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Testing for Exogeneity in Cointegrated Panels1

LORENZO TRAPANI

Cass Business School, City University London, 106 Bunhill Row, London EC1Y 8TZ

(email: L.Trapani@city.ac.uk)

Abstract

This paper proposes a test for the null that, in a cointegrated panel, the long-run

correlation between the regressors and the error term is di¤erent from zero. As is well-

known, in such case the OLS estimator is T -consistent, whereas it is
p
NT -consistent when

there is no endogeneity. Other estimators can be employed, such as the FM-OLS, that are
p
NT -consistent irrespective of whether exogeneity is present or not. Using the di¤erence

between the former and the latter estimator, we construct a test statistic which diverges

at a rate
p
N under the null of endogeneity, whilst it is bounded under the alternative

of exogeneity, and employ a randomisation approach to carry out the test. Monte Carlo

evidence shows that the test has the correct size and good power.

JEL codes: C12, C23.

Keywords: large panels; cointegration; endogeneity; Fully Modi�ed OLS; randomised

tests.

I. Introduction

Consider the panel regression

yit = �
0xit + eit (1)

where t = 1; :::; T , i = 1; :::; N , and (1) is a cointegrating equation for each i. Inference

on (1) has been studied extensively. In a seminal contribution, Phillips and Moon (1999)

discuss both Ordinary Least Squares (OLS) estimation, and estimation based on the Fully

Modi�ed version of the OLS estimator (FM-OLS henceforth). The choice between OLS

and FM-OLS is driven by the presence or absence of long-run correlation between �xit

and eit (Phillips and Moon, 1999; Pedroni, 2000). In the former case, it is well known

1 I am grateful to the Editor (Anyndia Banerjee) and two anonymous referees for extremely valuable
comments. The usual disclaimer applies.
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that the panel OLS estimator of � is T -consistent, and it has a non-vanishing bias. This

is in contrast with the case of no endogeneity in equation (1), where the OLS estimator is
p
NT -consistent (Phillips and Moon, 1999; Kao, 1999).

Consequently, empirical applications that consider panel cointegration models like (1)

routinely employ estimation techniques that are designed to be robust to the presence of

endogeneity, i.e. that yield
p
NT -consistent estimates irrespective of the assumption of

exogeneity holding or not. Many examples can be found e.g. in the context of testing

for PPP (see e.g. Pedroni, 2001; and Carlsson et al., 2007, and the references therein); in

studies of employment growth and in�ation (see e.g. Caporale and Skare, 2011); in the

context of the Feldstein-Horioka puzzle (see e.g. Ho, 2002); and in applications to the area

of spillovers in R&D (Edmond, 2001). A frequently employed estimator is the FM-OLS;

however, such estimation technique can su¤er from severe problems in presence of moving

average roots that are close to the unit circle (Ng and Perron, 2001), and in the case of small

samples (see e.g. Breitung, 2005; Wagner and Hlouskova, 2010). Several other alternative

techniques are available: examples include the Dynamic OLS estimator, developed by

Saikkonen (1991) for the single equation case and by Kao and Chiang (2000) for panels; and

Breitung�s (2005) two stage parametric methodology. Wagner and Hlouskova (2010) assess

the relative merits of various estimators through a comprehensive simulation exercise.

Whilst some techniques are found to dominate across a wide variety of experiments, all

estimators show poor performances when T is small. Hence, a test to �nd out whether

long-run correlation between �xit and eit is di¤erent from zero or not can be useful in

order to decide whether to use a standard OLS estimator, or whether it is necessary to

employ a di¤erent estimation technique.

The contribution of this paper is a test for the null hypothesis of endogeneity, i.e. for

the null hypothesis that the long-run correlation between �xit and eit is not equal to zero

(so that OLS should not be employed). Under the alternative, there is exogeneity, and

therefore OLS can be employed. The test is based on using the di¤erence (multiplied by
p
NT ) between the OLS and the FM-OLS estimators. As pointed out above, whilst the

latter estimator is
p
NT -consistent under both the null and the alternative hypothesis,

the former has di¤erent rates under the null and the alternative hypothesis. Thus, the

proposed test is similar, in spirit, to a Hausman test, in that it compares two estimators
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with di¤erent properties according as the null or the alternative hypothesis holds. However,

the test is not a Hausman test. Indeed, by construction, the di¤erence between the two

estimators multiplied by
p
NT is, heuristically, a test statistic that diverges under the null

hypothesis and it is bounded under the alternative. Given that the test statistic diverges

under the null hypothesis, we propose a randomised testing procedure to carry out the test

(Pearson, 1950; Corradi and Swanson, 2002, 2006; Bandi and Corradi, 2012). A related

contribution to this paper is an article by Gengenbach and Urbain (2011; see also the

references therein), where an LM-type test for weak exogeneity in cointegrated panels is

proposed.

Other testing approaches can also be considered, e.g. by extending tests available in

the time series literature (see Ericsson and Irons, 1994). Indeed, comparisons are only

partly possible, since other approaches are usually constructed to test for the null hy-

pothesis of exogeneity, whilst our test has exogeneity as the alternative hypothesis. The

purpose of our test also is slightly di¤erent, since one of its primary goals is to help choose

between estimation techniques - this is also reinforced by the way in which the null hypoth-

esis is stated in presence of heterogeneity (in the slopes or in the dynamics), as equation

(24) illustrates. Not withstanding this, the literature has developed several approaches

to verify whether exogeneity is present or not. Usually, this is carried out by using some

parametric model (e.g. a VECM speci�cation), and then by formulating the null hypoth-

esis of exogeneity based on such model - see e.g. the contributions by Gengenbach and

Urbain (2011) and Moral-Benito and Serven (2013; and the references therein). Such

approaches are sensitive to the correct speci�cation of the VECM, and a less parametric

testing approach such as the one proposed in this paper could be advantageous. Similarly,

one may think of constructing a test directly based on estimates of the long-run covariance

matrices. However, such a testing strategy relies on the quality of these estimates, which

can be rather poor - see the simulations in Section III. Also, the asymptotic properties of

the estimator of a long-run covariance matrix under the null hypothesis that this is zero

(thus, on the boundary) are likely to be nontrivial. We point out that, although the test

is constructed using the FM-OLS estimator in this paper, other estimators can be em-

ployed as long as they are robust to the presence of endogeneity. Indeed, the construction

and the properties of the test do not change as long as the estimator chosen is consistent
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under both the null and the alternative hypothesis. A primary example is the Dynamic

OLS estimator. Further, the analysis in this paper is based on simplifying assumptions -

mainly, the assumptions of slope homogeneity (and homogeneity of the dynamics), and of

cross-sectional independence. As we point out at the end of Section II, the test still is ro-

bust to the presence of heterogeneous slopes (and dynamics), and can be readily extended

to contexts where cross-dependence is present, and even to the case of common stochastic

trends in the regressors (see Bai et al., 2009, for inference in this case).

The paper is organised as follows. In Section II, we discuss the test, its theoretical

properties (null distribution and consistency), and its properties when our simplifying

assumptions are violated. Monte Carlo simulations are in Section III; Section IV concludes.

Proofs are in the supplementary online Appendix.

NOTATION. We denote the ordinary limits as �!�; convergence in distribution as

�
d!�; almost sure convergence as �a:s:!�. We use �a.s.� as short-hand for �almost surely�,

and ��� for de�nitional equality. Orders of magnitude for an almost surely convergent

sequence (say sm) are denoted as Oa:s: (m&) and oa:s: (m&) when, for some " > 0 and

~m < 1, P [jm�&smj < " for all m � ~m] = 1, and m�&sm ! 0 almost surely. Finally, we

denote the Euclidean norm as k�k. Other notation is introduced in the remainder of the

paper.

II. The test

In this section we spell out the notation and the main assumptions on (1). We then

de�ne the test statistic, and present the test asymptotics.

We start by introducing some notation, and the main assumptions. Let the Data

Generating Process (DGP henceforth) of xit (assumed to be k-dimensional) in (1) be

given by:

xit = xit�1 + e
x
it (2)

Let the long-run variance of eit be de�ned as 
e;i. Similarly, we de�ne the long-run

covariance and one-sided long-run covariance matrix of xit as 
x;i and �x;i respectively;

�nally, we de�ne the long-run covariance and one-sided long-run covariance between xit

and eit as 
xe;i and �xe;i respectively:
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x;i � limT!1E
��

1p
T

PT
t=1 e

x
it

��
1p
T

PT
t=1 e

x
it

�0�
�x;i � limT!1

PT
t=0E [e

x
i0e

x0
it ]


xe;i � limT!1E
h�

1p
T

PT
t=1 e

x
it

��
1p
T

PT
t=1 eit

�i
�xe;i � limT!1

PT
t=0E [e

x
i0eit]


e;i � limT!1E
��

1p
T

PT
t=1 eit

�2�

(3)

The slope � can be estimated using either OLS or the FM-OLS, viz.

�̂
OLS

=

"
NX

i=1

TX

t=1

xitx
0
it

#�1 " NX

i=1

TX

t=1

xityit

#

(4)

�̂
FM�OLS

=

"
NX

i=1

TX

t=1

xitx
0
it

#�1 " NX

i=1

TX

t=1

�
xity

+
it � �̂+xe

�#

(5)

In equation (5), we de�ne y+it = yit � �x0it
̂
�1
x 
̂xe and �̂

+
xe = �̂xe � �̂x
̂

�1
x 
̂xe. Equa-

tions (4)-(5) are constructed under the implicit assumption of no constant in (1) and no

deterministics in (2); henceforth, we derive the main results under these restrictions for

the sake of simplicity. However, both estimators can be readily modi�ed to accommodate

for the presence of deterministics in both (1) and (2), by using demeaned and detrended

versions of yit and xit. For example, if there is a constant in the DGP of zit = (yit; x0it)
0,

it su¢ces to use �zit = zit � T�1
PT
s=1 zis; similarly, if linear trends are present, one could

employ the detrended version ~zit = zit �
�PT

s=1 zisg
0
s

��PT
s=1 gsg

0
s

��1
gt with gt = (1; t)

0,

as discussed in Phillips and Moon (2000). On a similar note, in the paper we use the

pooled, unweighted version of both the OLS and the FM-OLS estimators. Other variants

of both estimators could also be considered, e.g. weighted or group-mean versions.

The estimates of the average long-run covariances (that is, 
̂x, �̂x, etc.) are computed

as follows. We de�ne:

�̂xi;j = T�1
TX

t=j+1

�xit�x
0
it�j (6)

�̂xei;j = T�1
TX

t=j+1

�xit�x
0
it�j êitêit�j (7)

�̂ei;j = T�1
TX

t=j+1

êitêit�j (8)
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we use êit � yit � ~�
0
ixit, with ~�i the individual equation OLS estimator. Albeit not

strictly necessary under the maintained assumption of slope homogeneity, using individual

estimates makes the testing procedure robust in case of (neglected) slope heterogeneity -

see the discussion in Section ??, and particularly Proposition ?? therein. Hence, letting

� (�) be a kernel with bandwidth l, we de�ne


̂x;i = �̂xi;0 + 2
lX

j=1

�

�
j

l

�
�̂xi;j (9)

�̂x;i =
lX

j=0

�

�
j

l

�
�̂xi;j (10)

etc.; �nally, we compute


̂x =
1

N

NX

i=1


̂x;i (11)

all the other estimators are de�ned similarly. It can be noted that this approach implicitly

postulates that the long run variances are homogeneous across units. At the end of this

section , we show that tests based on such estimates can still be employed even if such

assumption is incorrect, and the long-run covariances are indeed heterogeneous.

In order to derive the test and to study its asymptotics, we consider two assumptions,

on the innovation term and on the kernel � (�) respectively.

Assumption 1: (a) Assumptions 6-8 and 10 in Phillips and Moon (1999) hold for Eit �

[eit; e
x0
it ]
0; (b) Eit is independent across i.

Assumption 2: Let q > 1
2 be the Parzen exponent of the kernel � (�). It holds that

l!1 with

lim
N;T;l!1

�
N

l2q ln lnN
+
l

T

�
= 0 (12)

Assumption 1 is standard in the analysis of non-stationary panels, and it entails that

the asymptotics for the OLS and FM-OLS estimators studied by Phillips and Moon (1999)

and Pedroni (2000) holds in our context. As far as Assumption 2 is concerned, in Lemma

A.1 in the online Appendix we show that, when estimating the average long-run covariances

(e.g. when we compute 
̂x), the MSE of the estimators has a rate given by N
l2q
+ l
T ln lnN ,

whence equation (12). Based on (12), it is possible to provide an optimal selection rule
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for the bandwidth l; this can be selected as l� = argmin
�

N
l2q ln lnN

+ l
T

�
, which yields

l� =

�
2q

NT

ln lnN

�1=(1+2q)
(13)

The test statistic

Consider the following well-known properties of the OLS and the FM-OLS estimators

- equations (4) and (5) respectively. For simplicity, this section only considers the case

of homogeneous long-run covariances, i.e. 
xe;i = 
xe, �xe;i = �xe, and similarly for the

others.

Consider the OLS estimator �̂
OLS

. From Phillips and Moon (1999), we know that, if


xe = �xe = 0, the OLS estimator is consistent; as (N;T )!1 with N
T ! 0, it holds that

p
NT

�
�̂
OLS � �

�
d! N

�
0; c
e


�1
x

�
, where c is a constant whose value depends on the

presence of deterministics in the DGP of yit and xit. For example, if no deterministics are

present, then c = 2, whereas if a constant is present we have c = 6 as shown in Phillips

and Moon (1999); similarly, it can be shown that, if a linear trend is present, c = 144,

following similar passages as in Phillips and Moon (2000, Theorem 1). The test statistic

proposed below in equation (16) does not depend on the value of c; thus, the test has the

same properties irrespective of the presence of constants or trends in the DGPs of xit and

yit.

On the other hand, when either 
xe 6= 0 or �xe 6= 0, it holds that
p
NT

�
�̂
OLS � �

�

= Op

�p
N
�
, i.e.

p
NT

�
�̂
OLS � �

�
diverges at a rate

p
N . Turning to the FM-OLS

estimator, as (N;T )!1 with N
T ! 0, it holds that

p
NT

�
�̂
FM�OLS � �

�
d! N

�
0; c
�

e � 
ex
�1x 
xe

�

�1x

�
(14)

thus, the FM-OLS estimator is always
p
NT -consistent, irrespective of the values of 
xe

and �xe. These results explain also why a Hausman-type test is fraught with di¢culties:

when 
xe = �xe = 0, both �̂
FM�OLS

and �̂
OLS

have the same asymptotic variance,

thereby making the suitably normalised statistic
�̂

FM�OLS � �̂OLS
 degenerate.

Based on these considerations, we propose di¤erent approach. We construct a test for
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the null hypothesis of non-zero long-run covariance, i.e.

8
><

>:

H0 : �xe 6= 0 or 
xe 6= 0

HA : �xe = 0 and 
xe = 0
(15)

In view of the de�nitions of �xe and 
xe, it can be noted that the conditions �xe 6= 0

or 
xe 6= 0 under the null hypothesis can be met as long as there is nonzero correlation

between �xit and eis, at any time horizon - which corresponds to the notion of strict

exogeneity. We refer to Ericsson and Irons (1994) for a comprehensive treatment of the

notion of exogeneity (see also Engle et al., 1983). In our context, we note that the alterna-

tive hypothesis that �xe = 
xe = 0 entails, from a statistical point of view that the OLS

estimator is
p
NT -consistent, and there is no need for a more complex estimator such as

the FM-OLS estimator.

We propose the following test statistic:

SNT =

p
NTp
ln lnN

�̂
FM�OLS � �̂OLS


�̂

FM�OLS


(16)

Based on the discussion above, under H0, the numerator of SNT ,
p
NT

�̂
FM�OLS �

�̂
OLS

, diverges to positive in�nity; on the other hand, the denominator is bounded,

since the FM-OLS estimator is consistent. Under HA, both the FM-OLS and the OLS

estimators are consistent, and therefore SNT is bounded.

Given that SNT diverges under the null hypothesis, we propose to use a randomised

testing procedure - we refer, for details on the theory, to Pearson (1950), Corradi and

Swanson (2002, 2006) and Bandi and Corradi (2012), among others.

We illustrate the testing procedure as a four step algorithm.

Step 1 Compute � (SNT ), where � (�) is a continuous, monotonic transformation with

limz!1 � (z) = +1.

Step 2 Randomly generate an i.i.d. standard normal sample of size r, say
�
�j
	r
j=1
, and

de�ne the sample
n
�1=2 (SNT )� �j

or
j=1
.
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Step 3 Generate the sequence
�
�j;NT (u)

	r
j=1

as

�j;NT (u) � I
h
�1=2 (SNT ) �j � u

i
(17)

for all j, where u 6= 0 is any real number and I [�] is the indicator function. The

values of u can be selected from a density ' (u) with compact support U = [u; �u].

Step 4 For each u 2 U , de�ne

#NTr (u) �
2p
r

rX

j=1

�
�j;NT (u)�

1

2

�
(18)

and compute the test statistic

�NTr �
uZ

u

[#NTr (u)]
2 ' (u) du (19)

The transformation � (�) in Step 1 is required to be continuous and unbounded at

in�nity. Hence, we can expect that � (SNT ) approaches either positive in�nity or a �nite

limit according as H0 or HA holds.

The main idea of the test is that, under H0, �
1=2 (SNT ) � �j should follow a normal

distribution with mean zero and (heuristically) in�nite variance as (N;T ) ! 1. This

entails that, as (N;T ) ! 1 under H0, the random variable �j;NT (u) has, for any u, a

Bernoulli distribution with

�j;NT (u) =

8
><

>:

1 with probability 1
2

0 with probability 1
2

(20)

Therefore, the sequence
�
�j;NT (u)

	r
j=1

is i.i.d.; underH0 with (N;T )!1, E
�
�j;NT (u)

�
=

1
2 and V ar

�
�j;NT (u)

�
= 1

4 for all j and u. Conversely, under HA, � (SNT ) converges to a

�nite value. Therefore, �1=2 (SNT )� �j should (heuristically) follow a normal distribution

with mean zero and �nite variance, so that, for u 6= 0, E
�
�j;NT (u)

�
6= 1

2 .

Test asymptotics
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This section contains the null distribution and the consistency of the test. Let P � be

the probability law of
�
�j
	r
j=1

conditional on the sample, and let �
d�!� denote convergence

in distribution according to P �. Results are presented for the case of slope homogeneity

and homogeneous long-run covariances.

Theorem 1 Let Assumptions 1 and 2 hold. Under H0, as (N;T; r) ! 1 with N
T ! 0

and
r

�

�q
N

ln lnN

� ! 0 (21)

it holds that �NTr
d�! �21 a.s. conditionally on the sample.

The Theorem states that, under the null hypothesis, the test statistic follows a chi-

squared distribution with one degree of freedom. This holds as (N;T; r)!1, and under
N
T ! 0. The latter restriction is typical in the context of panel data asymptotics (see

e.g. Phillips and Moon, 1999), and it constrains the cross sectional dimension, N , to be

�smaller� than the time series dimension T .

In addition to the restriction N
T ! 0, the choice of r is constrained by equation (21),

and, therefore, by the choice of the transformation � (�). We suggest using the exponential

transformation, i.e. � (z) = ez. Therefore, r can be chosen as a polynomial transformation

of N , such as r = N . Note that the choice of r does not depend (directly) on T .

We now discuss the consistency of the test. De�ne c� as P � [�NTr � c�] = � under

H0.

Theorem 2 Let Assumptions 1 and 2 hold. Under HA, as (N;T; r)!1 with N
T ! 0

and (21), it holds that P � [�NTr > c�] = 1 a.s. conditionally on the sample if

lim
(N;T;r)!1

r

� (SNT )
=1 (22)

Theorem 2 states that tests based on �NTr have non trivial power versus HA : 
xe =

�xe = 0. In the proof we show that, under HA, #NTr (u) has a non-centrality parameter

proportional to r��1 (SNT ), whence restriction (22).
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Equation (22) is always satis�ed when 
xe = �xe = 0. The test has also power

versus �local-to-null� alternatives. If � (SNT ) is chosen as eSNT , (22) is satis�ed as long

as �xe +
xe = O (�nr), where �nr is such that �
�1
nr = o

�p
N

ln r

�
.

Discussion

The test statistic SNT is based on the maintained assumptions that: (a) there is no

cross sectional dependence; and (b) the slopes � in (1), and the long-run covariances

de�ned in (3), are homogeneous across i. Although this simpli�es the exposition, we point

out that neither of these assumption is necessary, and that the testing procedure proposed

herein works even in presence of cross sectional dependence and heterogeneity. We discuss

the two points separately hereafter.

Cross-sectionally dependent panels

As mentioned in the comments to Assumptions 1 and 2, it is possible to carry out

tests based on SNT under less restrictive assumptions on the presence and extent of cross

dependence. Indeed, all that is required in order for the test to discriminate between

the null and the alternative hypotheses is to have an estimator which diverges under the

null hypothesis (whilst being consistent under the alternative hypothesis; the OLS is a

primary example), and another estimator which is consistent under both the null and the

alternative hypothesis. Given these two estimators, tests can be constructed following

exactly the same guidelines as above: the asymptotics of the test statistics is not driven

by the properties of the estimators, but by the randomising procedure.

More speci�cally, two approaches are possible. Firstly, one could �lter out the cross

sectional dependence, e.g. by some defactorisation method. Alternatively, estimation

techniques that are robust to cross dependence could be employed. As a leading example

for the latter solution, in the context of cointegrating regression with common stochastic

trends, Bai et al. (2009) develop an estimation technique (the Continuously-updated Least

Squares, denoted as �̂Cup) which diverges at a rate
p
N in presence of long-run correlation

between �xit and eit, and a bias-corrected version (�̂CupBC) that makes the estimator

consistent. Using a test statistic based on
p
NT

�̂CupBC � �̂Cup
 yields exactly the same

results as derived above.
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Heterogeneous panels

Model (1) postulates that the slopes � are homogeneous; further, in the construction

of SNT , and in the presentation of the results, we have worked under the assumption that

long-run covariances are also homogenous, i.e. that, in equation (3), 
x;i = 
x for all i,

and similarly for all other quantities. Indeed, these restrictions are not necessary: the

test can be applied, with the same null distribution and power properties, to models with

heterogeneous slopes, viz. to

yit = �
0
ixit + eit (23)

and to the case of heterogeneous long-run variances.

In the latter case, the null and the alternative hypotheses would be modi�ed as

8
><

>:

H0 :
1
N

PN
i=1 �xe;i 6= 0 or 1

N

PN
i=1
xe;i 6= 0

HA :
1
N

PN
i=1 �xe;i = 0 and

1
N

PN
i=1
xe;i = 0

(24)

Equation (24) states that the average long-run covariances is equal to zero. Indeed, this

condition is in line with the purpose of our test as outlined above, viz. to suggest whether

one should use a standard OLS estimator, or a more complex technique (such as e.g. the

FM-OLS estimator). In order to provide an intuition of the main argument, consider the

case of slope homogeneity, and recall the expansion of the OLS estimation error for �:

�̂ � � =
 

1

NT 2

NX

i=1

TX

t=1

xitx
0
it

!�1 
1

NT 2

NX

i=1

TX

t=1

xituit +
1

NT

NX

i=1

�xe;i

!

(25)

if 1
N

PN
i=1 �xe;i = 0, then �̂ � � is

p
NT -consistent, and there is no need to �lter out the

long-run covariances as the FM-OLS estimator does. This is a heuristic argument, which

is based on the fact that the test statistic SNT is based on comparing the two estimators,

�̂
FM�OLS

and �̂
OLS

. If the two are found to be similar, this means that �̂
OLS

can be

employed.

Consider the following assumption, which controls for the heterogeneity of the slopes.

Assumption 3. (a) the slopes �i are i.i.d. across i with E (�i) = � and E k�ik2+� <

1 for some � > 0; (b) f�igNi=1 and fxit; uitg
N
i=1 are two mutually independent groups for
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all t.

Proposition 1 summarizes the discussion above, stating that tests based on SNT have

the same properties under (23) as under (1).

Proposition 1 Let the data be generated by (23), and let Assumptions 1-3 hold. Under

H0, as (N;T; r) ! 1 with N
T ! 0 and (21), it holds that �NTr

d�! �21 a.s. conditionally

on the sample. Under HA and (22), as (N;T; r)!1 with N
T ! 0 and (21), it holds that

P � [�NTr > c�] = 1 a.s. conditionally on the sample.

III. Simulations

In this section, we consider two di¤erent exercises, using synthetic data. We �rstly

provide some evidence on the properties of the (unweighted pooled) FM-OLS (and, by way

of comparison, of the OLS) estimator under exogeneity; this serves both as a motivation

for our test, which is recommended as a tool to choose between a simple estimator (such

as the OLS) and one that adjusts for endogeneity where present, and also to assess the

impact of the (possibly poor) quality of either or both estimator on the properties of the

test. Secondly, we verify the power and size of our test. Note that, in this section, for the

sake of brevity we only consider the unweighted pooled version of the FM-OLS estimator.

We consider the following design for the DGP:

yit = �i + �xit + eit (26)

xit = xit�1 + e
x
it (27)

where �i is simulated as i.i.d. N (0; 1) across i. In order to simulate serial correlation

and endogeneity, we generate the vector _Eit = [ _eit; _e
x
it]
0 as i.i.d. Gaussian with identity

covariance matrix. Contemporaneous correlation is imposed by premultiplying _Eit by the

Choleski factor of

� =

2

6
4

1 �xe

�xe 1

3

7
5 (28)

so that �xe represents the correlation between �eit and �exit in the vector �Eit = [�eit; �e
x
it]
0. Serial

correlation is induced by creating Eit = [eit; exit]
0 according to an ARMA(1,1) speci�cation

13



as

Eit = �Eit�1 + �Eit + # �Eit�1 (29)

Based on this, we have


xe = �xe
1 + #2

1� �2 (30)

�xe =
1

2
�xe
�2 + #2

1� �2 (31)

We consider the following combinations of (�; #): (0; 0), (0:5; 0), (0; 0:5) and (0;�0:5). We

use all combinations of (N;T ) with N = (25; 50; 100; 200) and T = (25; 50; 100; 200); in

order to avoid dependence on the initial conditions (set equal to zero), we discard the �rst

1000 observations. When estimating long-run covariance matrices, we use a HAC-type

estimator and employ Bartlett kernel with bandwidth l selected according to (13); thus,

for each combination of (N;T ), we have

l =

$

2

�
NT

ln lnN

�1=3%

(32)

All simulated data have been computed with 2000 replications.

The impact of the performance of the FM-OLS estimator on the test

A natural question that can arise under HA is whether the test can really work well

even in those cases when the unweighted pooled verions of the FM-OLS estimator performs

poorly. Estimating long-run covariances is not always an easy task, and sometimes the

estimators can be severely biased, thereby marring the performance of the FM-OLS. Some,

partly related evidence is also provided by the simulations in Kao and Chiang (2000), where

it is shown that a weighted version of the FM-OLS estimator does reduce the bias when

the long-run covariances are non zero (as is natural to expect), but it performs poorly,

and occasionally very poorly, when there is no endogeneity. The purpose of the exercise in

this subsection is to shed some light on this issue, by presenting some evidence as to the

properties of the OLS and FM-OLS estimators. Due to the nature of this issue, the results

reported here can be evaluated with the power of the test, reported in Table 2 below.

We generate our data using (26)-(29), with �xe = 0. We consider the following measures

14



of performance for the FM-OLS:

biasFM�OLS =
1

MC

MCX

h=1

�
�̂
FM�OLS
h � �

�
(33)

MSEFM�OLS =
1

MC

MCX

h=1

�
�̂
FM�OLS
h � �

�2
(34)

where MC is the number of iterations in the simulation - in our case, MC = 2000.

The former indicator represents the bias of the estimator, whereas the second is the Mean

Square Error (MSE). In addition to these classical indicators, we also consider the coverage

of the 95% con�dence interval for �, constructed as �̂
FM�OLS
h �2

r
V ar

�
�̂
FM�OLS
h

�
with

V ar
�
�̂
FM�OLS
h

�
= 6

�

̂e � 
̂ex
̂�1x 
̂xe

�

̂�1x (35)

The coverage of the con�dence interval is computed as the empirical rejection frequency

for the null that � = 1 (the true value under the simulations), viz.

ERFFM�OLS =
1

MC

MCX

h=1

I

2

66
4

��������

�̂
FM�OLS
h � 1

r
V ar

�
�̂
FM�OLS
h

�

��������
> 2

3

77
5 (36)

By way of comparison, we report the same indicators for the OLS estimator of �, say

�̂
OLS

h ; in this case, the empirical rejection frequency is computed using V ar
�
�̂
FM

h

�
=

6
̂e
̂
�1
x . Bias, MSE and empirical rejection frequency are denoted as biasOLS , MSEOLS

and ERFOLS respectively.

Results are in Table 1:

[Insert Table 1 somewhere here]

The table shows that the FM-OLS and the OLS have, in general, a comparable perfor-

mance as far as bias and MSE are concerned. When (N;T ) increases, the OLS seems to be

slightly better, but the numbers in the table are very small anyway - indeed, considering

the bias, the �gures in the table indicate that, in the worst case, � is estimated with a

percentage bias of 2:2%. Also, the theory requires N
T ! 0, and such restriction is not
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always satis�ed in our simulations, which reinforces the idea that both OLS and FM-OLS

perform well as point estimates. Conversely, when considering the coverage of the nominal

95% con�dence intervals, the FM-OLS always performs poorly, and sometimes very poorly,

in all cases considered, by severely underestimating the width of the con�dence interval.

The OLS estimator also has a tendency of understating the con�dence interval, but this

is less pronounced and it (slowly) vanishes as N and T increase. This can be attributed

to the poor quality of the estimated variances of the two estimators, and in particular

of the FM-OLS estimator: long-run variances are di¢cult to estimate, and unless such

estimation is necessary, it is preferable to avoid it. In this respect, the test proposed in

this paper could be a helpful tool to decide whether to use an estimation method based

on having to estimate the long-run variances, or not. Of course, it is unrealistic to expect

that having to estimate long-run variances can be completely avoided - even the OLS

estimator, when e.g. carrying out t-tests, requires such estimation.

It is important to note that, despite the poor performance of the FM-OLS estimator

under exogeneity, the test works very well (see Table 2 below), and it is not a¤ected by the

problems related to the estimation of the long-run variances. Indeed, the test has good

power properties in all cases considered. This can be explained by considering the test

statistic SNT : this is constructed using the estimators �̂
FM�OLS

and �̂
OLS

only, with no

need for their asymptotic variance. All that the test requires is that the two estimators do

not diverge to in�nity, so that the test statistic SNT is bounded, regardless of the actual

quality of the estimators.

Size and power of the test

We consider three sets of experiments. We �rstly evaluate size and power using the

DGP given by (26)-(29), which is based on equation (1) where slopes and dynamics are

assumed to be homogeneous across units. In addition to this, we also evaluate size and

power when the true DGP is (23), thereby introducing heterogeneous slopes; data are

generated as

yit = �i + �ixit + eit (37)

and we generate the xits as in (27). The slopes �i are generated as i.i.d. N (1; 1). Further,
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heterogeneity in the dynamics is introduced by perturbing the Choleski factor � de�ned

in (28) as �xei = �xe + N (0; 0:01). Finally, we consider the same DGP as in (37), thereby

assuming heterogeneity, and we also introduce some cross sectional dependence through a

factor structure, viz.

yit = �i + �ixit + eit + �ift (38)

with �i and ft both i.i.d. N (0; 1).

As far as the test speci�cations are concerned, we choose the exponential transforma-

tion, i.e. � (SNT ) = eSNT . The choice of � (�) will impact on the properties of the test

- in particular, a transformation like the exponential one, which magni�es SNT , can be

expected to reduce the probability of a Type I error. We choose r = N (unreported ex-

periments show that altering such choice does not have a major impact on the results).

Finally, we employ the test with u = 1. In general, other choices of u and also choices

of the support U with more than one value do not seem to have a signi�cant impact on

the results. We point out that, as the proofs of Theorems 1 and 2 show, under the null

hypothesis, the test statistic has a bias that increases with the width of the support U

- equation (13) in the online Appendix. This bias vanishes asymptotically under (21);

however, if U is too wide, this could lead to size distortions. On the other hand, the

non-centrality parameter under the alternative hypothesis also depends on the width of U

- equation (16) in online Appendix.

Table 2 reports empirical rejection frequencies at a 5% level for the design based on

(26); Table 3 contains the same output, for the design based on (37), and Table 4 contains

the empirical rejection frequencies when data are generated according to (38). Given

the number of simulations, a 95% con�dence interval for the empirical size is 0:05 �

2

q
0:05(1�0:95)

2000 ' [0:04; 0:06].

[Insert Tables 2-4 somewhere here]

Consider �rst Table 2. We start with the power of the test, which corresponds, across

all experiments, to the entries where �xe = 0. In general, the test has power above 50%
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when N � 50; we note that the power increases sharply as N increases, as predicted by

the theory, and also (although in a less evident way) when T increases. The power is

not sensitive to the dynamics of the error term, except for the case of negative MA roots,

where the power is found to be lower, and below 50% unless N � 50. Even in this case, the

power increases with N (mainly) and T . Turning to the size (experiments with �xe = 0:4,

0:6 and 0:8), the test has the correct size, with a slight tendency to over-reject in small

samples when there is an AR root; this however vanishes as N , and (to a lesser extent) T ,

increase. As far as Tables 3 and 4 are concerned, results are very similar to those in Table

2: the test has the correct size under all speci�cations, and it has good power properties,

with the partial exception of the negative MA root case under cross dependence, where

the test has power higher than 50% for N � 100. The results in Tables 3 and 4 therefore

con�rm the theoretical �ndings in Proposition 1.

IV. Conclusions

This paper addresses the issue of testing whether, in a panel cointegrating regression,

there is exogeneity or not. Depending on the answer, slope estimation can be carried out

using the standard OLS estimator (in case of exogeneity), or using an estimation technique

that is robust to nonzero long-run correlation between regressors and errors. This issue is

relevant, since although many estimators have been developed that are
p
NT -consistent

when exogeneity fails to hold, they often su¤er from several problems, particularly with

small T . We propose a test for the null hypothesis of endogeneity. The test is based on

comparing two estimators, one of which is
p
NT -consistent under both the null and the

alternative hypothesis (in our case, the panel FM-OLS), whereas the other one is
p
NT -

consistent only under the alternative hypothesis (in our case, the OLS estimator) and

T -consistent under the null hypothesis. We thus construct a test statistic that diverges

under the null hypothesis, whilst being bounded under the alternative hypothesis, and use

it in a randomised test framework. We show, through a Monte Carlo exercise, that the test

has good power properties and the correct size. The test is carried out under restrictive

assumptions, such as homogeneity and cross sectional independence, but we show that

it also works in more realistic setups that allow for slope heterogeneity or dynamics in

the heterogeneity, and that it can be easily modi�ed under cross dependence. This is an
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interesting feature of the test: a simple test statistic is found to be robust even when the

underpinning model is incorrectly speci�ed. Thus, the test should always be carried out

under the assumption of slope and dynamic homogeneity. Finally, we point out that the

test itself is based on the FM-OLS estimator as a robust solution to endogeneity; however

upon accepting the null hypothesis that exogeneity does not hold, di¤erent estimation

techniques can be employed for the actual estimation of the slopes (e.g. the Dynamic

OLS, or a di¤erent estimator belonging to the FM-OLS family).

As a �nal word of warning, a test is only one of the elements that should be employed

to determine whether to use the OLS estimator, or some other technique that is robust to

endogeneity. The outcome of the test should also be interpreted on the grounds of other

considerations: if strict exogeneity is not plausible on account of prior grounds, it should

be noted that carrying out inference with OLS could be pernicious, since in presence of

endogeneity the standard errors are inconsistent.
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TA B L E 1

Bias, MSE and Empirical Rejection Frequencies for the FM-OLS and the OLS estimator of � in (1) with exogeneity.

(�; #) (0; 0) (0; 0:5) (0;�0:5) (0:5; 0) (�; #) (0; 0) (0; 0:5) (0;�0:5) (0:5; 0)

N T N T

25 25

biasFM�OLS
MSEFM�OLS
ERFFM�OLS

52:44

92:91

0:287

19:32

68:86

0:219

189:01

361:00

0:557

0:757

57:16

0:201

50 25

biasFM�OLS
MSEFM�OLS
ERFFM�OLS

86:01

53:58

0:336

56:59

39:62

0:278

220:56

201:62

0:582

41:84

33:22

0:263

biasOLS
MSEOLS
ERFOLS

30:77

38:00

0:098

�40:67

37:61

0:097

13:84

76:24

0:191

46:54

37:19

0:104

biasOLS
MSEOLS
ERFOLS

�16:22

20:41

0:116

�17:42

19:98

0:122

6:30

38:83

0:215

�14:38

19:28

0:134

50

biasFM�OLS
MSEFM�OLS
ERFFM�OLS

16:89

22:58

0:244

16:85

16:83

0:178

24:39

95:81

0:557

7:49

14:52

0:159

50

biasFM�OLS
MSEFM�OLS
ERFFM�OLS

�1:80

12:15

0:269

3:42

8:90

0:206

�33:17

55:46

0:589

2:96

7:57

0:176

biasOLS
MSEOLS
ERFOLS

�33:98

9:67

0:072

�27:83

9:61

0:077

�67:66

16:89

0:151

30:46

9:47

0:082

biasOLS
MSEOLS
ERFOLS

10:03

4:92

0:091

10:17

4:91

0:100

4:90

8:16

0:165

7:61

4:82

0:099

100

biasFM�OLS
MSEFM�OLS
ERFFM�OLS

�18:34

4:94

0:187

�17:62

3:81

0:143

�19:58

22:47

0:505

�16:65

3:36

0:120

100

biasFM�OLS
MSEFM�OLS
ERFFM�OLS

7:74

2:71

0:231

7:04

2:01

0:163

9:50

13:56

0:585

5:86

1:73

0:136

biasOLS
MSEOLS
ERFOLS

�18:80

2:54

0:072

�16:45

2:44

0:073

�32:36

3:57

0:120

�15:30

2:42

0:077

biasOLS
MSEOLS
ERFOLS

8:49

1:19

0:070

8:17

1:18

0:069

9:50

1:75

0:123

7:87

1:17

0:069

200

biasFM�OLS
MSEFM�OLS
ERFFM�OLS

16:82

1:06

0:156

13:53

0:85

0:110

37:77

4:66

0:478

12:35

0:76

0:096

200

biasFM�OLS
MSEFM�OLS
ERFFM�OLS

�5:51

0:57

0:178

�4:21

0:45

0:130

�15:29

2:68

0:515

�3:76

0:40

0:114

biasOLS
MSEOLS
ERFOLS

4:25

0:60

0:062

4:77

0:60

0:063

0:14

0:76

0:089

5:26

0:60

0:064

biasOLS
MSEOLS
ERFOLS

�0:48

0:30

0:062

�0:38

0:30

0:059

�0:22

0:37

0:090

�0:39

0:30

0:063

100 25

biasFM�OLS
MSEFM�OLS
ERFFM�OLS

30:90

25:16

0:178

26:26

18:72

0:300

50:73

106:18

0:618

27:89

15:74

0:276

200 25

biasFM�OLS
MSEFM�OLS
ERFFM�OLS

7:84

11:43

0:374

10:69

8:63

0:321

�24:16

52:35

0:636

8:21

7:31

0:303

biasOLS
MSEOLS
ERFOLS

44:97

9:75

0:062

36:85

9:80

0:153

71:29

18:08

0:238

37:19

9:57

0:166

biasOLS
MSEOLS
ERFOLS

5:69

4:99

0:183

3:23

4:89

0:190

7:21

9:66

0:259

�0:51

4:69

0:207

50

biasFM�OLS
MSEFM�OLS
ERFFM�OLS

�24:35

6:50

0:323

�25:94

4:70

0:241

�20:24

32:22

0:634

�27:50

4:03

0:200

50

biasFM�OLS
MSEFM�OLS
ERFFM�OLS

�0:28

3:12

0:342

�2:89

2:29

0:263

6:53

15:69

0:627

�4:99

1:96

0:236

biasOLS
MSEOLS
ERFOLS

�29:83

2:48

0:102

�32:09

2:45

0:103

�15:25

4:18

0:180

�33:33

2:42

0:106

biasOLS
MSEOLS
ERFOLS

�2:02

1:19

0:110

�3:64

1:18

0:112

2:31

1:97

0:191

�4:71

1:17

0:118

100

biasFM�OLS
MSEFM�OLS
ERFFM�OLS

11:67

1:43

0:256

9:01

1:05

0:186

29:23

7:71

0:617

8:32

0:90

0:157

100

biasFM�OLS
MSEFM�OLS
ERFFM�OLS

�14:84

0:74

0:264

�12:46

0:53

0:194

�30:01

4:29

0:623

�10:89

0:46

0:164

biasOLS
MSEOLS
ERFOLS

4:91

0:58

0:067

4:31

0:58

0:070

9:73

0:79

0:116

4:27

0:58

0:073

biasOLS
MSEOLS
ERFOLS

�4:74

0:29

0:081

�4:73

0:29

0:088

�2:79

0:42

0:136

�4:38

0:29

0:085

200

biasFM�OLS
MSEFM�OLS
ERFFM�OLS

�4:87

0:31

0:201

�3:75

0:24

0:152

�13:02

1:59

0:569

�2:96

0:21

0:130

200

biasFM�OLS
MSEFM�OLS
ERFFM�OLS

�2:17

0:16

0:206

�1:27

0:12

0:149

�9:16

0:90

0:591

�0:83

0:10

0:125

biasOLS
MSEOLS
ERFOLS

�1:15

0:15

0:074

�0:95

0:15

0:071

�1:77

0:19

0:099

�0:66

0:15

0:069

biasOLS
MSEOLS
ERFOLS

1:19

0:07

0:069

1:28

0:07

0:068

0:70

0:09

0:097

1:38

0:07

0:070
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Notes : I n a l l e n t r i e s , t h e o r ig in a l va lu e s o f t h e b ia s a n d o f t h e M SE h av e b e e n m u lt ip l i e d b y 104 . T h e E R F h a s a c o n � d e n c e in t e r va l o f [0:04; 0:06]. T h e p ow e r fo r e a ch e x p e r im e n t c a n b e r e a d f r om Ta b le 2 ( � r s t c o lu m n o f

e a ch c om b in a t io n o f (�; �)) .
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TA B L E 2

Empirical rejection frequencies - DGP based on (26)-(29), with homogeneous slopes ( �i = � = 1 for al l i).

(�; #) (0; 0) (0; 0:5) (0;�0:5) (0:5; 0)

N T �xe 0 0:4 0:6 0:8 0 0:4 0:6 0:8 0 0:4 0:6 0:8 0 0:4 0:6 0:8

25 0:539 0:046 0:042 0:042 0:629 0:048 0:043 0:042 0:309 0:042 0:042 0:042 0:652 0:048 0:045 0:042

25 50 0:568 0:038 0:039 0:039 0:654 0:042 0:038 0:038 0:317 0:039 0:039 0:039 0:700 0:042 0:039 0:039

100 0:624 0:042 0:042 0:042 0:718 0:041 0:042 0:042 0:333 0:042 0:042 0:042 0:758 0:042 0:042 0:042

200 0:687 0:037 0:036 0:036 0:764 0:038 0:036 0:036 0:392 0:036 0:036 0:036 0:805 0:038 0:036 0:036

25 0:756 0:061 0:061 0:061 0:851 0:063 0:061 0:061 0:487 0:061 0:061 0:061 0:879 0:065 0:062 0:061

50 50 0:802 0:068 0:067 0:067 0:885 0:069 0:067 0:067 0:503 0:067 0:067 0:067 0:908 0:069 0:068 0:067

100 0:839 0:067 0:067 0:067 0:920 0:069 0:067 0:067 0:546 0:067 0:067 0:067 0:943 0:069 0:067 0:066

200 0:912 0:061 0:061 0:061 0:958 0:061 0:061 0:061 0:624 0:061 0:061 0:061 0:974 0:058 0:061 0:061

25 0:883 0:054 0:054 0:054 0:945 0:054 0:054 0:054 0:587 0:054 0:054 0:054 0:961 0:056 0:054 0:054

100 50 0:922 0:059 0:059 0:059 0:967 0:059 0:059 0:059 0:624 0:059 0:059 0:059 0:982 0:058 0:059 0:059

100 0:947 0:053 0:053 0:053 0:984 0:053 0:053 0:053 0:666 0:053 0:053 0:053 0:993 0:053 0:053 0:053

200 0:981 0:050 0:050 0:050 0:997 0:050 0:050 0:050 0:744 0:050 0:050 0:050 1:000 0:052 0:052 0:052

25 0:963 0:054 0:054 0:054 0:997 0:050 0:050 0:050 0:715 0:054 0:054 0:054 0:991 0:055 0:054 0:054

200 50 0:976 0:050 0:050 0:050 0:994 0:050 0:050 0:050 0:737 0:050 0:050 0:050 0:998 0:050 0:050 0:050

100 0:992 0:043 0:043 0:043 0:999 0:043 0:043 0:043 0:792 0:043 0:043 0:043 1:000 0:043 0:043 0:043

200 0:998 0:057 0:057 0:057 1:000 0:057 0:057 0:057 0:861 0:057 0:057 0:057 1:000 0:057 0:057 0:057

Notes: Va lu e s a r e r e p o r t e d u n d e r t h e n u l l h y p o t h e s i s H0 o f z e r o lo n g - r u n c o r r e la t io n b e tw e e n �xit a n d eit i n ( 1 ) , c o r r e s p o n d in g t o a l l e n t r i e s w h e r e �xe 6= 0; e n t r i e s in t h o s e c o lu m n s a r e t h e em p ir i c a l s i z e o f t h e t e s t .

T h e e n t r i e s c o r r e s p o n d in g t o t h e a l t e r n a t iv e h y p o t h e s i s HA o f n o e n d o g e n e i ty c o r r e s p o n d t o t h e c a s e �xe = 0, a n d in t h i s c a s e e n t r i e s r e p r e s e n t t h e p ow e r o f t h e t e s t . A s fa r a s t h e s p e c i� c a t io n o f t h e t e s t i s c o n c e r n e d , a l l

t e s t s a r e c a r r i e d o u t o u t w i t h u = 1.
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TA B L E 3

Empirical rejection frequencies - DGP based on (27)-(37), with heterogeneous slopes

(�; #) (0; 0) (0; 0:5) (0;�0:5) (0:5; 0)

N T �xe 0 0:4 0:6 0:8 0 0:4 0:6 0:8 0 0:4 0:6 0:8 0 0:4 0:6 0:8

25 0:561 0:046 0:042 0:042 0:642 0:047 0:043 0:042 0:324 0:042 0:042 0:042 0:677 0:054 0:044 0:044

25 50 0:581 0:040 0:039 0:039 0:668 0:044 0:039 0:039 0:313 0:039 0:039 0:039 0:715 0:048 0:039 0:039

100 0:570 0:043 0:042 0:042 0:662 0:041 0:042 0:041 0:300 0:042 0:042 0:042 0:709 0:042 0:042 0:042

200 0:700 0:036 0:036 0:036 0:773 0:038 0:036 0:036 0:412 0:036 0:036 0:036 0:814 0:040 0:036 0:036

25 0:838 0:063 0:061 0:061 0:909 0:071 0:061 0:061 0:586 0:061 0:061 0:061 0:934 0:080 0:062 0:062

50 50 0:699 0:067 0:067 0:067 0:801 0:067 0:067 0:067 0:404 0:067 0:067 0:067 0:842 0:068 0:067 0:067

100 0:742 0:067 0:067 0:067 0:834 0:067 0:067 0:067 0:435 0:067 0:067 0:067 0:880 0:068 0:067 0:067

200 0:915 0:060 0:061 0:061 0:955 0:060 0:061 0:061 0:626 0:061 0:061 0:061 0:973 0:060 0:060 0:060

25 0:905 0:053 0:054 0:054 0:955 0:056 0:054 0:054 0:615 0:054 0:054 0:054 0:967 0:057 0:054 0:054

100 50 0:965 0:058 0:059 0:059 0:990 0:059 0:059 0:059 0:721 0:059 0:059 0:059 0:996 0:060 0:059 0:059

100 0:950 0:053 0:053 0:053 0:981 0:053 0:053 0:053 0:662 0:053 0:053 0:053 0:989 0:053 0:053 0:053

200 0:991 0:050 0:050 0:050 0:999 0:052 0:050 0:050 0:797 0:050 0:050 0:050 1:000 0:051 0:050 0:050

25 0:976 0:054 0:054 0:054 0:992 0:055 0:055 0:054 0:753 0:054 0:054 0:054 0:996 0:054 0:054 0:054

200 50 0:982 0:050 0:050 0:050 0:997 0:050 0:050 0:050 0:760 0:050 0:050 0:050 0:998 0:049 0:050 0:050

100 0:993 0:043 0:043 0:043 0:998 0:043 0:043 0:043 0:784 0:043 0:043 0:043 1:000 0:043 0:043 0:043

200 0:997 0:057 0:057 0:057 1:000 0:057 0:057 0:057 0:837 0:057 0:057 0:057 1:000 0:057 0:057 0:057

Notes: �i i s g e n e r a t e d a s i . i .d . N (1; 1). T h e e n t r i e s h av e t h e s am e in t e r p r e t a t io n a s in Ta b le 2 , a n d t h e s p e c i� c a t io n s o f t h e t e s t a r e t h e s am e a l s o .
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TA B L E 4

Empirical rejection frequencies - DGP based on (27)-(37), with heterogeneous slopes

(�; #) (0; 0) (0; 0:5) (0;�0:5) (0:5; 0)

N T �xe 0 0:4 0:6 0:8 0 0:4 0:6 0:8 0 0:4 0:6 0:8 0 0:4 0:6 0:8

25 0:413 0:044 0:042 0:041 0:541 0:044 0:042 0:041 0:210 0:045 0:041 0:041 0:579 0:050 0:040 0:041

25 50 0:451 0:045 0:042 0:041 0:578 0:045 0:042 0:041 0:211 0:042 0:041 0:041 0:651 0:048 0:044 0:041

100 0:500 0:048 0:047 0:047 0:627 0:049 0:048 0:047 0:216 0:048 0:047 0:047 0:688 0:049 0:048 0:048

200 0:588 0:041 0:042 0:042 0:711 0:040 0:040 0:042 0:228 0:042 0:042 0:042 0:759 0:042 0:040 0:041

25 0:641 0:065 0:063 0:063 0:783 0:065 0:063 0:063 0:345 0:064 0:063 0:063 0:832 0:065 0:063 0:063

50 50 0:679 0:067 0:066 0:065 0:810 0:068 0:065 0:065 0:318 0:066 0:065 0:065 0:863 0:070 0:067 0:065

100 0:744 0:058 0:058 0:058 0:884 0:058 0:058 0:056 0:346 0:058 0:058 0:058 0:923 0:055 0:058 0:058

200 0:815 0:065 0:065 0:065 0:919 0:064 0:064 0:064 0:372 0:064 0:064 0:064 0:955 0:067 0:065 0:065

25 0:776 0:048 0:049 0:049 0:901 0:048 0:049 0:049 0:436 0:050 0:049 0:049 0:937 0:048 0:049 0:049

100 50 0:820 0:046 0:046 0:046 0:934 0:046 0:046 0:046 0:399 0:046 0:046 0:046 0:962 0:046 0:046 0:046

100 0:874 0:051 0:051 0:051 0:966 0:051 0:051 0:051 0:418 0:051 0:051 0:051 0:985 0:051 0:051 0:051

200 0:985 0:056 0:056 0:056 0:935 0:056 0:056 0:056 0:477 0:056 0:056 0:056 0:997 0:056 0:056 0:056

25 0:868 0:059 0:059 0:059 0:948 0:059 0:059 0:059 0:530 0:059 0:059 0:059 0:972 0:059 0:059 0:059

200 50 0:922 0:045 0:045 0:045 0:982 0:045 0:045 0:045 0:480 0:045 0:045 0:045 0:986 0:045 0:045 0:045

100 0:966 0:064 0:064 0:064 0:998 0:064 0:064 0:064 0:578 0:064 0:064 0:064 1:000 0:064 0:064 0:064

200 0:994 0:050 0:050 0:050 1:000 0:050 0:050 0:050 0:648 0:050 0:050 0:050 1:000 0:050 0:050 0:050

Notes: �i i s g e n e r a t e d a s i . i .d . N (1; 1). T h e e n t r i e s h av e t h e s am e in t e r p r e t a t io n a s in Ta b le 2 , a n d t h e s p e c i� c a t io n s o f t h e t e s t a r e t h e s am e a l s o .
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