
Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M. S., Conti, M. & Rajarajan, M. (2015).

Android Security: A Survey of Issues, Malware Penetration, and Defenses. IEEE Communications

Surveys and Tutorials, 17(2), pp. 998-1022. doi: 10.1109/COMST.2014.2386139

City Research Online

Original citation: Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M. S., Conti, M. &

Rajarajan, M. (2015). Android Security: A Survey of Issues, Malware Penetration, and Defenses.

IEEE Communications Surveys and Tutorials, 17(2), pp. 998-1022. doi:

10.1109/COMST.2014.2386139

Permanent City Research Online URL: http://openaccess.city.ac.uk/12200/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/76981199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 1

Android Security: A Survey of Issues, Malware

Penetration and Defenses
Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Singh Gaur and Mauro Conti

Abstract—Android smartphones are gaining big market share
due to several reasons, including open architecture and popular-
ity of its application programming interfaces (APIs) in developer
community. In general, smartphone has become pervasive due
to its cost effectiveness, ease of use and availability of office
applications, Internet, games, vehicle guidance using location-
based services apart from conventional voice calls, messaging
and multimedia services.

Increase in number of Android smartphone and associated
monetary benefits has led to an exponential rise in Android
malware apps between 2011-2014. Academic researchers and
commercial anti-malware companies have realized that conven-
tional signature based and static analysis methods are vulnerable
against prevalent stealth techniques such as encryption, code
transformation and analysis environment detection approach.
This realization has led to the use of behavior based, anomaly
based and dynamic analysis methods. As one single approach
may be ineffective against above techniques, complementary
approaches may be combined for effective malware app detection.

Though many reviews extensively cover smartphone OS secu-
rity, as Android smarthphone have captured more than 75%
market, we believe a deep examination of Android security,
malware growth, anti analysis methods and mitigation solution
specifically for android is required. In this review, we discuss
Android security enforcement and its issues, Android malware
growth timeline between 2010-2013, malware penetration and
anti-analysis techniques used by malware authors to bypass
analysis methods. This review gives an insight into the strength
and weakness of known research methodologies and thus provide
a platform for research practitioners towards proposing next
generation Android security, malware analysis and malicious app
detection methods.

Index Terms—Android Malware, Static Analysis, Dynamic
Analysis, Behavioral Analysis, Obfuscation, Stealth Malware

I. INTRODUCTION

Android smartphone Operating System has captured more

than 75% of the total market-share, leaving its competitors

iOS, Windows Phone and Blackberry far behind [1]. Even

though smartphones were used in the previous decade, launch

of iOS and Android has changed the landscape by generating

an enormous attraction worldwide among consumers and

developers alike. Smartphones have become ubiquitous due

to wide range of connectivity options, such as GSM, CDMA,

Wi-Fi, GPS, Bluetooth and NFC. Gartner report of year 2013

shows an increase of 42.3% in smartphone sales from 2012

[1]. Comparison between total sales in year 2012 and 2013 is

P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor and Manoj Singh Gaur
are with Computer Engineering Department, MNIT Jaipur, India (e-mail:
parvez@mnit.ac.in; vlaxmi@mnit.ac.in; gaurms@gmail.com)

M. Conti is with University of Padua- Department of Mathematics(e-
mail:conti@math.unipd.it)

Manuscript received Month 00, 2014; revised Month, 2014.

shown in the Figure 1. It shows an increase of 12% from 66 to

78 for Android and its nearest competitor iOS’s sale declines

by 4% from 19 to 15. Always-on internet connectivity and

personal information such as contacts, messages, social net-

work access, browsing history, bank transactions have attracted

malware developers also towards smartphone OS platforms in

general and Android in particular due to its popularity. This

has led to the rise of Android malware such as premium-

rate SMS Trojan, spyware, botnets, aggressive adware and

privilege escalation exploits distributed through third-party and

official app-stores.

 0

 10

 20

 30

 40

 50

 60

 70

 80

Android iOS BlackBerry Windows-Phone Others

P
e
rc

e
n
ta

g
e
 M

a
rk

e
t
S

h
a
re

Smartphone OS sales 2012-2013

2012
2013

Fig. 1: Mobile OS sales comparison between 2012 and

2013 [1]

Android’s popularity among users has made the develop-

ers provide innovative applications (popularly called apps).

Google Play, official Android app market hosts third-party

developer apps with a nominal fee providing moderate control.

Google Play hosts more than one million apps [2] with large

number of downloads each day. Unlike Apple market app-

store, Google Play does not verify uploaded apps manually.

Instead, Google Play relies on Bouncer, a dynamic emulation

environment to protect itself from malicious app threats. It

would provide protection against threats, but cannot analyze

the vulnerability of existing apps [3]. Malicious apps may

trick vulnerable apps to divulge user’s private information

that inadvertently harms the reputation of the latter. Moreover,

Android does not recommend, but allows installation of third-

party apps on device, which has stirred up dozens of regional

as well as international app-stores [4] [5] [6] [7] [8]. However,

protection and quality of apps available in third-party app-

stores is a matter of concern [9].

Android security solution providers report an alarming rise

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 2

of malware from just three families and mere 100 samples

in 2010, to more than hundred families with 0.12-0.6 million

unique samples [10] [11] [12] [13] [14] [15]. The number

of malicious apps uploaded on VirusTotal [16] is doubling

every year. Malicious apps are using clever ways to bypass

existing security mechanisms provided by Android OS as

well as anti-malware products such as stealth techniques,

dynamic execution, code obfuscation, repackaging and en-

cryption [17] [18]. Existing malware propagate by employing

above techniques to defeat signature-based approach used by

anti-malware products. Thus, new mechanisms that adapt and

provide timely response to such techniques are important.

Proactive approaches are needed to detect unknown variants

of known malware with less number of signature updates, in-

contrast to one signature for each known malware.

Malware app developers gain smartphone control by ex-

ploiting platform vulnerabilities [19], stealing sensitive user

information [17], getting monetary benefits by exploiting

telephony services [20] or creating botnet [21]. Thus, it is

important to understand their operational activities, mode of

working and usage pattern in recent past to devise proactive

detection methods.

Huge increase in malicious apps has forced anti-malware

industry to carve out robust methods for efficient detection on

device under existing constraints. Majority of anti-malware

still employ retrospective signature based detection due to

implementation simplicity and efficiency [22]. Signature based

methods can be easily circumvented through code obfuscation,

necessitating a new signature for every malicious sample [23]

and that is why an anti-malware client has to regularly update

its signature database. Due to limited processing capability

and constrained battery power on a smartphone, cloud-based

solutions for analysis and detection came into existence [24]

[25]. Signature generation needs expertise and patience for

each malware sample as it may incur false positives while

detecting unknown variants of a known malware family. Due

to increasing number of malware and their variants, there is a

need to employ automatic signature generation and detection

incurring low false positive rate.

Off-device detailed analysis of malware is required to under-

stand its functionality. Analysis of samples can be done man-

ually to extract robust signatures out of them. However, given

the rapid rise of malware, there is need for analysis methods

that need minimum human intervention, helping malware ana-

lyst to generate timely solution of new malware. Static analysis

can quickly and precisely identify malicious patterns, but fails

against code obfuscation as well as dynamic code execution

on Android [26]. Thus, dynamic analysis approaches, though

time-consuming, are used to extract malicious behavior of

samples using stealth techniques, by executing them in a

sandbox environment.

Academic and industry researchers have proposed many

solutions and frameworks to mitigate malicious app threats

since the launch of Android in 2008, some of which are open-

source. These solutions can be characterized basically using

following three parameters:

1) Goal of the proposed solution can be either app-security

assessment, analysis or malware detection. App-security

assessment solutions try to find out vulnerabilities in

apps, which if exploited by an adversary, can harm

the user and device security. Analysis solutions check

for malicious behavior within unknown apps, whereas

detection solutions aim to prevent existing malware from

installing on the device.

2) Methodology to achieve above goals can be static anal-

ysis based approach that is used to identify behavior of

apps without actually executing them. Control-flow and

data-flow analysis are example implementations of for-

mal static analysis. In Dynamic analysis based approach,

apps are executed/emulated in a sandboxed environment,

in order to monitor their activities and identify behaviors,

which are otherwise difficult or impossible using static

analysis approach.

3) Deployment of the above solutions.

Existing survey papers on smartphone security review the

state of the art in general considering all popular OS plat-

forms [27] [28], while this review paper mainly focuses on

Android OS. In particular, La Polla et al. [28] surveyed

smartphone security threats and their solutions for the period

2004-2011, which has very limited coverage for Android OS.

Suarez-Tangil et al. [27] extended the work of La Polla et

al. [28]. In particular, they concentrated on attacks based on

related smartphone feature misuse such as hardware, commu-

nication, sensors and system, which gives good insight into

how utilizing certain features of Android will affect overall

security of the device. Suarez-Tangil et al. categorized malware

based on their attack goals, distribution & infection and

privilege acquisition. On the contrary, we categorize malware

as per anti-malware industry’s terminology, which aims to

provide more accurate view of malware infection rate and

threat perception for period 2010-13.

In 2011, William Enck [29] studied the security mechanisms

available in Android, particularly, protection through permis-

sions and security implications of inter-app communication.

Moreover, he discussed other third-party Android platform

hardening solutions, their benefits and limitations. He also

examined various app security analysis proposals and gave

future direction to enhance them.

We aim to complement former reviews by expanding the

coverage of Android security issues, malware growth during

2010-13, their penetration, stealth techniques and strength

as well as weaknesses of some of the popular mitigation

solutions. In particular, we comprehensively cover stealth

techniques used by malware authors to evade detection by

generating variants of existing Android malware. We also

propose a hybrid framework for Android malware analysis

and detection, which gives insight into our future research

direction. This survey paper is organized as follows:

• Section II discusses the Android architecture, application

structure and inter–component communication.

• Section III discusses security enforcement done at various

level within Android and Section IV covers its issues with

respect to user’s security.

• Section V categorizes Android malware according to their

functionality and Section VI covers various penetration

techniques used by them.

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 3

• Section VII discusses obfuscation and stealth techniques

employed by malware.

• Section IX outlines assessment, analysis and detection

methodology and their deployment methods.

• Section X reviews state of the art tools for app-security

assessment, analysis and malware detection proposed by

academia and anti-malware industry along with their

strength and drawbacks.

• Finally, Section XI concludes the survey by evaluating

state of the art tools. We also propose an Android

malware analysis and detection framework that employs

both static and dynamic analysis techniques, as a recom-

mendation for future research direction.

II. BACKGROUND

Android is being developed under Android Open Source

Project (AOSP), maintained by Google and promoted by Open

Handset Alliance (OHA), which consists Original Equipment

Manufacturers (OEMs), chip-makers, carriers and developers.

Android apps are developed in Java, however, native code

and shared libraries are coded in C/C++. Typical Android

architecture is shown in Figure 2. The bottom layer is Linux

kernel tuned specifically for embedded environment with

limited resources. Android is based on Linux kernel due to

its robust driver model, existing drivers, memory and process

management, networking support along with other core ser-

vices. Currently, Android fully supports two Instruction Set

Architectures: 1) ARM, prevalent in smartphones, Tablets;

2) x86, prevalent among Mobile Internet Devices (MIDs).

On the top of Linux kernel are native libraries to support

high performance third-party reusable libraries and in-house

functionality. Java code is translated into Dalvik byte code that

Fig. 2: Android Architecture [30]

runs under newly created Java runtime, called Dalvik Virtual

Machine, optimized for limited resource availability on mobile

platform. After booting of OS completes, a process called

zygote initializes Dalvik VM by pre-loading all core libraries

and waits, through a socket, for new process creation requests

to be forked from itself. This makes new app-process cre-

ation very fast. Finally, application framework layer provides

uniform and concise view of Java libraries for use by apps.

Android runs its sensitive functionality such as telephony,

GPS, network, power-management, radio and media as system

services, which are again protected with permissions.

A. App Structure

An Android app is packaged into a .apk file, which is tech-

nically a zip archive, consisting of several files and folders as

shown in Figure 3. In particular, AndroidManifest.xml

file contains meta-data about an app, such as package name,

permissions required, definition of one or more components

like Activities, Services, Broadcast Receivers or Content

Providers, minimum and maximum platform version sup-

ported, libraries to be linked against and so forth. res folder

consist of icons, images, string, numeric, color constants, UI

layout, menus, animations etc. compiled into binary format.

assets folder contains non-compiled resources and its direc-

tory structure is maintained. classes.dex contains Dalvik

executable bytecode to be run under Dalvik Virtual Machine.

META-INF folder contains app digital signature, as well as,

developer certificate used for verification and identification

respectively.

As mentioned before, Android apps are written in Java

language. App building process is shown in the Figure 4.

Compilation of Java code creates number of .class files,

containing intermediate Java-bytecode, for each Java class in

source. Using dx tool, those .class files are converted into

a single Dalvik Executable (dex) file. Dex file contains Dalvik

Archive

Assets CERT.RSA

CERT.SF

MANIFEST.MF

lib

Meta-INF

res Drawable

Layout

Other
XML Files

AndroidManifest.xml

classes.dex

resources.arsc

App

Fig. 3: Android PacKage (APK) Structure

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 4

Fig. 4: App Building Process

bytecode, which runs under register-based Dalvik Virtual

Machine, unlike stack-based JVM.

B. App Components

In Android, an app is functionally divided into one or more

components given below:

• Activity: It is the user interface component of an app.

Arbitrary number of activities can be declared in manifest

file depending on the requirements. Apart from perform-

ing some pre-defined task, an activity can also return the

result to its caller. Activities are launched using Intents

(explained in the next subsection).

• Service: It is a component without any user interface.

A service is generally used to perform background pro-

cessing, for example, playing an audio or downloading

data from network. Services are launched using Intents

(explained in the next subsection).

• Broadcast Receiver: This component listens to the

events, which are generated by the system, for example,

BOOT_COMPLETED, SMS_RECEIVED etc. Other apps

can also broadcast their application-defined events, which

can be handled by other apps using this component.

• Content Provider: This component is also known as data-

store, providing a consistent interface for data access

within app or to other apps. Externally, data within

the content provider appears in the form of relational

database, but internally it can have completely different

storage implementation. Data-store is accessible through

application-defined Uniform Resource Identifiers (URIs).

Each component may be accessible to other apps, de-

pending upon whether they are exported. Listing 1 shows

an example definition for each of the component in

AndroidManifest.xml. Each component can get invoked

or executed independent of others. Thus, Android app has mul-

tiple entry-points, depending upon the number of components

it is made-up of.

C. Inter-component Communication

Exported components of apps interact with each other

using a high-level abstraction for inter-process communication,

called Intent, internally handled by Binder driver. Apps invoke

activities and services as well as send broadcast events using

Intents only. Also, system events are broadcasted through

Intents. Intent can contain explicit address of the receiver

component using class/package name field. Otherwise, de-

pending upon the presence of action, category and data fields,

system implicitly sends Intent to the matching one or more

receiver component. Each component registers itself to receive

Intent(s) using one or more intent-filter, which also specifies

the kind of action, category and/or data it can accept. For

example, in Listing 1, service component will be invoked

only when it receives system Intent with action equals to

BOOT COMPLETED.

1 <uses−permiss ion

2 a n d r o i d : n a m e =” android . permiss ion . INTERNET” />

3 <uses−permiss ion

4 a n d r o i d : n a m e =” android . permiss ion .READ PHONE STATE” />

5 <uses−permiss ion

6 a n d r o i d : n a m e =” android . permiss ion . RECEIVE SMS” />

7

8 <a c t i v i t y a n d r o i d : l a b e l =” @string / app name”

9 a n d r o i d : n a m e =”com . myapp . Main”>

10 <i n t e n t−f i l t e r>

11 <a c t i o n a n d r o i d : n a m e =” android . i n t e n t . a c t i o n .

MAIN” />

12 <c a t e g o r y

13 a n d r o i d : n a m e =” android . i n t e n t . c a t e g o r y .LAUNCHER” /

>

14 </ i n t e n t−f i l t e r>

15 </ a c t i v i t y>

16

17 <r e c e i v e r a n d r o i d : n a m e =”com . myapp . SmsReceiver ”>

18 <i n t e n t−f i l t e r>

19 <a c t i o n

20 a n d r o i d : n a m e =” android . i n t e n t . a c t i o n . SMS RECEIVED

” />

21 </ i n t e n t−f i l t e r>

22 </ r e c e i v e r>

23

24 <s e r v i c e a n d r o i d : e n a b l e d =” true ”

25 a n d r o i d : n a m e =”com . myapp . MyService ”

26 a n d r o i d : p e r m i s s i o n =” android . permiss ion . INTERNET

”>

27 <i n t e n t−f i l t e r>

28 <a c t i o n

29 a n d r o i d : n a m e =” android . i n t e n t . a c t i o n .

BOOT COMPLETED” />

30 </ i n t e n t−f i l t e r>

31 </ s e r v i c e>

32

33 <prov ider a n d r o i d : n a m e =” Student sProv ider ”

34 a n d r o i d : a u t h o r i t i e s =”com . myapp . MyProvider”>

35 </ prov ider>

Listing 1: Snippet from AndroidManifest.xml with

components

III. ANDROID SECURITY ENFORCEMENT

Android has been designed with security in mind from the

very inception with the aim to protect user data, apps, the

device and the network [30]. However, overall security de-

pends on the developers’ willingness and capability to employ

best practices. Also, user must be aware of the effect that

some app can have after installation, on its data and device’s

security. Anti-malware solutions on Android cannot handle

malware aggressively due to security model enforced on apps.

For example, anti-malware apps have limited scanning and/or

monitoring capability for other apps or file-system in the

device. In this section, we revise the security features provided

by Android platform.

A. Application Sandboxing

At kernel level, Android utilizes DAC (Discretionary Access

Control) feature of Linux, by assigning every app process a

Say the subsection number

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 5

unique UID, so that an app cannot interfere with other apps

or system services. Android also protects network access by

implementing a feature called Paranoid Network Security,

through which Wi-Fi, Bluetooth, Internet access services run in

different groups [31]. If some app has been granted permission

for particular network access (e.g., Bluetooth), process of that

app is assigned into corresponding group. Thus, apart from

UIDs, a process may get assigned one or more GIDs. Android

app sandboxing is shown in Figure 5.

An app must contain a PKI certificate signed by the devel-

oper who created it (see Figure 4). Signing is the point of trust

between Google and developers, so that developers are sure

that their apps are provided to the users unmodified, and they

only are responsible for their apps’ behavior. This signing is

used for placing an app to its sandbox by assigning unique

UID. If certificate of an app A matches with some already

installed app B on the device, Android assigns the same UID

(i.e., sandbox) to app A as app B, allowing them to share

each others’ private files and permissions. For this reason, it

is strictly not advisable that developer should share its own

certificate with others.

B. Permissions at Framework-level

To restrict every app from accessing important

functionality of a smartphone such as telephony,

network, contacts/SMS/sdcard and GPS location, Android

provides permission-based security model at application

framework level. App must declare the permissions it

want to access using <uses-permissions> tag in

AndroidManifest.xml file as shown in the Listing 1.

By default, app has no permission to perform actions that

would affect other apps, system or user, and thus, it runs with

a very limited capability. Thus, restrictions are enforced, on

specific operations an app (process) can perform, at the time

of installation itself.

Android permissions are divided into following four

protection-levels [32]:

1) Normal: These permissions has minimal risk for the

device, system and users. They are granted automatically

at the time of installation.

2) Dangerous: These permissions has higher risk and give

app the access of private data and important features

of the device. They must be granted by users before

installation.

3) Signature: These permissions are granted only if request-

ing app is signed with the same certificate as the app that

declared the permissions. They are granted automatically

at the time of installation.

4) SignatureOrSystem: These permissions are granted only

if requesting app is signed with the same certificate

as the Android system image or app that declared the

permissions. They are granted automatically at the time

of installation.

Permissions in Android are coarse-grained, for exam-

ple, INTERNET permission does not have capability to re-

strict access to particular Uniform Resource Locator (URL)

domain(s). Also READ_PHONE_STATE permission allows

to check if phone is ringing or in hold, at the same

time it allows to read phone identifiers. Permissions like

WRITE_SETTINGS, CAMERA are also similarly broad, thus

violating least privilege access principle. Permissions are also

not hierarchical, for example, WRITE_CONTACTS does not

imply READ_CONTACTS, it must be requested separately.

Same is the case with READ_SMS and WRITE_SMS. At the

time of installation, user is asked to grant either all or no

permissions. Often, users are unable to judge the appropri-

ateness of certain permissions requested by apps and expose

themselves to risk [33].

C. Secure System Partition

System partition of smartphone contains Android’s kernel,

system libraries, runtime, framework and applications [30].

Android makes system partition read-only to protect unau-

Fig. 5: Android Apps within Sandbox at Kernel-level [30]

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 6

thorized access and modification. Also, some part of file-

system such as application cache and sdcard are secured with

appropriate privileges to prevent tampering from adversary

when device is connected with the PC using USB port.

D. Secure Google Play Store

Google discourages users to install apps from sources other

than its own Play Store due to security reasons. Before making

any app available for users to download, Google verifies it

with Bouncer, a dynamic analysis service that executes app

in a sandboxed environment to ascertain its normal behavior.

Bouncer, if not invincible [34], is a reasonably effective secu-

rity mechanism. Android also provides a verification service

at the time of installation for apps downloaded from other

sources. Google Play also has the ability to remotely un-install

an app if it is found to be malicious later [35].

E. Other Security Enhancements

SELinux has been integrated into Android since Jelly Bean

4.3 to provide greater security [36]. It imposes Mandatory Ac-

cess Control (MAC) policies over the traditional Discretionary

Access Control (DAC) on the device. In DAC, it is the owner

of the resource who decides which other interested subjects

can access it, in contrast, in MAC, it is the system (and not

the users) that authorizes subjects for accessing the resource.

Thus, MAC has the potential to prevent any malicious activity

even though root access has been compromised. This reduces

the effect of kernel-level privilege escalation attacks, attempted

by taking advantage of vulnerable processes that run with root

privilege.

Information on the device can also be ex-filtrated by con-

necting it to a PC through USB using Android Debug Bridge

(ADB) driver. ADB driver is created mainly for the debugging

purposes, through which one could install/uninstall apps, read

system partitions etc. even though device is locked prior to

Jelly Bean 4.2.2. To prevent unauthorized access, Android

authenticates any ADB connection using RSA keypair [37].

Also, Android prompts user for allowing access to the device

through ADB connection on the device’s screen, so if device

is locked, attacker would not be able to gain access to that

device.

Android has also removed setuid()/setgid() pro-

grams [37] which were vulnerable for some time as many

root exploits had been written based on them.

Many independent Android security enhancement mecha-

nisms have been proposed [38] [39] [40] [41]. These mech-

anisms allow an organization to create finer grained security

policies for their employees’ devices. Various context infor-

mation such as phone location, installed apps’ permissions

and inter-app communication can be actively monitored and

verified against their corresponding policies. Scope of this

paper is to investigate issues related to Android malware and

we do not aim to examine these prevention mechanisms.

IV. ANDROID SECURITY ISSUES

This section briefly walks through the issues that are im-

portant for user and device security in general.

A. Update Problem

Android Open Source Project (AOSP), led by Google,

upgrades and maintains Android source-code. But releasing

new versions/updates to the end-users remain the responsibility

of Original Equipment Manufacturers (OEMs) or wireless

carriers. Individual OEM branches out newer version of

Android and customizes it accordingly. In some countries,

wireless carriers also customize the OEM’s version to suit

them. This whole update chain process takes months before it

finally reaches the end-users. This phenomenon is known as

Fragmentation problem, where different versions of Android

remain scattered among consumers. Specifically, handsets with

older and un-patched versions may be vulnerable to publicly

available exploits.

Updates for Android OS are seemingly frequent compared

to their PC counterparts as there have been 25 stable releases

since September 2008 [42]. Over The Air (OTA) new version

update significantly changes the existing version by adding

and modifying large number of files across Android platform,

ensuring integrity of existing user data and apps [43]. New

version update is facilitated through a service called Package

Management System (PMS). Luyi Xing et al. [43] performed

a comprehensive study of pileup vulnerabilities that can be

exploited by malware apps in case of new version upgrades.

For example, an app for older version can declare dangerous

permissions in AndroidManifest.xml that have been

introduced in next version(s). During the update process,

Android does not ask user to verify newly active permissions

in that existing app and grants them automatically [43]. Thus,

it compromises security of the device.

B. Native Code Execution

Android allows native code execution through libraries

implemented in C/C++ using Native Development Kit (NDK).

Even though native code executes outside Dalvik VM, it

is sandboxed through user-id/group-id(s) combination. Native

code has the potential to execute publicly available root-level

exploits across older Android versions [19] [44] [45].

C. Types of Threats

Even though AOSP is committed to provide a secure

smartphone OS, it is susceptible to social-engineering attacks,

using which malicious apps can perform many undesirable

activities. Following is a list of malicious activities that have

repeatedly happened or can happen across Android versions.

• Privilege escalation attacks are done by leveraging pub-

licly available kernel-level vulnerabilities [46] to gain root

access of the device. It can also happen by exploiting one

or more vulnerable components of an app that makes use

of dangerous permission(s) granted to it.

• Privacy leak or personal-information theft happens when

users grant dangerous permissions to malicious apps that

read sensitive data and ex-filtrate them without users’

knowledge or consent.

• Malicious apps can also spy on users by monitoring calls,

SMS/MMS, bank mTANs, recording audio/video without

users’ knowledge or consent.

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 7

• Malicious apps can earn money by making calls or

subscribing via-SMS to premium-rate numbers, without

users’ knowledge or consent.

• Compromise the device to act as a Bot and remotely

control it through a server by sending various commands

to perform malicious activities.

• Aggressive ad campaigns may entice users to download

malicious apps.

• Colluding attack happens when set of apps, signed with

same certificate, gets installed on a device. These apps

would share UID with each other, also any dangerous

permission(s) requested by one app will be shared by

all others. Collectively, these apps can perform malicious

activities, while individually they may seem perfectly

normal. For example, an app with READ_SMS permission

can read SMSes and ask its related app with INTERNET

permission to ex-filtrate them.

• Denial of Service (DoS) attack can happen when app(s)

overuses already limited CPU, memory, battery and band-

width resources, blocking users from using the device.

V. REPORTED ANDROID MALWARE THREAT PERCEPTION

Figure 6 shows the time-line of some notable malware

families of Android during 2010-2013. Among them, SMS

Trojans has a major contribution, some of which have infected

even Google Play [48]. Large number of malicious apps have

also exploited root-based attacks such as rage-against-the-

cage [19], gingerbreak [45] and z4root [44] to gain superuser

privileges for availing control of the device. Recent addition

in the exploitation techniques is the master-key attack [49],

which has left devices from Android version 1.6 to JellyBean

4.2.2 vulnerable.

Quarterly, each anti-malware company reports about An-

droid malware threats [50] [51]. These companies also dif-

fer in the approximation of malware infection-rate among

Android users. In particular, Lookout Inc. reported that the

global malware infection-rate by likelihood is 2.61% for its

users [52]. Moreover, two independent research also estimated

real infection-rate. Lever et al. [53], used the Domain Name

Resolution (DNS) traffic of smartphones in United States

and found 0.0009% infection rate. Very recently, Truong

et al. [54] instrumented a well-known Carat app [55] to

estimate infection-rate for three malware datasets. They found

infection-rate 0.26% and 0.28% for McAfee and Mobile-

Sandbox dataset respectively. Therefore, at present the threat

perception on Android malware is wide ranging and house

remains divided in numbers.

In the following, we discuss Android malware classified

accordingly to their characteristics.

A. Trojan

Trojans masquerade themselves as benign apps, but they

perform harmful activities without consent or knowledge of

the users. Trojans may leak confidential information of the

user to outside, or they may ”phish” the user to provide

sensitive information such as passwords. Till second quarter

of 2012, majority of variants belonged to the SMS Trojan

family. Apps of this family can send messages to premium

rate numbers without consent and thus incurring financial loss

to the user. Apart from that, they also leak contacts, messages,

IMEI/IMSI numbers to unknown domains. FakeNetflix [56]

masquerades itself as popular Netflix app, phishing the user

to enter their login credentials. Fakeplayer [57], Zsone [51]

and Android.Foney [58] are other examples of Trojan, which

incur financial loss to the user.

Due to increase in mobile banking transactions, malware

authors have targeted two-factor authentication used by mobile

banking firms. After capturing username and password of bank

accounts using social engineering attack, Zitmo and Spitmo

Trojans listen for mTANs (Mobile Transaction Authentication

Numbers) to silently complete transactions [59].

B. Backdoor

Backdoor allows entry to the system bypassing all security

procedures and facilitates installation of other malicious apps

into the system. Backdoor generally uses root-level exploits to

gain superuser privilege, so that it can hide itself from other

security apps, or worse it may disable them also. Number of

root-level exploits have been leveraged such as rage-against-

the-cage [19] and gingerbreak [45] to gain full-control over the

device. Basebridge [48], KMin [48], Obad [18] are example

of well-known backdoor apps.

C. Worm

Worm app can create an exact or similar copies of itself

and spreads them through network or removable media. For

example, Bluetooth worms can send copies to other devices via

Bluetooth automatically. Android.Obad.OS [18] is one such

example that can spread malicious apps via Bluetooth.

D. Botnet

These type of apps compromise the device to create a Bot,

so that the device is controlled by a remote server, called Bot-

master, through a series of commands. Network of such bots

is called a Botnet. Commands can be as simple as sending

private information to remote-server or as complex as causing

a denial of service attack. Bot can also include commands

to download malicious payloads automatically. Geinimi [48],

Anserverbot [48], Beanbot [48] are well known examples of

botnets.

E. Spyware

Spyware may present itself as a good utility, but has a

hidden agenda to surreptitiously monitor contacts, messages,

location, bank mTANs etc. to perform wrongful actions at later

stage. They may also send all the collected information to

the remote server. Nickyspy [48], GPSSpy [51] are known

examples of spyware.

according

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 8

Fig. 6: Android Malware Family Chronology [47] [15] [14] [10] [12] [11]

F. Aggressive Adware

Android provides coarse and fine grained location services.

Shady ad affiliate networks misuse them to bombard users with

personalized advertisements. Notable behavior of this type of

apps is the creation of shortcuts on home-screen, bookmarks,

changing default search engine settings, push unnecessary

notifications etc. which hinders user’s effective use of the

device. Plankton [51] is an example of well known aggressive

adware.

G. Ransomware

This type of app locks the device and makes it completely

inaccessible until some ransom amount is paid through online

payment service. For example, FakeDefender.B [60] malware,

after installation, shows fake malware alerts masquerading as

avast! [61] antivirus. After that, it locks the device and asks

user to pay a ransom amount to remove threats and unlock it.

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 9

VI. MALWARE PENETRATION TECHNIQUES

In this section, we summarize penetration techniques used

by Android malware.

A. Repackaging Popular Apps

Repackaging is a process of ripping-off popular free/paid

apps from one app-store, adding malicious payload into them,

and distributing them through other third-party app-stores. App

is repackaged using reverse-engineering tools and techniques.

Repackaging process is illustrated in the Figure 7. In the fol-

lowing, we report the main steps involved in app repackaging:

• Find popular free/paid app from some renowned app-

store and download it on PC.

• Disassemble the app using tools such as apktool [62].

• Write malicious payload either directly in Dalvik byte-

code, or in Java and then convert it into Dalvik bytecode

using dx [63] tool.

• Add that payload into benign app. Make necessary

changes in AndroidManifest.xml and resources, if

any.

• Assemble modified source again using apktool.

• Finally, distribute repackaged app by self-signing with

another certificate to other app-stores for free.

Repackaging is one of the most common technique to

spread malicious activities. More than 80% samples among

Malware Genome Dataset are repackaged ones [9] from the

legitimate apps. This technique can be repeated for any number

of popular apps, or can add different malicious payload

each time using the same app. This technique can also be

used to generate number of variants of existing malware. As

signature of each malware variant gets changed, anti-malware

solution with fixed number of signatures cannot identify them.

Repackaging is one of the biggest threats as it can pollute

the centralize distribution system and financially hurts the

original developer. Rogue elements can even repackage apps

for diverting advertisement revenues.

AndroRAT APK Binder [64] tool can repackage and Tro-

janize any legitimate app automatically by adding Remote

Access functionality as a payload. Adversary from remote

location, using GUI, can make infected device send SMS

messages, make phone-calls, access device location, record

video or audio and access files from device’s storage.

B. Drive-by Download

An attacker can employ social engineering, aggressive ad-

vertisements and click-jacking attacks to make user mistakenly

download malicious apps. As soon as user visits a malicious

URL, it downloads a malicious app automatically, optionally

may disguise itself a legitimate one to be able to get permission

from the user to install itself. Android/NotCompatible [21] is

a notable example of drive-by download attack.

C. Dynamic Payload

An app can also embed malicious payload in the form

of apk/jar file, either encrypted or in plain format, into

the resources. After the installation, when app executes, it

optionally decrypts the payload. If payload is in the form of

jar file, then using the DexClassLoader API, it loads

payload into Dalvik VM dynamically to execute it. Otherwise,

it will ask the user for confirmation to install the embedded

apk by disguising itself as some important update. App

can also execute native binaries using Runtime.exec API,

which is roughly equivalent to fork()/exec() in Linux.

BaseBridge [48] and Anserverbot [48] malware families adopt

this technique. Some malware families does not embed ma-

licious payload as a resource, but rather download it from a

remote server. DroidKungFuUpdate [48] is one such example

of dynamically executing payload from a remote server. This

type of penetration technique is very difficult to detect using

fixed signature based or static analysis methods.

VII. STEALTH MALWARE TECHNIQUES

Android works under the condition of low processing power

and limited memory as well as battery availability. Anti-

malware apps cannot perform real-time deep analysis of apps

due to above constraints, unlike PC counterpart. Malware

authors view these inabilities of anti-malware apps as an

opportunity to make their malicious payload highly obfuscated

to hide themselves from anti-malware signatures. Stealth tech-

niques such as code encryption, key permutations, dynamic

loading, reflection code and native code execution remain a

matter of concern for signature-based anti-malware solutions.

Code obfuscation is evolving on Android platform as

well [65] [66], following the trends of their PC counterparts.

Obfuscation techniques in general are employed for one or

more of the following purposes.

1) To protect proprietary algorithm within app from rivals

by making reverse-engineering very difficult.

2) To protect Digital Rights Management of multimedia

resources in order to reduce piracy.

3) Developers perform obfuscation on their apps to make

them more compact and thus faster.

4) Malware authors use obfuscation to hide itself from

anti-malware scanners and deep-analysis for a longer

duration, so that it can propagate and infect more and

more devices.

5) Prevent or at least delay human analysts or automatic

analysis engines from figuring out the intention of

malicious code.

As Android app contains Dalvik bytecode, it is amenable

to reverse-engineering due to type information available such

as class/method types or definitions, variables, registers and

literal strings along with instructions. Code transformation

techniques are applied on Dalvik bytecode to optimize it,

for example, Proguard [67] is an Android as well as Java

obfuscator. Proguard is an optimization tool to remove unused

classes, methods and fields. Meaningful class, method, field

and local variable names are replaced with smaller names to

make it difficult to understand their purpose. Dexguard [68]

is a commercial Android code protection tool. Advanced code

obfuscation techniques like class encryption, method merging,

string encryption, control flow mangling are employed with

Dexguard to protect app from reverse-engineering.

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 10

Fig. 7: App Repackaging Process

This section covers various code transformation methods

employed by malicious apps to make itself obfuscated and

generate large number of variants. In fact, code transformation

can also be applied in such a way to make disassembling

erroneous [69].

A. Junk Code Insertion and Opcode Reordering

Junk code or no-operation code (nop) is a well-known

technique used to change executable size and evade anti-

malware signatures. Inserting junk code in the app preserves

the semantics, but changes the opcode sequence. Opcode can

also be re-ordered by putting goto instructions in-between

to preserve the original execution. These methods can be

successfully used to fool the signature-based or opcode-based

detection solutions [65] [66].

B. Package, Class or Method Renaming

Every Android app on app-store is generally identified by

a unique package name. Dalvik bytecode also contains names

of all classes and methods in it. Some malware signature

may depend upon the package, class or method names of

some malicious app for detection [70]. Even though trivial,

by changing those names, a malicious variant can evade

detection [66].

C. Altering Control-flow

Some anti-malware may generate signatures by analyzing

control-flow graphs (CFGs) of malicious apps in order to

detect them [70]. CFGs can be modified by simply adding

unnecessary goto instructions or by inserting and calling junk

methods. Even though trivial, this technique can successfully

evade anti-malware signatures [66].

D. String Encryption

Literal strings within a program such as messages, URLs

and shell-commands reveal a great deal about an app under

inspection. To prevent analysis, those strings can be encrypted

in order to render them unreadable. Also, each time string

encryption is applied, different encryption methods (or keys)

can be used to make it difficult to automate decryption. In that

case, literal strings can only available during execution, thus

frustrating static analysis methods.

E. Class Encryption

Important code such as license-checks, paid downloads and

DRMs can be hidden by encrypting entire classes those deal

with them [68].

F. Resource Encryption

Content of resources, assets and native libraries can be

encrypted, modifying their access code in order to decrypt

them at runtime [68].

G. Using Reflection APIs

Static analysis methods mainly look for Android API calls

within malicious apps to inspect their behavior. Java reflection

allows us to programmatically create class instances and/or

method invocation using literal strings. To identify exact class

or method names, data-flow analysis must be leveraged. But,

because those literal strings can also be encrypted, as we have

seen before, it rather becomes impossible to automatically find

those API calls, hindering the static analysis.

VIII. APPROACHES FOR ASSESSMENT, ANALYSIS AND

DETECTION

Android security solutions such as vulnerability assessment,

analysis and malware detection are broadly divided into two

types: 1) Static; 2) Dynamic. Static methods are quick, but it

has to deal with false-positives carefully. Dynamic methods,

though time-consuming, are very helpful when apps are highly

obfuscated. Hybrid approaches those leverage both static as

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 11

well dynamic methods are also exist due to the limitations of

both.

Security solutions can be either rule-based [71] or they

can extract features to create a machine-learning model [72].

Inappropriate feature selection can degrade the performance

of model, generating false-positives (i.e., false detection of

benign apps). Moreover, the number of features under problem

should be small and effective, in order to make solution feasi-

ble to use in real-time. Feature reduction methods along with

strong statistical measures such as mean, standard deviation,

chi-square, haar transforms can help us identify prominent

features. Learning model can then be created by giving above

features to clustering or classification algorithms.

A. Static Approach

Static analysis based approaches work by just reading or

disassembling apps under consideration, without executing

them. They can miserably fail against various obfuscation

techniques we covered in Section VII.

1) Signature-based Malware Detection: Most of the current

Android anti-malware products use this efficient approach

for malware detection on device. It can extract interesting

syntactic or semantic features [73] to find signature(s) that

matches with existing database. Signature-based methods be-

comes ineffective if variants of existing malware are generated

through polymorphism. Moreover, fast signature generation

and its distribution becomes very important in the times of

malware outbreak. Parvez et al. [74] devised a prototype,

called AndroSimilar, to automatically extract signatures and

detect zero-day variants of existing malware.

2) Component-based Analysis: In order to perform de-

tailed app-security assessment or analysis, an app can

be disassembled to extract important content such as

AndroidManifest.xml, resources and bytecode. Mani-

fest file contains important meta-data about an app in question,

such as list of components (i.e., Activities, Services etc.)

and required permissions. App-security assessment solutions

can analyze components using their definition and interaction

within bytecode to find out vulnerabilities [3] [75] [76].

3) Permission-based Analysis: Permission to access sensi-

tive resource is the central design point of Android security

model, so that no application, by default, has any permission

that affects user’s security. By just looking at permission

requests, it is not possible to decide whether an app is

malicious, but nevertheless, it is an important feature to assess

the risk associated by granting them all [77] [78].

Sanz Borja et al. [79] used <uses-permission>

and <uses-features> tags present in

AndroidManifest.xml file as features. They applied

machine learning algorithms, such as Naive Bayes, Random

Forest, J48 and Bayes-Net on a dataset consisting of 249

malicious and 357 benign apps. Huang Chun-Ying et al. [80]

has also used requested permissions apart from other manifest

features, then applied machine learning algorithms on a

dataset consisting of 1,25,249 malicious and benign apps.

Enck et al. [81] developed a certification tool, called Kirin,

used to define set of rules regarding the combination of

certain permissions requested by an app.

4) Dalvik Bytecode Analysis: Dalvik bytecode contains

useful, semantically rich, type information such as classes,

methods and instructions. We can utilize them to verify app’s

behavior. Detailed analysis using control-flow, data-flow can

throw light upon some of the dangerous functionality per-

formed by apps such as privacy leakage and telephony services

misuse [26] [71] [82]. Control-flow and data-flow analysis may

also help de-obfuscated bytecode, for example, usage of Java

Reflection API [83].

Control-flow analysis of bytecode helps in identifying pos-

sible paths that can follow during execution. Dalvik bytecode

contains jump, branch and method invocation instructions that

alter the order of execution. To facilitate further analysis, we

can generate an intra-procedural (i.e., spans single method)

or inter-procedural (i.e., spans across methods) control-flow

graph (CFG) of the bytecode. Karlsen et al. [83] formalized

the Dalvik bytecode in order to perform control-flow analysis

on it.

Data-flow analysis of bytecode helps in predicting possible

set of values at some point of execution. We can use CFG

to traverse possible execution paths. In the same way as

control-flow, we can perform data-flow analysis either at intra-

procedural or inter-procedural level, among which latter one

improves approximation of the desired output. In particular, we

can perform a special type of data-flow analysis, called con-

stant propagation, to find constant arguments of some sensitive

API calls during execution. Consider for example, a malicious

app that sends premium SMSes, if that app sends SMSes to

some hardcoded numbers, using constant propagation data-

flow analysis they can be retrieved [71]. Another special

type of data-flow analysis, called taint analysis, tracks the

variables that hold some important information. For example,

taint analysis can identify privacy leakage within apps [82].

We can also utilize API-calls within bytecode to identify

malicious behavior [84] as well as similar apps [85]. Zhou

et al. [9] utilized just sequence of opcodes within Dalvik

bytecode instructions to catch repackaged (i.e., similar) apps.

5) Re-targeting Dalvik Bytecode to Java Bytecode: Avail-

ability of number of Java decompilers [86] [87] [88], as

well as static analysis tools based on it [89] [90] [91], has

motivated some researchers to re-target Dalvik bytecode to

Java bytecode. Enck et al. [92] developed ded tool that can

convert Dalvik bytecode to Java. Later, they performed static

analysis on Java such as control-flow, data-flow, using Fortify

SCA [91] framework. Octeau et al. [93] developed Dare tool

to convert Dalvik bytecode to Java bytecode with nearly 99%

accuracy. Bartel et al. [94] developed Dexpler plugin for

static analysis framework called Soot [89]. Dexpler converts

Dalvik bytecode into Soot’s internal Jimple code, however, it is

unable to handle optimized dex (odex) files. Gibler et al. [95]

employed ded and dex2jar [96] to convert Dalvik bytecode

into Java and Java bytecode respectively, and used static

analysis framework called WALA [90] to identify privacy

leakage within Android apps at large scale.

B. Dynamic Approach

Although static approaches for analyzing apps are quick,

they fall short of detecting encrypted and new malware to

delete 'are'

which features

write it as 125,249

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 12

much extent. And here comes the role of dynamic approaches,

where we execute the app in a protected environment, pro-

viding all the emulated resources it needs, making it feel

at home, thereby learning its malicious activities. Although

dynamic analysis on Android seems to be very new, there

exists notable research in this field. As, execution of apps

in Android is event based, it is important to trigger those

events. UI gestures such as tap, pinch, swipe, keyboard and

back/menu key press must be automatically triggered, in order

to make app perform various activities. Android SDK comes

with a tool, called monkey [97], to automate some of the above

gestures. In order to perform in-depth monitoring of an app,

one may need to change some part of the Android OS, this

technique is known as Instrumentation.

A serious drawback of dynamic approach is that some

malicious execution path may get missed, if it is triggered

according to some non-trivial event, for example, at particular

time of the day. Also, other anti-emulation techniques such

as detecting sandbox environment [34] and performing mali-

cious activities after some time delay can successfully evade

dynamic analysis. Dynamic approaches can be broadly divided

into following three categories.

1) Profile-based Anomaly Detection: Malicious apps may

perform Denial of Service (DoS) attack by over utilization

of constrained hardware resources. Range of parameters at

different layers of Android subsystem are collected, such as

CPU load, memory statistics, network traffic, battery usage

and system-call access sequence, from benign as well as

malicious apps. After that, machine learning methods are

applied on the collected data in order to distinguish abnormal

behavior [72] [98].

2) Malicious Behavior Detection: Specific malicious be-

haviors like sensitive data leakage, sending SMS/emails, mak-

ing calls without user’s consent can be accurately detected

by tapping or monitoring those particular areas of inter-

est [99] [100].

3) Virtual Machine Introspection: The downside of mon-

itoring app behavior within emulator (VM) is that emulator

itself is susceptible of being compromised by a malicious

app, there by defeating our purpose. To counter this, Virtual

Machine Introspection approach can be employed, in which,

behavior of apps is observed external to the emulator [101].

IX. DEPLOYMENT FOR ASSESSMENT, ANALYSIS AND

DETECTION APPROACHES

Security assessment, malware analysis and detection meth-

ods can be deployed at different places, depending on the

requirement, from on-device to completely off-device.

A. On-Device

Signature-based malware detection is provided as apps

by many anti-malware companies due to its efficiency and

simplicity. But, as noted before, detailed assessment as

well as analysis is difficult to perform on device, because

of constraints within smartphones and Android subsystem.

Lightweight risk assessment by analyzing components and

permissions can also be done on smartphones [81]. Following

are some of the limitations of anti-malware apps for providing

robust protection within devices.

• Anti-malware apps run as any other normal app without

special privileges. As a result, they are also under the

purview of process isolation. Because of this, they cannot

directly scan other app’s memory and private files for

malware detection.

• Though Android allows running background services of

apps, it can stop anti-malware app services while running

out of resources. Even other apps can stop an anti-

malware app from executing, if they have appropriate

privileges.

• Without acquiring root privileges, anti-malware app can-

not create system hooks for monitoring file-system or

network access.

• Without acquiring root privileges, anti-malware app can-

not uninstall other malicious apps automatically, it must

rely on users to uninstall them.

B. Distributed (Some part On-Device, Some part Off-Device)

Though quick assessment or detection can be performed on

the device itself, detailed and computationally expensive anal-

ysis can be performed at remote server. Continuous availability

of bandwidth and its cost is a concern, but at the same time

signature database in the smartphone can be greatly reduced to

make anti-malware app limited-resource friendly. In the case

of profile-based anomaly detection, resource usage as well as

other parameters can be collected at client-side to send them

to remote server for detailed analysis, and finally, results can

be sent back to the device.

C. Off-Device

It is important to automate deep analysis of new malware

samples, so that human analysts can quickly understand them

and find mitigation solutions. This type of automated deep

analysis solutions require more computational power as well

as memory. Because of this, they are usually deployed off-

device [71] [26] [101] [82] [72].

X. STATE-OF-THE-ART TOOLS FOR ANDROID APP

ASSESSMENT, ANALYSIS, AND DETECTION

Industry and academia have proposed several solutions for

analysis and detection of Android malware. In this section,

we survey and examine promising reverse-engineering tools

and detection approaches. Detection approaches have been

classified according to the following: 1) Goal, which can be

app-security assessment, analysis and/or malware detection; 2)

Methodology as discussed in Section VIII; 3) Deployment as

discussed in Section IX.

A. Reverse-Engineering Tools

Content of Android package (APK) is stored in a binary

format for efficiency. Before assessment, analysis or detection

task begins, it is important to disassemble it to make further

processing easier. There are number of tools available to

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 13

disassemble or de-compile APK files. In the following, we

note some of the popular reverse-engineering tools.

1) apktool [62] can decode binary content inside APK into

nearly original form in project-like directory structure.

It disassembles binary resources and converts bytecode

within classes.dex into smali [102] syntax for easier

reading as well as manipulation. After making any

changes, it can also repackage it back into APK. This

tool seems to be the best among all reverse-engineering

tools.

2) dex2jar [96] is a disassembler that can parse both dex

and optimized dex file, providing a light-weight API to

access it. dex2jar can also convert dex file into a jar

file, by re-targeting Dalvik bytecode into Java bytecode,

for further manipulation. Moreover, it can also assemble

back jar into dex after modification.

3) Dare [103] project aims at re-targeting Dalvik bytecode

within classes.dex to traditional .class files us-

ing strong type inference algorithm. This .class files

can be further analyzed using vast range of traditional

techniques developed for Java applications, including de-

compilers. Octeau et al. [93] demonstrated that Dare is

nearly 40% more accurate than dex2jar.

4) Dedexer [104] disassembles classes.dex into

Jasmin-like syntax, by creating separate file for each

class, along with package directory structure, for easier

reading and manipulation. But unlike apktool, it cannot

assemble back those intermediate class files.

5) JEB [105] is a leading professional reverse-engineering

software for Android apps, available for Windows, Linux

and Mac platforms. It is a GUI-based interactive de-

compiler for security analysts to see content of Android

apps, such as manifest, resources, certificates, literal

strings and examine its decompiled Java source by

providing easy navigation through cross-references. JEB

converts Dalvik bytecode directly into Java source by

better utilizing semantic information present in Dalvik

bytecode, without going through Java bytecode. Excep-

tionally, JEB can also de-obfuscate Dalvik bytecode to

make disassembled code more readable in comparison

to its counterparts [96] [62]. JEB also supports Python

scripts or plugins by allowing access to decompiled Java

code’s Abstract Syntax Tree (AST) through API. This

feature is helpful in automating particular analysis needs.

According to us, it is the best reverse-engineering tool

so far.

B. Androguard

Goal: Risk Assessment, Analysis and Detection

Methodology: Static

Deployment: Off-Device

Androguard [70], an open-source, static analysis tool, can

disassemble and decompile Android apps to make reverse en-

gineering much easier. It can generate control flow graphs for

each method and provides access of all through Python-API,

as well as graphic formats. Androguards unique Normalized

Compression Distance (NCD) approach can find similarities

and differences in code between two apps reliably, which can

also be used to detect repackaging.

It provides a rich API in Python to access disassembled re-

sources and static analysis structures like basic-blocks, control-

flow and instructions of an APK, using which, one can develop

their own static analysis methods. Following are some of

features explained briefly.

1) Code Similarity Among Apps: Androguard finds sim-

ilarities between two apps by calculating Normalized Com-

pression Distance between each method pairs and calculates

a score from 0-100, where 100 means apps are identical.

It displays IDENTICAL, SIMILAR, NEW, DELETED and

SKIPPED methods of first app with respect to another one.

In the same way, it can also display differences between two

methods by comparing each basic blocks pairs. More specif-

ically, to calculate differences between two similar methods,

it first converts each unique instruction in basic block into a

string. Then, it applies Longest Common Subsequence algo-

rithm on these strings of two basic blocks to find differences

between them [106].

Fig. 8: Features of Androguard

2) Risk Indicator: Risk Indicator calculates fuzzy risk score

of an APK from 0 (low risk) to 100 (high risk). It considers

following parameters:

• Native, Reflection, Cryptographic and Dynamic code

presence in an app.

• Number of executables/shared-libraries present in an app.

• Permission requests related to privacy and monetary risks.

• Other Dangerous/SystemOrSignature/Signature permis-

sion requests.

3) Signature Generation and Detection for Malicious Apps:

Androguard manages a database of signatures and provides

an interface to add/remove signatures to/from the database.

Signature is described in a JSON format. It contains a name

(or family-name), set of sub-signatures and a Boolean formula

to mix different sub-signatures. Following are the two types

of sub-signatures:

• METHSIM: It contains three parameters, CN - class

name, MN - method name and D - descriptor.

• CLASSSIM: It contains a single parameter, CN - class

name.

Thus sub-signature can be applied on a specific method

or entire class. Different sub-signatures can be mixed with

Boolean formula (BF).

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 14

C. Andromaly

Goal: Anomaly Detection

Methodology: Dynamic

Deployment: Half On-Device, Half Off-Device

In [72], Shabtai et al. have proposed a light-weight An-

droid malware detection system based on machine learning

approach. It performs real-time monitoring for collection of

various system metrics, such as CPU usage, amount of data

transferred through network, number of active processes and

battery usage.

As can be seen in the Figure 9, Andromaly has four major

components:

• Feature Extractors: They collect feature metrics, by com-

municating with Android kernel and application frame-

work. Feature Extractors are triggered at regular intervals

to collect new feature measurements by Feature Manager.

Feature Manager may also perform some pre-processing

on the raw feature data.

• Processor: It is an analysis and detection unit. Its role is

to receive the feature vectors from Main Service, analyze

them and perform threat assessment to Threat Weighting

Unit (TWU). Processors can be rule-based, knowledge-

based classifiers or anomaly detectors employing machine

learning methods. TWU applies ensemble algorithm on

the analysis results received from all the processors to

derive a final decision on device infection. Alert Manager

smoothes the result to avoid false alarms.

• Main Service: It coordinates feature collection, malware

detection and alert process. It is responsible for requesting

new feature measurements, sending new feature met-

rics to processors and receiving final recommendation

from alert manager. Loggers can log information for de-

bugging, calibration and experimentation. Configuration

Manager manages the configuration of the application,

for example, active processors, alert threshold, sampling

interval etc. The task of activating or deactivating proces-

sors is taken care by Processor Manager. Operation Mode

Manager switches application from one mode to another

which can result in activation/deactivation of processors

and feature extractors. This change in operation modes is

resulted due to change in resource levels.

• Graphical User Interface: It interacts with user to config-

ure application parameters, activate/deactivate the appli-

cation, alerts user regarding threats and allows exploring

collected data. Experiments were carried out using few

categories of artificial malware, thus working model

needs testing by real malware.

D. AndroSimilar

Goal: Malware Detection

Methodology: Static

Deployment: Off-Device (Portable to On-Device too)

Parvez et al. [74] proposed AndroSimilar, an automatic

signature generation approach that extracts statistically rare

syntactic features for malware detection. Apart from existing

malware, AndroSimilar is able to reasonably detect obfus-

cated malware with techniques like string encryption, method

renaming, junk method insertion and changing control flow,

widely used to evade fixed anti-malware signature, thus it can

detect unknown variants of existing malware. AndroSimilar

approach is based on Similarity Digest Hash (SDHash) [107]

used in digital forensics to identify similar documents.

Intuitively, completely unrelated apps should have lower

probability of having common features. When two unrelated

Fig. 9: Architecture of Andromaly

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 15

Fig. 10: AndroSimilar Methodology

apps share some features, such features should be considered

weak as using these shall lead to false positives [108]. Fixed-

size byte-sequence features are extracted based on empirical

probability of occurrence of their entropy values, then popular

features are searched among them according to rarity in neigh-

borhood [107]. Figure 10 shows the working of AndroSimilar.

Following are the steps involved:

• Submit Google Play, third-party or an obfuscated mali-

cious app as input to AndroSimilar.

• Generate entropy values for every byte-sequence of fixed

size in a file and normalize these in range of [0, 1000].
• Select statistically robust features according to similarity

digest scheme as representative to the app.

• Store extracted features into Bloom Filters. Sequence of

Bloom Filters is a signature of an app.

• Compare the signature with the database to detect match

with known malware family. If similarity score is beyond

a given threshold, mark it as malicious (or repackaged)

sample.

Thus, they generate signatures of known malware fami-

lies as the representative database. If similarity score of an

unknown app with any existing family signatures matches

beyond a threshold, then it is labeled as malicious.

E. Andrubis

Goal: Malware Analysis and Detection

Methodology: Static and Dynamic

Deployment: Off-Device

Andrubis [109] is a web-based malware analysis platform,

build upon some well-known existing tools. Users can submit

suspicious apps through web interface. After analyzing app on

the remote-server, Andrubis then returns detailed static as well

dynamic analysis report of the same. Andrubis also provides a

rating for app’s behavior between 0-10, where 0 means benign

and 10 means malicious. It is built upon Droidbox [110],

TaintDroid [99], apktool [62] and androguard [70].

F. APKInspector

Goal: Malware Analysis

Methodology: Static

Deployment: Off-Device

APKInspector [111] is a full-fledged static analysis program

for Android apps, combining some of the well-known tools

like Ded [112], smali/baksmali [102], apktool [62] and An-

droguard [70]. It provides a rich GUI and provides following

features:

• Meta-data about app

• Analysis of sensitive permissions

• Displays Dalvik bytecode and Java source code

• Displays control-flow graph

• Displays call-graph, displaying call-in and call-out struc-

tures

• Static instrumentation support by allowing modification

of smali code

G. Aurasium

Goal: Analysis and Detection

Methodology: Dynamic

Deployment: On-Device

Aurasium [113] is a powerful technique that takes control

of execution of apps, by enforcing arbitrary security policies

at runtime. To be able to do that, Aurasium repackages

the Android apps to include code for policy enforcement.

Aurasium’s Security Manager component can apply policies

not only at individual app level, but across multiple apps

too. Any security and privacy violations are reported to the

user. Thus, it eliminates the need of manipulating Android OS

to monitor app behavior. It intervenes in-case of application

accessing sensitive information such as contacts, messages,

phone identifiers and executing shell-commands by asking user

for confirmation regarding the same.

Limitation of Aurasium is that currently it is not stealthy,

that means it can be detected by apps due to change in app sig-

nature, as well as presence of its native library. Thus, app may

not reveal its malicious behavior, and hence avoiding detection.

As Aurasium depends on repackaging, it may altogether fail

to disassemble (or assemble) an obfuscated app.

of

for

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 16

H. Bouncer

Goal: Malware Detection

Methodology: Dynamic

Deployment: Off-Device

Google protects its own app-store, Google Play, with a

system called Bouncer. It is a virtual machine based dynamic

analysis platform, for testing apps uploaded by third-party de-

velopers, before allowing users to download them. It executes

app to look for any malicious behavior and also compares

it against previously analyzed malicious apps. Though no

documentation of internal functioning is available, Oberheide

et al. [34] presented their analysis of Bouncer environment by

implementing a custom command and control app. Dynamic

code loading techniques have helped evade scrutiny from

Bouncer [114].

I. CopperDroid

Goal: Malware Analysis and Detection

Methodology: Dynamic

Deployment: Off-Device

Reina et al. proposed CopperDroid [98], a system which

performs system call-centric dynamic analysis of Android

apps, using Virtual Machine Introspection. To address the

path coverage problem, they have supported the stimulation

of events as per the specification present in app’s manifest

file. Authors have shown through experimentation that system

call-centric analysis can effectively detect malicious behavior.

They have also provided a web interface for other users to

analyze apps [115].

J. Crowdroid

Goal: Malware Detection

Methodology: Dynamic

Deployment: Half On-Device, Half Off-Device

Crowdroid [100] is a behavior based malware detection

system. It has two components, a crowd sourcing app which

need to be installed on user-devices and a remote-server

for malware detection. The crowd sourcing app sends the

behavioral data (i.e., system-call details) in the form of an

application log file to the remote server. Strace, a system utility

present on device is used to collect the system-call details

of the apps. The application log file consists of basic device

information, list of installed applications and behavioral data.

At the remote-server, this data is processed to create feature

vectors which could then be analyzed by 2-means partition

clustering to predict the app as either benign or malicious.

An app report is generated and stored in the database of the

remote server.

Results of Crowdroid are accurate for self-written malware

and promising for some of the real malware. If the malware

is very active, then it is possible to have large difference in

system calls, which can help in detection for the same. But,

it also suffers with false-positives, as demonstrated by authors

using Monkey Jump2, an app with HongTouTou malware.

Limitation of Crowdroid is that crowdsourcing app should

be kept running in the background for monitoring, which can

drain the resources. Also, this technique is yet to be tested

on wide varieties of malware families available, to check its

robustness.

K. Droidbox

Goal: Taint Analysis and Monitoring

Methodology: Dynamic

Deployment: Off-Device

Droidbox [110] is a dynamic analysis tool based on Taint-

Droid [99] using modified Android framework for API call

analysis. Figure 12 shows static and dynamic analysis oper-

ations performed within Droidbox. App analysis begins with

the static-pre-checking, which includes parsing permissions,

activities and receivers. The app under analysis is executed

Fig. 11: Crowdroid Architecture

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 17

in emulated environment to perform taint-analysis and API

monitoring. Taint-analysis involves labeling (tainting) private

and sensitive data that propagates through program variables,

files and interprocess communication.

Taint-analysis keeps track of tainted data that leaves the

system either through network, file(s) or SMS and the app

that is responsible for transmission. API monitoring involves

API logging with its parameters and return value. The results

generated consist of following:

• Hashes of analyzed apps

• Network data transferred or received

• File read and write operations

• Data leaks

• Circumvented permissions

• Broadcast receivers

• Services started and classes loaded through

DexClassLoader

• SMS sent and dialed calls

• Cryptographic operations with Android API

• Temporal order of operations

• Tree-map for similarity analysis

Fig. 12: Features of Droidbox

Limitation of Droidbox is that it monitors only tasks per-

formed within the Android Framework. If native code leaks

data, it will get unnoticed.

L. DroidMOSS

Goal: Repackaged App Detection

Methodology: Static

Deployment: Off-Device

DroidMOSS [9] is a prototype that detects app repackaging

using semantic file features. More specifically, it extracts DEX

opcode sequence from an app, then generates a signature from

it using fuzzy hashing [116] technique. It also adds developer

certificate information, mapped into unique 32-bit identifier,

into signature. Signatures of two apps are compared with edit-

distance algorithm for calculating similarity score. Proposed

approach is discussed shown in Figure 13.

Intuition behind DroidMOSS of using just opcodes as a

feature is that it might be easy for adversaries to modify

operands, but much harder to change actual opcodes [9]. This

approach has several disadvantages. First, as it considers only

DEX bytecode, ignoring native code and resources of the

app, as resources most of the time are same. Second, opcode

sequence does not contain higher level semantic knowledge.

Smart adversary can easily evade this technique by using ob-

fuscations such as adding junk bytecode, method restructuring,

control flow alteration, which do not contribute to the outcome

of the app.

M. DroidScope

Goal: Analysis

Methodology: Dynamic

Deployment: Off-Device

DroidScope [101] is a Virtual Machine Introspection (VMI)

based dynamic analysis framework for Android apps. Unlike

other dynamic analysis platforms, it does not reside inside the

emulator, but constructing OS-level and Dalvik-level seman-

tics by residing outside the emulator. Hence, even the privilege

escalation attacks in the kernel can be detected. It also makes

the attackers task of disrupting analysis difficult. DroidScope

is built upon QEMU emulator, and also provides a set of APIs

to customize analysis needs to human analysts. Android mal-

ware families DroidKungFu and DroidDream were analyzed

and detected successfully, however DroidScope’s effectiveness

against other malware families needs to be tested.

N. Drozer

Goal: Risk Assessment using Exploitation

Methodology: Static and Dynamic

Deployment: Half On-Device, Half Off-Device

Drozer [117] is a comprehensive attack and security assess-

ment framework for Android devices, available both as open-

source and professional version. It allows security enforcement

agencies to remotely exploit Android devices in order to find

vulnerabilities and threats associated with them. Figure 14

shows the working of Drozer. Following is the list of features

supported by the Drozer:

• It installs an Agent app on devices that executes exploita-

tion modules using Java Reflection API. At server-side,

one can create their own custom modules in Python and

send it to Agent app to perform exploitation activities on

the devices.

• It can interact with the Dalvik VM to discover installed

packages and related app components. It also allows inter-

action with the app-components such as services, content

providers and broadcast receivers to find vulnerabilities

in them.

• It can create a shell on devices, through which one can

remotely interact with Android OS.

• It allows one to create an exploit by using known root-

ing vulnerability and further combine it with additional

shellcode to get maximum leverage of the device.

and

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 18

Fig. 13: DroidMOSS Methodology

O. Kirin

Goal: Risk Assessment

Methodology: Static

Deployment: On-Device

In [81] authors propose a security policy enforcement

mechanism, called Kirin, during app installation. Kirin defines

a set of rules regarding the combination certain permissions

requested by an app that could prove to be harmful for the

user-device. If an app fails to satisfy those security rules,

installation is denied. Thus, it rigidly make decisions, based

on set of rules, on-behalf of the users.

P. TaintDroid

Goal: Taint Analysis

Methodology: Dynamic and Android Instrumentation

Deployment: Off-Device

TaintDroid [99] extends the Android platform to track

privacy sensitive information-flow within third-party apps for

leak. The sensitive data is automatically tainted (or labeled)

in order to keep track whether it leaves the device. When

the sensitive data leaves the system, TaintDroid records the

label of data and the app which sent the data along with its

destination.

Taint propagation is tracked at four levels of granularity, 1)

Variable-level, 2) Method-level, 3) Message-level and 4) File-

level. Variable-level tracking uses variable semantics, which

provides necessary context to avoid taint propagation. In

message-level tracking, the taint on messages is tracked to

avoid IPC overhead. Method-level tracking is used for Android

native libraries that are not directly accessible to apps but

through modified firmware. Lastly file-level tracking ensures

integrity of file-access activities by checking whether taint

markings are retained.

Lets consider working of TaintDroid with a scenario, where

data of one trusted app is accessed by some untrusted app and

sent over network. This is shown in the Figure 15. Firstly,

the information of the trusted app is labeled according to its

context. A native method is called which interfaces Dalvik

VM interpreter to store taint markings in a virtual taint map.

Every interpreter simultaneously propagates taint tags accord-

ing to data-flow rules. The Binder library of the TaintDroid is

modified to ensure the tainted data of the trusted application

is sent as a parcel having a taint tag reflecting the combined

taint markings of all contained data. The kernel transfers this

parcel transparently to reach Binder library instance at the

untrusted app. The taint tag is retrieved from the parcel and

marked to all the contained data by the Binder library instance.

Dalvik bytecode interpreter forwards these taint tags along

with requested data towards untrusted app component. When

that app calls taint sink (for example, network) library, it

retrieves taint tag and marks that app’s activity as malicious.

XI. CONCLUSIONS AND DISCUSSION

Android is a core delivery platform providing ubiquitous

services for connected smartphone paradigm, thus monetary

gains have prompted malware authors to employ various attack

Fig. 14: Working of Drozer

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 19

Fig. 15: Taint propagation in TaintDroid

vectors to target Android platform. Due to large increase

in unique malware app signature(s) and known limitations

of Android security, signature based methods are not suf-

ficient against unseen, cryptographic and transformed code.

Researchers have proposed various behavioral approaches to

guard the centralized app markets as malware authors are tar-

geting app stores to pollute online distribution mechanisms. In

this review, we discuss android security and its issues, Android

OS limitations, malware penetration and its implications on

android ecosystem, prominent security solutions visualizing a

generic analysis and detection approach.

Due to enormous popularity of Android platform among

consumers and developers malware authors see an opportunity

to gain monetary benefits out of them and thus android

malware apps is a big threat. Between 2010 to 2013, there

is an increase of hundreds of malware apps using stealth

techniques to bypass commercial anti-malware products. Ta-

ble I lists summary of some prominent analysis, malwaer app

detection methods according to their goal, methodology and

deployment. Summary shows there is no single solution that

addresses each issue.

Androguard is a robust, android open source to develop

custom static analysis tool(s). Andrubis and APKInspector

leverages Androguard for app analysis. To study the behavior

rating of Andrubis, we implemented a custom SMS based bot-

net, uploaded at Andrubis web service and obtained 9.9/10.0

malicious rating where as same app on VirusTotal with 47

commercial anti malware failed to detect the unseen sample.

We report Andrubis’ behavior rating feature is robust agaisnt

zero day malware apps.

DroidMOSS and AndroSimilar employ fuzzy hashing ap-

proach for repackaged apps, new malware variant(s) detec-

tion rather than conventional signature based method. As-

rRepackaging and code tranformation are easy on android

platform, it is worth evaluating research directions to propose

mitigation of such issues. Androguard leverages Dalvik byte-

code, whereas DroidMOSS employs Dalvik opcode sequence

whereas, AndroSimilar works on raw byte features. Evaluation

of DroidMOSS is not possible due to unavailability of its

source code thus prototype needs to be compared against

existing approaches. AndroSimilar and Androguard are tested

to report that latter gives an accurate similarity score be-

tween two related apps in comparison to former method.

Androguard being a semantic approach, takes long time to

generate similarity score in comparison with AndroSimilar, a

byte based approach. Thus, AndroSimilar is more suitable to

be ported as Android app to detect unseen malware variants.

We believe AndroSimilar is a promising approach against

malware app variant. To tackle wide variety of new malware,

a comprehensive evaluation framework incorporating robust

static and dynamic methods can be proposed on Android

platform.

Android malware threats are persistent due to large number

of devices still running on older and vulnerable OS versions.

Section VIII discusses, static and dynamic analysis approach.

Both approaches can be used separately, each one has its

own limitation(s). Static analysis can be thwarted by em-

ploying encryption and/or transformation techniques discussed

in Section VII. Dynamic analysis can be evaded by several

anti-emulation techniques covered in Section VIII-B. Manual

analysis has become infeasible due to a big increase in the

number of unknown malware samples.

We propose an automated, hybrid approach for Android

malware analysis. Architecture of the proposed approach

shown in Figure 16 is our proposed future research. As given

in the diagram, APK file is dissected with static analysis. In

case of its failure against encrypted code, dynamic analysis

performs behavioral detection. Static and Dynamic analysis

generate app activity reports to assist a malware analysts to

decide upon unknown suspicious sample. Finally, we conclude

that hybrid detection approach(s) are gaining prominence for

analyzing malware.

REFERENCES

[1] G. Inc., Android Smartphone Sales Report, 2013, http://www.gartner.
com/newsroom/id/2665715 (Online;Last Accessed March 17 2014).

[2] Number of available Android applications,
http://www.appbrain.com/stats/number-of-android-apps (Online;
Last Accessed 11th February 2014).

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 20

Tool
Goal Methodology Deployment

Availability

A
ss

es
sm

en
t

A
n

a
ly

si
s

D
et

ec
ti

o
n

S
ta

ti
c

D
y
n

a
m

ic

S
y
st

em
ca

ll
/A

P
I

P
ro

fi
le

-b
a
se

d

B
eh

av
io

ra
l

V
M

I

O
n

-D
ev

ic
e

D
is

tr
ib

u
te

d

O
ff

-D
ev

ic
e

Androguard [70] ✔ ✔ ✔ ✔ ✔ Free

Andromaly [72] ✔ ✔ ✔ ✔ Free

AndroSimilar [74] ✔ ✔ ✔ –

Andrubis [109] ✔ ✔ ✔ ✔ ✔ ✔ ✔ Free

APKInspector [111] ✔ ✔ ✔ Free

Aurasium [113] ✔ ✔ ✔ ✔ Free*

CopperDroid [115] ✔ ✔ ✔ ✔ ✔ ✔ Free*

Crowdroid [100] ✔ ✔ ✔ ✔ ✔ –

DroidBox [110] ✔ ✔ ✔ ✔ ✔ Free

DroidScope [101] ✔ ✔ ✔ ✔ ✔ ✔ Free

Drozer [117] ✔ ✔ ✔ ✔ Free/Paid

JEB [105] ✔ ✔ ✔ Paid

Kirin [81] ✔ ✔ ✔ Free

TaintDroid [99] ✔ ✔ ✔ ✔ ✔ Free

TABLE I: Summary of Assessment, Analysis and Detection Tools for Android Platform according to their Goal, Methodology

and Deployment. * indicates web-based interface.

Fig. 16: A Proposed Hybrid Approach for Android Malware Analysis, malware app detection

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 21

[3] E. Chin, A. P. Felt, K. Greenwood, D. Wagner, Analyzing Inter-
Application Communication in Android, in: Proceedings of the 9th
international conference on Mobile systems, applications, and ser-
vices, MobiSys ’11, ACM, New York, NY, USA, 2011, pp. 239–252.
doi:10.1145/1999995.2000018.
URL http://doi.acm.org/10.1145/1999995.2000018

[4] Pandaapp, http://www.pandaapp.com/ (Online; Last Accessed 1st
March 2014).

[5] Baidu, http://as.baidu.com/ (Online; Last Accessed 1st March 2014).
[6] Opera Mobile App Store, http://apps.opera.com/en in/ (Online; Last

Accessed 1st March 2014).
[7] AppChina, http://www.appchina.com/ (Online; Last Accessed 1st

March 2014).
[8] GetJar, http://www.getjar.mobi/ (Online; Last Accessed 1st March

2014).
[9] W. Zhou, Y. Zhou, X. Jiang, P. Ning, Detecting Repackaged Smart-

phone Applications in Third-party Android Marketplaces, in: Proceed-
ings of the second ACM conference on Data and Application Security
and Privacy, CODASPY ’12, ACM, New York, NY, USA, 2012, pp.
317–326. doi:10.1145/2133601.2133640.
URL http://doi.acm.org/10.1145/2133601.2133640

[10] ESET - Trends for 2013, http://go.eset.com/us/resources/white-
papers/Trends for 2013 preview.pdf (Online; Last Accessed 11th
February).

[11] Kaspersky Security Bulletin 2013. Overall statistics for 2013,
https://www.securelist.com/en/analysis/204792318/Kaspersky Security

Bulletin 2013 Overall statistics for 2013 (Online; Last Accessed
11th February).

[12] McAfee Labs Threats Report: Third Quarter 2013,
http://www.mcafee.com/uk/resources/reports/rp-quarterly-threat-
q3-2013.pdf (Online; Last Accessed 11th February).

[13] F-Secure: Mobile Threat Report Q1 2013, http://www.f-
secure.com/static/doc/labs global/Research/Mobile Threat Report

Q1 2013.pdf (Online; Last Accessed 11th February).
[14] F-Secure: Mobile Threat Report Q3 2013, http://www.f-

secure.com/static/doc/labs global/Research/Mobile Threat Report
Q3 2013.pdf (Online; Last Accessed 11th February).

[15] F-Secure: Mobile Threat Report H1 2013, http://www.f-
secure.com/static/doc/labs global/Research/Threat Report H1 2013.pdf
(Online; Last Accessed 11th February).

[16] VirusTotal, https://www.virustotal.com/ (Online; Last Accessed 11th
February 2014).

[17] Android.Bgserv, http://www.symantec.com/security response/writeup.jsp?
docid=2011-031005-2918-99 (Online; Last Accesed February 12
2011).

[18] Backdoor.AndroidOS.Obad.a, http://contagiominidump.blogspot.in/2013/06/
backdoorandroidosobada.html (Online; Last Accesed December 25
2013).

[19] RageAgainstTheCage, https://github.com/bibanon/android-
development-codex/blob/master/General/Rooting/rageagainstthecage.md
(Online; Last Accessed 11th February).

[20] Android Hipposms, http://www.csc.ncsu.edu/faculty/jiang/HippoSMS/
(Online; 2011).

[21] Android/NotCompatible Looks Like Piece of PC Botnet,
http://blogs.mcafee.com/mcafee-labs/androidnotcompatible-looks-
like-piece-of-pc-botnet (Online; Last Accesed December 25 2013).

[22] E. Fernandes, B. Crispo, M. Conti, Fm 99.9, radio virus: Exploiting
fm radio broadcasts for malware deployment., IEEE Transactions on
Information Forensics and Security 8 (6) (2013) 1027–1037.
URL http://dblp.uni-trier.de/db/journals/tifs/tifs8.html#FernandesCC13

[23] R. Fedler, J. Schütte, M. Kulicke, On the Effectiveness of Malware
Protection on Android, Tech. rep., Technical report, Fraunhofer AISEC,
Berlin (2013).

[24] C. Jarabek, D. Barrera, J. Aycock, ThinAV: Truly lightweight Mobile
Cloud-based Anti-malware, in: Proceedings of the 28th Annual Com-
puter Security Applications Conference, ACM, 2012, pp. 209–218.

[25] Kaspersky Internet Security for Android,
http://www.kaspersky.com/android-security (Online; Last Accessed
11th February).

[26] M. Grace, Y. Zhou, Q. Zhang, S. Zou, X. Jiang, RiskRanker: Scalable
and Accurate Zero–Day Android Malware Detection, in: Proceedings
of the 10th international conference on Mobile systems, applications,
and services, MobiSys ’12, ACM, New York, NY, USA, 2012, pp.
281–294. doi:10.1145/2307636.2307663.
URL http://doi.acm.org/10.1145/2307636.2307663

[27] G. Suarez-Tangil, J. Tapiador, P. Peris-Lopez, A. Ribagorda, Evolution,
detection and analysis of malware for smart devices.

[28] M. La Polla, F. Martinelli, D. Sgandurra, A survey on security for
mobile devices, Communications Surveys & Tutorials, IEEE 15 (1)
(2013) 446–471.

[29] W. Enck, Defending Users Against Smartphone Apps: Techniques and
Future Directions, in: Proceedings of the 7th International Conference
on Information Systems Security, ICISS’11, Springer-Verlag, Berlin,
Heidelberg, 2011, pp. 49–70. doi:10.1007/978-3-642-25560-1 3.
URL http://dx.doi.org/10.1007/978-3-642-25560-1\ 3

[30] Android Anatomy and Physiology, http://source.android.com/devices/
tech/security (Online; Last Accesed December 25 2013).

[31] Android Kernel Features, http://elinux.org/Android Kernel Features
(Online; Last Accessed 9th March, 2014).

[32] <permission>, http://developer.android.com/guide/topics/manifest/
permission-element.html (Online; Last Accessed 11th February).

[33] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G. Bringas,
G. Álvarez, PUMA: Permission Usage to detect Malware in Android,
in: International Joint Conference CISIS12-ICEUTE´ 12-SOCO´ 12
Special Sessions, Springer, 2013, pp. 289–298.

[34] Jon Oberhide, DISSECTING THE ANDROID BOUNCER, http:
//jon.oberheide.org/blog/2012/06/21/dissecting-the-android-bouncer/
(Online;Last Accessed June 1 2012).

[35] Exercising Our Remote Application Removal Feature, http://android-
developers.blogspot.in/2010/06/exercising-our-remote-application.html
(Online; Last Accessed 11th February).

[36] Validating Security-Enhanced Linux in Android,
http://source.android.com/devices/tech/security/se-linux.html (Online;
Last Accesed December 25 2013).

[37] Security Enhancements in Android 4.3,
http://source.android.com/devices/tech/security/ enhancements43.html
(Online; Last Accesed December 25 2013).

[38] M. Conti, B. Crispo, E. Fernandes, Y. Zhauniarovich, Crêpe: A
system for enforcing fine-grained context-related policies on android,
Information Forensics and Security, IEEE Transactions on 7 (5) (2012)
1426–1438.

[39] M. Nauman, S. Khan, X. Zhang, Apex: extending android permission
model and enforcement with user-defined runtime constraints., in:
D. Feng, D. A. Basin, P. Liu (Eds.), ASIACCS, ACM, 2010, pp.
328–332.
URL http://dblp.uni-trier.de/db/conf/ccs/asiaccs2010.html#
NaumanKZ10

[40] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, Xman-
droid: A new android evolution to mitigate privilege escalation attacks,
Technische Universität Darmstadt, Technical Report TR-2011-04.

[41] M. Ongtang, S. E. McLaughlin, W. Enck, P. D. McDaniel, Semantically
rich application-centric security in android., in: ACSAC, IEEE
Computer Society, 2009, pp. 340–349.
URL http://dblp.uni-trier.de/db/conf/acsac/acsac2009.html#
OngtangMEM09

[42] Android Version History, http://en.wikipedia.org/wiki/Android version
history (Online; Last Accessed 11th March 2014).

[43] L. Xing, X. Pan, R. Wang, K. Yuan, X. Wang, Upgrading your android,
elevating my malware: Privilege escalation through mobile os updating,
in: IEEE Symposium on Security and Privacy, 2014.

[44] z4Root, https://github.com/bibanon/android-development-
codex/blob/master/General/Rooting/z4root.md (Online; Last Accessed
11th February).

[45] GingerBreak, http://forum.xda-developers.com/showthread.php?t=1044765
(Online; Last Accessed 11th February).

[46] CVE, http://cve.mitre.org/ (Online; Last Accessed 11th February).
[47] Android Malware Genome Project, http://www.malgenomeproject.org/

(Online; Last Accessed 11th February).
[48] Z. Yajin, J. Xuxian, Dissecting Android Malware: Characterization and

Evolution, in: Proceedings of the 33rd IEEE Symposium on Security
and Privacy, Oakland 2012, IEEE, 2012.

[49] Android Security Analysis Challenge: Tampering Dalvik Bytecode
During Runtime., http://bluebox.com/labs/android-security-challenge/
(Online; Last Accessed 11th February 2013).

[50] L. Inc., State of Mobile Security 2012, Tech. rep., Lookout Mobile
Security (2012).

[51] C. A. Castillo, Android Malware Past, Present, and Future, Tech. rep.,
Mobile Working Security Group McAfee (2012).

[52] L. Inc., Current World of Mobile Threats, Tech. rep., Lookout Mobile
Security (2013).

[53] C. Lever, M. Antonakakis, B. Reaves, P. Traynor, W. Lee, The Core of
the Matter: Analyzing Malicious Traffic in Cellular Carriers, in: Proc.
NDSS, Vol. 13, pp. 1–16.

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 22

[54] H. T. T. Truong, E. Lagerspetz, P. Nurmi, A. J. Oliner, S. Tarkoma,
N. Asokan, S. Bhattacharya, The Company You Keep: Mobile Mal-
ware Infection Rates and Inexpensive Risk Indicators, arXiv preprint
arXiv:1312.3245.

[55] Carat: Collaborative Energy Diagnosis, http://carat.cs.berkeley.edu/
(Online; Last Accesed December 25 2013).

[56] Fake Netxflix - Android trojan info stealer,
http://contagiominidump.blogspot.in/2011/10/fake-netxflix-adtroid-
trojan-info.html (Online; Last Accessed 11th February).

[57] G. Andre, P. Ramos, BOXER SMS Trojan, Tech. rep., ESET Latin
American Lab (2013).

[58] F. Shahzad, M. A. Akbar, M. Farooq, A Survey on recent advances
in malicious applications Analysis and Ddetection techniques for
Smartphones.

[59] Spitmo vs Zitmo: Banking Trojans Target Android,
https://blogs.mcafee.com/mcafee-labs/spitmo-vs-zitmo-banking-
trojans-target-android (Online; Last Accessed 11th February).

[60] Fakedefender.B - Android Fake Antivirus,
http://contagiominidump.blogspot.in/2013/11/fakedefenderb-android-
fake-antivirus.html (Online; Last Accesed December 25 2013).

[61] avast! Free Mobile Security, http://www.avast.com/free-
mobile-security-c?utm expid=22755838-
21.bXJ mQHnQA6pakUW6PaLQQ.2&utm referrer=https%3A%2F
%2Fwww.google.com%2F (Online; Last Accesed December 25 2013).

[62] APKTool, Reverse Engineering with ApkTool, https://code.google.
com/android/apk-tool (Online; Accessed March 20 2013).

[63] A. Inc., Class to Dex Conversion with Dx, http://developer.android.
com/tools/help/index.html (Online;Last Accessed March 5 2013).

[64] Remote Access Tool Takes Aim with Android APK Binder,
http://www.symantec.com/connect/blogs/remote-access-tool-takes-aim-
android-apk-binder (Online; Last Accesed December 25 2013).

[65] V. Rastogi, Y. Chen, X. Jiang, Droidchameleon: Evaluating Android
anti-malware against Transformation attacks, in: Proceedings of the
8th ACM SIGSAC symposium on Information, computer and commu-
nications security, ACM, 2013, pp. 329–334.

[66] M. Zheng, P. P. C. Lee, J. C. S. Lui, ADAM: An Automatic and
Extensible Platform to Stress Test Android Anti-virus Systems, in:
DIMVA, 2012, pp. 82–101.

[67] ProGuard, http://proguard.sourceforge.net/ (Online; Last Accessed 11th
February).

[68] DexGuard, http://www.saikoa.com/dexguard (Online; Last Accessed
11th February).

[69] Dalvik Bytecode Obfuscation on Android,
https://dexlabs.org/blog/bytecode-obfuscation (Online; Last Accessed
11th February).

[70] BlackHat, Reverse Engineering with Androguard, https://code.google.
com/androguard (Online; Accessed March 29 2013).

[71] W. Zhou, Y. Zhou, X. Jiang, Hey, You Get Off my Market: Detecting
Malicious apps in Official and Third party Android Markets, in: Annual
Network and Distributed Security Symposium, NDSS, New York, NY,
USA, 2012.

[72] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, Y. Weiss, ”andromaly”:
a behavioral malware detection framework for android devices., J.
Intell. Inf. Syst. 38 (1) (2012) 161–190.
URL http://dblp.uni-trier.de/db/journals/jiis/jiis38.html#
ShabtaiKEGW12

[73] Y. Feng, S. Anand, I. Dillig, A. Aiken, Apposcopy: Semantics-Based
Detection of Android Malware.

[74] P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur, A. Bharmal, An-
droSimilar: Robust Statistical Feature Signature for Android Malware
Detection., in: A. Eli, M. S. Gaur, M. A. Orgun, O. B. Makarevich
(Eds.), SIN, ACM, 2013, pp. 152–159.
URL http://dblp.uni-trier.de/db/conf/sin/sin2013.html#FarukiGLGB13

[75] A. P. Fuchs, A. Chaudhuri, J. S. Foster, SCanDroid: Automated security
certification of Android applications, Manuscript, Univ. of Maryland,
http://www. cs. umd. edu/˜ avik/projects/scandroidascaa.

[76] L. Lu, Z. Li, Z. Wu, W. Lee, G. Jiang, CHEX: Statically vetting
Android apps for Component hijacking vulnerabilities., in: T. Yu,
G. Danezis, V. D. Gligor (Eds.), ACM Conference on Computer and
Communications Security, ACM, 2012, pp. 229–240.
URL http://dblp.uni-trier.de/db/conf/ccs/ccs2012.html#LuLWLJ12

[77] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, I. Molloy,
Android Permissions: a perspective combining risks and benefits, in:
Proceedings of the 17th ACM symposium on Access Control Models
and Technologies, ACM, 2012, pp. 13–22.

[78] D. Barrera, H. G. Kayacik, P. C. van Oorschot, A. Somayaji, A method-
ology for Empirical Analysis of Permission-based Security Models

and its Application to Android, in: Proceedings of the 17th ACM
conference on Computer and communications security, CCS ’10, ACM,
New York, NY, USA, 2010, pp. 73–84. doi:10.1145/1866307.1866317.
URL http://doi.acm.org/10.1145/1866307.1866317

[79] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G. Bringas,
G. Álvarez, PUMA: Permission usage to detect malware in android,
in: International Joint Conference CISIS12-ICEUTE´ 12-SOCO´ 12
Special Sessions, Springer, 2013, pp. 289–298.

[80] C.-Y. Huang, Y.-T. Tsai, C.-H. Hsu, Performance Evaluation on
Permission-Based Detection for Android Malware, in: Advances in
Intelligent Systems and Applications-Volume 2, Springer, 2013, pp.
111–120.

[81] W. Enck, M. Ongtang, P. McDaniel, On Lightweight Mobile Phone
Application Certification, in: Proceedings of the 16th ACM conference
on Computer and communications security, ACM, 2009, pp. 235–245.

[82] J. Kim, Y. Yoon, K. Yi, J. Shin, S. Center, ScanDal: Static Analyzer for
detecting Privacy leaks in Android applications, in: Proceedings of the
Workshop on Mobile Security Technologies (MoST), in conjunction
with the IEEE Symposium on Security and Privacy, 2012.

[83] H. S. Karlsen, E. R. Wognsen, M. C. Olesen, R. R. Hansen, Study,
formalisation, and analysis of dalvik bytecode, in: Informal proceed-
ings of The Seventh Workshop on Bytecode Semantics, Verification,
Analysis and Transformation (BYTECODE 2012), 2012.

[84] Y. Aafer, W. Du, H. Yin, Droidapiminer: Mining api-level features
for robust malware detection in android., in: T. Zia, A. Y. Zomaya,
V. Varadharajan, Z. M. Mao (Eds.), SecureComm, Vol. 127 of Lecture
Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, Springer, 2013, pp. 86–103.
URL http://dblp.uni-trier.de/db/conf/securecomm/securecomm2013.
html#AaferDY13

[85] M. Zheng, M. Sun, J. C. S. Lui, DroidAnalytics: A Signature Based
Analytic System to Collect, Extract, Analyze and Associate Android
Malware, CoRR abs/1302.7212.

[86] JD-GUI, Android Decompiling with JD-GUI, http://java.decompiler.
free.fr/?q=jdgui (Online;Last Accessed March 01 2014).

[87] JAD, JAD Java Decompiler, http://varaneckas.com/jad/ (Online;Last
Accessed March 01 2014).

[88] H. van Vliet, Mocha, The Java Decompiler, http://www.brouhaha.com/
∼eric/software/mocha/ (Online;Last Accessed March 01 2014).

[89] SOOT, Soot: a java optimization framework, http://www.sable.mcgill.
ca/soot/ (Online; Accessed March 01 2014).

[90] WALA, T.j. watson libraries for analysis (wala), http://wala.
sourceforge.net/wiki/index.php/ (Online; Accessed March 01 2014).

[91] H. Inc., Fortify static code ana-
lyzer, http://www8.hp.com/us/en/software-
solutions/software.html?compURI=1338812 (Online; Accessed
March 01 2014).

[92] E. William, O. Damien, M. Patrick, C. Swarat, A Study of Android Ap-
plication Security, in: USENIX Security ’11, USENIX, San Francisco,
ca, 2011.

[93] D. Octeau, S. Jha, P. McDaniel, Retargeting Android applications to
Java bytecode, in: Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering, ACM,
2012, p. 6.

[94] A. Bartel, J. Klein, Y. Le Traon, M. Monperrus, Dexpler: converting
android dalvik bytecode to jimple for static analysis with soot, in:
Proceedings of the ACM SIGPLAN International Workshop on State
of the Art in Java Program analysis, ACM, 2012, pp. 27–38.

[95] C. Gibler, J. Crussell, J. Erickson, H. Chen, Androidleaks: Automat-
ically detecting potential privacy leaks in Android applications on a
large scale, in: Trust and Trustworthy Computing, Springer, 2012, pp.
291–307.

[96] Dex2Jar, Android Decompiling with Dex2jar, http://code.google.com/
p/dex2jar/ (Online;Last Accessed May 15 2013).

[97] UI/Application Exercise Monkey, http://developer.android.com/tools/help/
monkey.html (Online; Last Accessed 11th February).

[98] A. Reina, A. Fattori, L. Cavallaro, A System call-centric analysis and
stimulation technique to automatically reconstruct Android Malware
behaviors, EUROSEC, Prague, Czech Republic.

[99] E. William, G. Peter, C. Byunggon, C. Landon, TaintDroid : An
Information Flow Tracking System for Realtime Privacy monitoring on
Smartphones, in: USENIX Symposium on Operating Systems Design
and Implementation, USENIX, 2011.

[100] I. Burguera, U. Zurutuza, S. Nadjm-Tehrani, Crowdroid: Behavior-
based Malware Detection System for Android, in: Proceedings of the
1st ACM workshop on Security and privacy in smartphones and mobile
devices, ACM, 2011, pp. 15–26.

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. 00, NO. 0, FEBRUARY 2014 23

[101] L. K. Yan, H. Yin, Droidscope: Seamlessly reconstructing the OS and
Dalvik Semantic views for Dynamic Android Malware Analysis, in:
Proceedings of the 21st USENIX Security Symposium, 2012.

[102] BakSmali, Reverse Engineering with Smali/Baksmali, https://code.
google.com/smali (Online; Accessed March 20 2013).

[103] DARE: Dalvik Retargeting, http://siis.cse.psu.edu/dare/ (Online; Last
Accessed 11th February 2013).

[104] Dedexer, http://dedexer.sourceforge.net/ (Online; Last Accessed 11th
February 2013).

[105] JEB Decompiler, http://www.android-decompiler.com/ (Online; Last
Accessed 11th February 2013).

[106] Similarities for Fun & Profit.
[107] V. Roussev, Data Fingerprinting with Similarity Hashes, Advances in

Digital Forensics.
[108] V. Roussev, Building a better similarity trap with statistically improb-

able features, in: System Sciences, 2009. HICSS’09. 42nd Hawaii
International Conference on, IEEE, 2009, pp. 1–10.

[109] Andrubis (2012).
URL http://anubis.iseclab.org/

[110] A. Desnos, P. Lantz, Droidbox: An android application sandbox for

dynamic analysis (2011).
URL https://code.google.com/p/droidbox/

[111] APKInspector (2013).
URL https://github.com/honeynet/apkinspector/

[112] ded: Decompiling Android Applications, http://siis.cse.psu.edu/ded/
(Online; Last Accessed 11th February).

[113] R. Xu, H. Saı̈di, R. Anderson, Aurasium: Practical policy Enforcement
for Android applications, in: Proceedings of the 21st USENIX confer-
ence on Security symposium, USENIX Association, 2012, pp. 27–27.

[114] Google Bouncer: Bad guys may have an app for that,
http://www.techrepublic.com/blog/it-security/google-bouncer-bad-
guys-may-have-an-app-for-that/7422/ (February 2012).

[115] CopperDroid, http://copperdroid.isg.rhul.ac.uk/copperdroid/index.php
(February 2012).

[116] J. Kornblum, Identifying almost Identical Files using Context Trig-
gered Piecewise Hashing, Digital Investigation 3 (2006) 91–97.
doi:10.1016/j.diin.2006.06.015.
URL http://dx.doi.org/10.1016/j.diin.2006.06.015

[117] Drozer - A Comprehensive Security and Attack Framework for An-
droid, https://www.mwrinfosecurity.com/products/drozer/ (Online; Last
Accessed 11th February 2013).

