)-(6.2). (a) lhs: Prior Model 3 for truncation index k& = 9; (b) rhs: Prior Model 1

for truncation index k = 6.

From this posterior distribution we can then calculate the best-estimate reserves and the corre-
sponding conditional MSEP. Since, in general, the closed form solution is too complicated we use
the simulation algorithm presented in Section 5.1. In Table 1 we present the empirical results
which are based on 300’000 simulations. We first consider lines (a) and (b) of Table 1. We see
that more prior information reduces prediction uncertainty (conditional MSEP of Prior Model
3 with k£ = 9 versus conditional MSEP of Prior Model 1 with k£ = 6). The resulting reserves are
very similar, they are slightly higher in Prior Model 1 because its slope § of the tail parameter
is slightly smaller in Prior Model 1.

Lines (c¢) and (d) in Table 1 correspond to the case were each development period is treated
individually. We see a strong increase in the conditional MSEP. Thus, estimating each devel-
opment period individually strongly increases uncertainty which is in line with the statements

of over-parametrization. Moreover, we can see that prior information strongly helps to decrease
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claims reserves B msep R‘Dl(ﬁ)l/ 2
(a) Prior Model 3, truncation index k =9 1438947 52’090
(b) Prior Model 1, truncation index k = 6 1'440°738 537321
(c) Prior Model 3, individual development periods 17485416 59’816
(d) Prior Model 1, individual development periods 174927284 68’240
(e) Bayesian ODP model of Verrall-Wiithrich [14] 1'476’301 54’073

Table 1: Resulting best-estimate claims reserves R and corresponding conditional MSEP for (a)
Prior Model 3 with truncation index £ =9 and (b) Prior Model 1 with truncation index k = 6.
These are compared to the best-estimate claims reserves and the conditional MSEP if we model
each development period individually in (c) Prior Model 3 and (d) Prior Model 1, respectively,
and to (e) the Bayesian ODP model of Verrall-Wiithrich [14], Table 4.

uncertainty, line 3 versus line 4 in Table 1. We also observe that the resulting best-estimate
claims reserves are higher in the individual development period modeling approach compared to
the truncation index model. This comes from the fact that the truncation index model judges
the tail decay more favorably for our data set, see Figure 5.

If we compare these results, given in Table 1, to the Bayesian over-dispersed Poisson (ODP)
model of Verrall-Wiithrich [14], Table 4, we see that they are quite similar. With comparable
prior uncertainty as in Prior Model 3, we choose truncation index k = 7 in the Bayesian ODP
model and the resulting reserves and uncertainties are rather similar to our model (though the
model assumptions are very different). Again, our model has the advantage over the Bayesian
ODP model that we do not need involved RJIMCMC simulations, see Section 3 of Verrall-

Wiithrich [14], but obtain model selection and posterior parameters analytically.

frequency
frequency

[ T T [ T T
1200000 1400000 1600000 1200000 1400000 1600000

outstanding loss liabilities outstanding loss liabilities

Figure 6: Resulting empirical density (red histogram) and Gaussian approximation (blue line).
(a) lhs: Prior Model 3 for truncation index k = 9; (b) rhs: Prior Model 1 for truncation index
k =6.

In Figure 6 we plot the resulting empirical density and the corresponding Gaussian approxima-

tion using R and msep R\Dj(ﬁ) for fitting the first two moments of the Gaussian distribution.

18
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At the first sight, the Gaussian approximations in Figure 6 seem to fit very well. In Figure 7

— (a) Prier Model 3, k=9
— (b} Prior Model 1, k=6
— (c}individual PM3
— ({d}individual PM1

¢ (a)Prior Model 3, k=9 L
o ¢  (b)Prior Model 1, k=6
T 7| Gaussian approximation L

T T T T T T T T T T T T T
14.05 14.10 1415 14.20 14.25 14.30 14.35 1200000 1300000 1400000 1500000 1600000 1700000

Figure 7: lhs: log-log plot of the empirical survival distributions = — P[R > z|Dj] for (a) Prior
Model 3 for truncation index k = 9 and (b) Prior Model 1 for truncation index k& = 6, the line

gives the Gaussian approximation; rhs: densities of the 4 models (a)-(d) of Table 1.

(Ihs) we present the log-log plot of the empirical survival distributions x — P[R > z|Dj] for
models (a) and (b) of Figure 6. We see that in the tails the Gaussian approximation clearly
underestimates the potential of large losses because it is less heavy tailed than the distribution
of R (which is driven by log-normal distributions).

In Figure 7 (rhs) we plot the resulting empirical densities of models (a)-(d) presented in Table
1. We see that (a) and (b) provide similar results. If we model every development period
individually, see models (¢) and (d), we obtain the shift seen in Table 1. This shift comes
from the fact that the observations for j = 20,21 receive more weight in the latter models,
see Figure 5; depending on the data the sign could also go into the other direction. More
interestingly, we see that the density is more widely spread the less information we have and
the more parameter we have: the least uncertain prediction is obtained in Prior Model 3 with
truncation index k = 9, the most uncertain in Prior Model 1 with every development period
modeled individually. The shift in claims reserves from models (a)-(b) to models (c¢)-(d) may
raise the question whether the tail decay is judged too optimistically under an exponential decay
model (since the claims reserves from the individual MLEs modeling are more conservative). In
Figure 8 we include in addition to Figure 5 also confidence bounds for the MLEs (symmetric
around the posterior estimate @P***)). We observe large volatilities in these MLEs for large
development year indexes j and, thus, our model about the exponential decay cannot be rejected
in view of Figure 8 because the MLEs are all within the confidence bounds. We also see that
the estimates of o could be smoothed to obtain more monotonicity in the confidence bounds.
Nevertheless, if the exponential decay is too fast, we could also try to fit a power decay of the

form
exp{a}j? = exp {a — Blog j} . (6.3)
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Figure 8: Resulting estimates o5t k) with corresponding intervals of two standard deviations,

see (6.1)-(6.2). (a) lhs: Prior Model 3 for truncation index & = 9; (b) rhs: Prior Model 1 for
2(20)

truncation index k = 6. The weak dotted lines are the confidence bounds for the MLEs 6

claims reserves R approximation Rapprox
(a) Prior Model 3, truncation index k =9 1’438°947 1’438°886
(b) Prior Model 1, truncation index k = 6 1'440°738 1'440’545

Table 2: Resulting best-estimate claims reserves R and approximation RAPPTox fo; (a) Prior
Model 3 with truncation index k = 9 and (b) Prior Model 1 with truncation index k = 6.

Next we study the first order approximation (and lower bound) presented in Section 5.2, see
(5.4). In view of (6.1)-(6.2) we obtain for j < k and [ > k

E |:€9j D[] = exp {O?OSt(k) + i/ﬂ]]-‘i);-)St(k)/Q} ,
Tpost(k) . 2lTpost(lc) + lQTpost(k)
E [ea_l/g’ DI] — exp egisf(k) _ wzfzt(k) + k+1,k+1 k+;,k+2 k+2,k+2 :

where OfOSt(k) is the I-th component of @P°t(*) and Tlp:ft(k) is element (I, m) of covariance
matrix TPo**) This allows approximation R*PPTox = > ﬁ?pp "% given by (5.4) to be calculated
explicitly. In Table 2 we present the corresponding results. We observe that the two values
are very close (which also verifies that the simulation algorithm presented in Section 5.1 was

implemented correctly).

6.4 Tail factors

Finally, we study the inclusion of tail factors according to Section 5.3. In our example Jo, = 50
is sufficient for capturing the tail, this can be seen by expanding/approximating the tail as in
the first order approximation (5.4).

In Figure 9 we plot the resulting reserves Rult — > ﬁ;ﬂt as a function of J,, which justifies
the choice J = 50. In a similar way to Section 5.1 we simulate payments C; 5., i € {1,...,1},
which allow to quantify tail prediction uncertainty within our model M®*). The results are

presented in Table 3. We observe that the predicted claims payments beyond the last observed

20
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Figure 9: Claims reserves Rt = > ﬁ;ﬂt as a function of J, = 21,...,60 for (a) Prior Model 3

with truncation index k = 9 and (b) Prior Model 1 with truncation index k = 6.

reserves R msep R\DI(E)U 2 | reserves R cond. MSEP
(a) Prior Model 3, k =9 | 1’438'947 52’090 1’527°078 55’635
(b) Prior Model 1, k =6 | 1’440’738 53’321 1’552'331 58950

Table 3: (a) Prior Model 3 with truncation index k =9 and (b) Prior Model 1 with truncation
index k = 6: best-estimate claims reserves R and best-estimate claims reserves RUI* including

tail factors and corresponding conditional MSEPs for J,, = 50.

development period J = 21 add an additional 7% to the claims reserves R. Model (b) is more
conservative about this tail development, this comes from the fact that the slope E[5|Dy] is
smaller in Model (b), i.e. 0.22 versus 0.24 in Model (a). The increase in uncertainty (conditional
MSEP) is almost 10%. Finally, in Figure 10 we present the corresponding log-log plot and the

densities.

7 Conclusion

We consider a Bayesian log-normal model for claims reserving in a chain-ladder framework. We
assume that there is a fixed truncation index. Each development period before this truncation
index is assumed to have an individual parameter, and development periods after the truncation
index are assumed to have a common functional form. We explain how this model can be fit to
data and how model selection w.r.t. the truncation index can be done. The advantage of our
Bayesian log-normal model is that we do not need involved reversible jump Markov chain Monte
Carlo simulation methods as, for instance, used in Verrall-Wiithrich [14]. Once this model is

fit to the data, the common functional form above the truncation index gives a natural way to
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Figure 10: lhs: log-log plot of the survival distributions z — P[R™* > 2|Dj] for (a) Prior Model

3 for truncation index k = 9 and (b) Prior Model 1 for truncation index k = 6, the line gives

the Gaussian approximations; rhs: densities of the 2 models (a) and (b) of Table 3.

estimate tail factors beyond the latest observed development delay.
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A Data
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1| 136’367 195’757 213’788 227’545 240’136 249’647 260’260 271’207 285’847 290’814 300’035 305’988 312’930 316’524 319’988 323’268 325’798 326’231 327’722 328’616 330’724 332’137
2 | 143’135 212’658 233’989 252’155 267’259 280’669 295’863 310’584 322’938 332’021 341’670 349’924 356’908 361’126 367’795 370’548 373’051 376’942 378’314 379’716 381’388
3 | 146’469 219’759 241’983 257’063 272’848 285’437 313’398 329’903 340’223 353’075 362’015 371’042 375’094 379’430 382’385 389’057 391’468 395’824 397’531 399’724
4 | 158’518 232’128 256’752 276’593 292’807 310’757 322’837 339’751 352’613 366’707 378’735 385’394 394’505 402618 409’044 412422 415’624 421’409 424’117
5 | 158’633 224’457 249’797 267’676 285’455 303’548 320’282 340’976 352’487 361’300 374’500 388’449 397’848 402’989 408’151 414’016 416’098 419’528
6 | 153’215 225’074 249’688 267’753 285’294 307’116 324’791 341’238 353’420 369’549 382’016 390’301 395’206 403’634 406’302 407’819 411’082
71 153’185 215’699 235’609 255’384 272’749 290’988 304’081 319’717 334’457 352’992 372’879 383’645 394’634 401’194 407’377 410’387
8 | 150’974 217’545 242’400 260’473 279’436 299’797 317’991 336’679 352’929 373’339 397’542 407’145 416’136 429’445 435’980
9 | 141’432 205’018 225’339 241’315 260’098 277’061 296’286 312’645 330’538 338’629 349’021 357’775 366’468 372’513
10 | 141’554 207’510 230’597 250’393 272’538 294’008 321’253 346’836 366’865 381’705 391’678 404’292 411’770
11 | 141°899 206’157 229’510 246’710 262’735 280’171 303’956 324’354 343’041 356’874 368’163 380’622
12 | 145’037 215’127 240°970 260’457 280’524 304’118 322’331 345’629 357’081 370’673 384’000
13 | 135’739 203’999 232’176 250’014 277’500 298’976 323’555 339’853 352’098 364’883
14 | 135’350 209’545 236’220 256’710 276’576 293’467 305’436 320’329 336’143
15 | 132’847 203’592 227’902 249’914 270’477 286’129 301’347 317’801
16 | 135’951 205’450 229’862 250’624 266’371 280’202 300’874
17 | 131’151 193’635 215’365 234’202 247’325 262’034
18 | 130’188 190’262 213’586 226’115 242’768
19 | 118’505 174’622 192’852 206’808
20 | 118’842 177671 199’872
21 | 121’011 185’856
22 | 132’116

Table 4: Liability insurance run-off, observed cumulative payments Dyy = {Cm; i+7<22 1<i<22 0<j<21}.



