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ABSTRACT

Blood vessels in solid tumors are not randomly distributed, but are clustered 

in angiogenic hotspots. Tumor microvessel density (MVD) within these hotspots 

correlates with patient survival and is widely used both in diagnostic routine and 

in clinical trials. Still, these hotspots are usually subjectively deined. There is no 
unbiased, continuous and explicit representation of tumor vessel distribution in 

histological whole slide images. This shortcoming distorts angiogenesis measurements 

and may account for ambiguous results in the literature.

In the present study, we describe and evaluate a new method that eliminates 

this bias and makes angiogenesis quantiication more objective and more eficient. 
Our approach involves automatic slide scanning, automatic image analysis and spatial 

statistical analysis. By comparing a continuous MVD function of the actual sample to 

random point patterns, we introduce an objective criterion for hotspot detection: An 

angiogenic hotspot is deined as a clustering of blood vessels that is very unlikely 
to occur randomly. We evaluate the proposed method in N=11 images of human 

colorectal carcinoma samples and compare the results to a blinded human observer. 

For the irst time, we demonstrate the existence of statistically signiicant hotspots 
in tumor images and provide a tool to accurately detect these hotspots.

INTRODUCTION

Tumor angiogenesis is the growth of blood vessels 

from healthy tissue into tumor tissue [1]. Virtually all solid 

tumors in humans require angiogenesis for growth beyond 

a minimal size [2]. One way to observe angiogenesis 

is through histological tumor sections, where blood 

vessel proiles can be assessed by immunostaining for 
endothelial markers like CD31 or CD34 [3]. Microvessel 

density (MVD) and vessel distribution have been used 

to describe and compare the vascularization of different 

tumors. For example, vascularization patterns differ in 

breast carcinomas and sarcomas [4]. Similarly, renal cell 

carcinomas and breast carcinomas differ in terms of MVD 

[5]. The different vascular patterns in different tumors 

have led to biologically, and potentially clinically, relevant 

conclusions. Yet, most of these indings are based on 
vessel counting in subjectively deined regions and have 
not been validated by objective whole-slide image analysis 

methods [6, 7]. 

Generally, tumor microvessel density (MVD) is 

seen as an independent prognostic factor in several cancer 

entities. However, there are still conlicting results with 
respect to MVD as an independent prognostic factor. 

For example in breast cancer, several studies in the last 

20 years have conirmed the original study from 1992 
that found a correlation of MVD to prognosis [8-10]. 

In contrast, a recent reevaluation could not reproduce 

these results [11]. For colorectal carcinoma, a large 

number of studies investigated the prognostic relevance 
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of intratumoral MVD: Although a meta-analysis showed 

that MVD is indeed a prognostic factor for relapse-free 

and overall survival, the individual study results vary 

considerably [12]. In prostate cancer, the role of MVD 

as an independent prognostic factor is unclear: In a large 

study, manually counted MVD was correlated to tumor 

aggressiveness and was a predictor of prostate-speciic 
antigen (PSA) recurrence after initial prostatectomy, but 

was not an independent prognostic factor [13]. However, 

another large study could identify prostate cancer MVD as 

an independent prognostic factor in subjectively deined 
representative hotspot areas [14]. Yet another study 

reported that MVD in prostate cancer compared to MVD 

in normal prostate tissue is not elevated at all [15]. Taken 

together, there are contradictory results on the importance 

of MVD in breast cancer, colorectal cancer and prostate 

cancer.

A reason for these ambiguities could be a 

methodological shortcoming of most approaches for 

MVD quantiication. All common approaches are based 
on two steps: First, a highly vascularized region within 

the tumor is identiied subjectively according to Weidner’s 
criteria [16]. This region is considered the “angiogenic 

hotspot”. Second, tumor vessels are counted only in this 

region, either by random sampling or by counting all 

vessels within this region [6]. One of the most widely used 

methods for MVD quantiication is Chalkley counting 
[17]. This method has been shown to be fairly reproducible 

but still relies on prior subjective identiication of a 
hotspot area [18].

Correspondingly, the most recent international 

consensus paper on angiogenesis quantiication (from 
2002) states: “[...] reliable angiogenesis parameters are 

urgently needed in the emerging therapeutic setting of 

anti-angiogenesis.” [19]. Following this conclusion, some 
authors have used state-of-the-art image analysis methods 

to quantitatively analyze the tumor vasculature. For 

example, Mikalsen and co-workers have used automatic 

image analysis and linked tumor vessel morphology to 

breast cancer patient outcome [20]. Yet, the authors of that 

study also selected angiogenic hotspot areas manually. 

Interestingly, for some tumor entities it is still 

debated whether hotspots actually exist. For example 

for sarcoma, one study quantiied MVD in subjectively 
selected hotspot areas [21] while another study stated that 

vessels in sarcoma samples are homogenously distributed 

and do not show any clustering [4]. 

In summary, there is a need to replace manual 

hotspot selection in MVD analysis of tumor samples. 

Also, the concept of tumor angiogenic hotspots has to 

be questioned more fundamentally. To the best of our 

knowledge, this concept has never been challenged since 

Weidner et al. have proposed it in 1991 [16]. Until today, 
the concept of angiogenic hotspots is only grounded 

on subjective observation of tumor vessel distribution 

in a histological slide. The only study known to us that 

investigated automatic vascular hotspot selection is more 

than 15 years old. In this study, blood vessels counts were 

aggregated in cells of a coarse grid and no spatial statistics 

were used to verify possible clustering [22]. 

The purpose of the present study is to close that 

conceptual gap in quantitative tumor vessel analysis. For 

the irst time, we formally address the question whether 
tumor angiogenic hotspots are merely local luctuations 
in a random pattern or occur in a statistically signiicant 
manner. Furthermore, we propose an explicit deinition 
of tumor angiogenic hotspots based on spatial statistical 

models. To achieve this, we take three steps: i) We 
elaborate a concept of continuous mapping instead of 

gridded counting of blood vessels in histological whole 

slide images; ii) We present a novel explicit model for 
vessel clustering and provide an objective optimal criterion 

of tumor angiogenic hotspots and iii) We use spatial 
statistical models to compare tumor vessel distribution to 

random point patterns. 

RESULTS

Tumor vessel density can be represented by a 

continuous density function

Conventionally, angiogenic hotspots are manually 

selected in histological tumor samples. This manual 

procedure is inherently biased and inaccurate. By using a 

new automatic method, N = 11 tumor tissue images from N 

= 9 patients were analyzed for the presence of angiogenic 
hotspots. First, CD34-immunostained whole slides of 

colon carcinoma samples were scanned and blood vessels 

were extracted by image segmentation (Figure 1). Tumor 

tissue in the whole slide image was manually delineated 

(Figure 2A) and blood vessels within this region of interest 

(ROI) Ω
i
 were extracted. This was also done for fat tissue, 

which was used as a negative control for validation of 

the procedure (Figure 2B). We did not use normal colon 
mucosa as a control because it consists of multiple non-

solid glands and therefore would yield an intrinsically 

non-random and anisotropic vascularization pattern. 

For a given map subset in each ROI Ω
i
, a corresponding 

random point pattern was created according to a complete 

spatial randomness (CSR) process (Fat: observed pattern 

in Figure 3A.1, random pattern in Figure 3A.2; Tumor: 

observed pattern in Figure 4A.1, random pattern in Figure 

4A.2). This corresponding CSR pattern constituted an 

intrinsic control for each tissue sample because it had 

the same ROI geometry and overall particle density as 

the observed pattern. By using kernel density estimation 

(KDE), density functions were calculated for these point 

patterns: function  for the observed pattern and 

function  for the CSR pattern (Fat: Figure 3B.1 

and Figure 3B.2, Tumor, Figure 4B.1 and Figure 4B.2). To 
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the best of our knowledge, these spatial statistical methods 

have never been applied in the context of tumor vessel 

density before.

A hotspot probability map shows non-random 

luctuations of tumor vessel density

Observing the point patterns and corresponding 

density functions, it can be seen that density luctuations 
are present both in  and . While in fat tissue, these 

Figure 1: Immunostained blood vessels are automatically segmented in whole-slide images. In this igure, image tiles 
of 1600x1600 px are shown and an image detail is enlarged. A. Original image region, B. result of color deconvolution, C. result of 

thresholding and morphological post-processing.

Figure 2: Whole slide image of a colorectal tumor sample. Panel A. shows a whole slide image of a colorectal cancer sample, two 

tumor regions are delineated by hand. Analysis of the right-hand region is subsequently shown in Figure. 4. Below, a detail is enlarged to 

demonstrate the staining quality. In panel B. a fat tissue sample is shown. The delineated fat tissue region served as a negative control for 

validation of the new method. Below the main panel, a detail is enlarged. The corresponding blood vessel map can be found in Figure 3.
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luctuations were of the same magnitude in the observed 
pattern (Figure 3B.1) and CSR pattern (Fig 3B.2), this 

was not the case for the tumor tissue: In tumor tissue, the 

density luctuations are much more pronounced in  

(Figure 4B.1) than in  (Figure 4B.2). This suggested 

that non-random hotspots existed in tumor tissue but not in 

fat tissue. To quantify this non-randomness, a probability 

function  was deined by normalizing to . 

The density of the CSR distributed pattern was considered 

noise and therefore its mean function value  was 

subtracted from the observed density function 

. By normalizing the resulting function to the standard 

deviation  of , a continuous hotspot 

probability function 

 [1]

was deined on the same grid as . Thus, 

the function value  at each location within  

was a measure of the degree by which the microvessel 

density at this particular location deviated from the density 

expected under the null hypothesis of CSR. The degree of 

non-randomness was expressed in multiples of standard 

deviations of a random point pattern in Ω
i
. According to 

the inverse standard normal cumulative density function 

(CDF) 

 [2]

all values of were unlikely to occur 

under the null hypothesis (with a p-value of 0.05). 

Consequently, the point  was considered to be 

part of a signiicant hotspot. However, because  

and therefore  were sampled at a large number 

of sampling points (approx.105 to 106), a correction for 

multiple testing had to be applied. We chose Bonferroni 
correction because this method yields a conservative 

estimate, which makes false positive results extremely 

unlikely. Combining the inverse standard normal CDF 

with Bonferroni correction at n sampling points, the 

threshold above which a point  was considered to 

be part of a signiicant hotspot (with a p-value of 0.05/n) 

increased to

 [3]

This hotspot probability map was computed for a 

sample fat tissue region (Figure 3C), where no signiicant 
hotspots emerged and for a sample colon tumor region 

(Figure 4C), where ive contiguous non-random hotspot 
regions emerged.

Angiogenic hotspots are detected in each item of a 

series of colon tumor tissue samples

After calculating the hotspot probability map for a 

sample colon tumor image and a sample fat tissue image, 

we analyzed a series of N = 10 colon tumor samples from 

N = 8 patients (Table 1). Again, automatically created 

corresponding CSR patterns served as an intrinsic control 

for each sample. We found that within the angiogenic 
hotspot areas, average MVD was 520 vessels per mm2, 

while in the whole tumors, average MVD was 89 vessels 
per mm2 (Table 1). The number of hotspots per sample 

varied largely, indicating a high biological variation 

between the samples. Still, all tumor images yielded 

statistically signiicant angiogenic hotspots and were 

Table 1: Measurements for all analyzed colon tumor samples. In this table, various automatic measurements are listed 
for all 11 analyzed colon tumor whole slide images. A blinded observer delineated primary and secondary hotspots in image 
1 to 10. Image 0 was not evaluated because the observer had seen it before. In the last two columns, the proportion of these 
hotspots also detected by automatic analysis is listed. Abbreviations: HS = hotspot, MVD = microvascular density, SD = 
standard deviation, KDE = kernel density estimation, x̄ = column mean, n.d. = not determined
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signiicantly different from corresponding CSR patterns. 
The absolute values for MVD were compatible with prior 

studies. For example, Bossi et al. reported a (manually 

counted) MVD of 115 ± 39 vessels per visual ield (181 
± 61 vessels per mm2) in highly vascularized areas in 178 

colorectal carcinomas [23]. This count is higher than the 

average MVD for whole tumors and lower than hotspot 

MVD found in the present study. This discrepancy is 

probably due to the fact that hotspots in Bossi’s study were 
per deinition the size of a visual ield (0.64 mm2) while 

hotspots in the present study were not restricted to a ixed 
size and thus more accurately traced the actual hotspot 

boundaries. Average hotspot size found in the present 

study was on average 0.08 mm2 (see, for example, hotspots 

in Figure 4C compared to the dimensions in Figure 2A).

The novel spatial statistical approach is valid 

compared to established statistical models

We propose a new method for detecting non-random 
luctuations in two-dimensional point patterns. To the 

best of our knowledge, such a method has never been 

used before, even outside the realm of digital pathology. 

Therefore, we validated the results using several spatial 

statistical methods implemented in the well-established R 

package Spatstat [24]. For a given point pattern, the empty 

space F(r) function G(r) and nearest neighbor distance 

distribution function were calculated and compared to the 

null hypothesis of complete spatial randomness (CSR). 

In accordance with our results, these well-established 

statistical methods did not yield any non-random 

clustering for fat tissue (Figure 6A) while non-random 

clustering was detected in tumor tissue (Figure 6B). These 

indings suggest that the new spatial analysis method is a 
valid approach to detect non-random luctuations in point 
patterns. However, it does not necessarily follow that the 

new method validly detects angiogenic hotspots in whole 

slide images of tumors. Therefore, as will be explained 

below, we used a different approach to validate the hotspot 

detection by the proposed new method.

Figure 3: Blood vessels in fat tissue are distributed randomly and do not show signiicant clustering. A point map of 

vessels in fat tissue from Figure 2B is shown in panel A.1. Point map of random pattern A.2. in the same region; microvessel density 

function of fat tissue B.1.; density function of the complete spatial randomness (CSR) model B.2.; color-coded units of the density functions 

are arbitrary. C. Probability map (units: standard deviations of CSR), Bonferroni corrected level of signiicance is at F = 5.25 (marked by 

*). No signiicant angiogenic hotspot can be detected in this tissue region.
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Figure 4: Blood vessels in colorectal tumor tissue show highly signiicant clustering. A point map of vessels in colorectal 

tumor tissue from Figure 2A is shown in A.1. Point map of random pattern A.2. in the same region; microvessel density function of tumor 

tissue B.1.; density function of the complete spatial randomness (CSR) model B.2.; color-coded units of the density functions are arbitrary. 

C. Probability map (units: standard deviations of CSR), Bonferroni corrected level of signiicance is at F = 5.27 (marked by *). Five 

statistically signiicant tumor angiogenic hotspots emerge in this region (indicated by arrows).
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Automatic hotspot detection largely coincides 

with manual hotspot detection by a blinded 

observer

Generally, whenever a new method is introduced, it 

should be compared to an existing gold standard. However, 

for angiogenic hotspot detection, the present gold standard 

is subjective evaluation by a pathologist and our method 

is conceptually different. Conventionally, pathologists 

subjectively identify exactly one angiogenic hotspot in 

a given slide according to Weidner’s method [16]. Our 
proposed method does not reproduce this selection of 

exactly one angiogenic hotspot. Instead, each point in the 

whole slide image is assigned a probability value of being 

part of a signiicant vessel cluster. Thus, one, several or 
none of these signiicant clusters can be present in a given 
image. We therefore chose to validate the proposed method 
as follows: a blinded observer (CAW) manually delineated 
a primary angiogenic hotspot in all images according to 

Weidner’s method [16]. Optionally, the observer delineated 
secondary angiogenic hotspots. We then compared these 
regions to the automatically detected hotspot areas and 

checked whether these regions overlapped (any degree 

of overlap). We found that subjectively detected primary 
hotspots overlapped automatically detected hotspots in 9 
of 10 cases while subjectively detected secondary hotspots 

overlapped automatically detected hotspots in 13 of 18 

cases (Table 1, Figure 5).

Synopsis of major indings

In the present study, we present the irst continuous 
hotspot probability map for evaluation of histological 

whole slide images. Our method explicitly assigns a 

probability value to each point on the source image. 

This value gives the probability by which an angiogenic 

hotspot is present at the respective location in the source 

image. Thus, our method yields three main results: First, 

it tells us whether blood vessels in a given tissue sample 

are randomly distributed or form statistically signiicant 
hotspots. Second, these hotspots can be accurately 

localized within the image. Third, although the decision 

if a given point is part of a hotspot is a binary decision, 

each point is assigned an exact probability value. Thus, the 

level of signiicance can be adjusted to change the extent 
of an angiogenic hotspot in a given setting. In the present 

manuscript, we chose a very conservative approach for 

hotspot detection, effectively ruling out false positive 

results. In different applications, it might be appropriate 

to lower the level of signiicance for hotspot detection, 
thereby increasing the number and the size of detected 

hotspots at the cost of potential false positive results.

DISCUSSION

The concept of tumor angiogenic hotspots 

revisited

The notion of vessel clustering in angiogenic 

hotspots in histological samples of solid tumors is widely 

taken for granted, but to the best of our knowledge, it has 

never been challenged by means of spatial statistics. The 

alternative hypothesis that angiogenic hotspots are a result 

of local luctuations in random blood vessel distribution 
has not been tested yet. Furthermore, for angiogenesis 

researchers and pathologists, a naturally derived deinition 
of an angiogenic hotspot and a tool for hotspot probability 

mapping has not been available so far. 

Figure 5: Comparison of manual and automatic hotspot detection. In this igure, a whole slide image is shown in low 
magniication. The blue line shows the contour of the tumor. The black lines show angiogenic hotspots as delineated by a blinded human 
observer (# marks the primary hotspot as deined by the observer). The hotspot probability map is overlaid (red/yellow; level of signiicance 
is indicated by *). It can be seen that all manually detected hotspot areas were also detected by the automatic method.
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In the present study, we describe such a tool and, 

based on it, show for the irst time that blood vessels in 
colorectal carcinoma are not randomly distributed but 

show statistically signiicant clustering representing 
angiogenic hotspots. Our indings contribute to the 
concept of angiogenic hotspots in three ways: i) by a new 

notion of continuous quantitative analysis of histological 

imaging independent of data aggregation in grid cells; ii) 

by the explicit deinition of tumor angiogenic hotspots in 
histological whole slide images and iii) by the veriication 
of signiicant vessel clustering by using spatial statistical 
models.

Comparison to previous approaches for vessel 

density mapping

One achievement of the method presented in this 

study was automatic generation of vessel maps for whole-

slide tumor images. Several groups have presented similar 

methods in the past. For example, vessel segmentation 

was performed on whole slide images of experimental 

tumors in a study from 2003 [25]. In two studies, vascular 

density was visualized in whole-slide images of prostate 

cancer sections [26, 27]. Another study reported the use 

of whole-slide analysis of immunoluorescence positivity 
for vascular markers without morphologically analyzing 

individual vessel proiles [28]. Peritumoral density of 
lymphatic vessels was automatically analyzed by Balsat 

et al. [29]. A recent approach included segmentation of 
lymphatic vessels by proprietary software and analysis 

of global measures of vascularization [30]. In a different 

study, proprietary software was used to detect immune 

cell iniltrates in colorectal carcinoma samples and to map 
these iniltrates to whole-slide images [31]. 

Although the automatic generation of vessel maps 

is not new, all subsequent steps of the present study are 

unique in the context of MVD assessment: To analyze 

MVD, we use a continuous density estimation approach. 

Previous studies aggregated counts on a grid, making 

the results dependent on grid translation or rotation. 

Furthermore, the method described in the present study 

uses an intrinsic control pattern for each sample, so that 

vascularization patterns are pairwisely compared to an 

appropriate null hypothesis. This solves the problem of 

choosing a suitable control tissue for a tissue of interest.

In the next section, we will compare our approach to 

Figure 6: Spatial statistics for fat and tumor. Empty space function F(r) and nearest neighbour distance distribution function G(r) 

for vessels in fat A. and tumor B. tissue. The observed functions are plotted against the functions of a corresponding random pattern. While 
F and G for fat do not differ from the random functions, tumor vessel distribution markedly differs from a random pattern. km = Kaplan-

Meier estimate, cs = Chiu-Stoyan estimate, bord = border corrected estimate, han = Hanisch estimate, pois = theoretical Poisson distribution 

(CSR).
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previously described methods in more detail. First, we will 

consider previous approaches to evaluate MVD in whole 

slide images; then, we will consider previous approaches 

to elucidate the concept of angiogenic hotspots. 

Comparison to previous approaches for tumor 

angiogenic hotspot detection

The classical deinition of a tumor angiogenic 
hotspot has been provided by Weidner and co-workers, 
who deined a hotspot as the subjectively chosen “area 
of highest neovascularization” within a tumor [16]. Still 

in recent studies, Weidner’s deinition is used as a basis 
for MVD quantiication [32]. By this deinition, there 
is exactly one hotspot area in any sample, although 

signiicant vessel clustering can be present in more 
than one region. This may yield false negative results.. 

Conversely, this method also yields false positive results 

because hotspot areas are found in samples without any 

statistically signiicant clustering. In the present study, we 
present the irst objective deinition of tumor angiogenic 
hotspots. Our deinition is not based on subjective 
assumptions but on spatial statistical models. If there is no 

statistically signiicant blood vessel clustering in a given 
tissue sample, our method does not identify any hotspot 

areas. Conversely, if more than one contiguous region 

shows signiicant vessel clustering, our method identiies 
these regions. By deining a continuous hotspot probability 
map for a whole slide tumor image, the statistical 

signiicance of hotspot areas can be quantitatively 
compared within a given sample and also between 

samples. Thus, for the irst time, it becomes possible to 
quantitatively compare the presence, number and extent 

of angiogenic hotspots between different tissue samples. 

Implications for theoretical models of tumor 

metabolism and structure

It is known that molecularly and morphologically, 

tumor tissue is highly heterogeneous [33-35]. Tumor 

cell proliferation, tumor cell metabolism and tumor 

angiogenesis are subject to pronounced heterogeneity 

within a solid tumor [36, 37]. This heterogeneity is 

generally not considered in studies quantifying MVD. 

Therefore, the indings presented in this study are 
relevant for theoretical models of tumor heterogeneity. 

Most models of cell metabolism, immune response 

and drug distribution are dependent on the pattern of 

tumor vascularization [38]. How exactly this tumor 

vascularization pattern varies locally has never been 

explicitly investigated. In tumor angiogenesis research, 

it is assumed that tumor vascularization is generally 

higher at the tumor margin when compared to the hypoxic 

tumor center (e.g. for colorectal carcinoma [39]); but this 
assumption is based on subjective and/or random sampling 

of regions of interest and has not been validated by use of 

spatial statistics and independent of a coarse grid. Quite 

strikingly, analysis of N = 11 tumor images performed in 

the present study showed that angiogenic hotspots can be 

found close to the tumor margin but are also located close 

to hypovascularized regions in the tumor center (see, for 

example, Figure 4C).

Thus, the angiogenic hotspot probability map which 

we present in this study could form the basis for reinement 
of existing models of solid tumors [37]. For example, drug 

distribution measurements in experimentally induced 

tumors in mice could be matched to angiogenic hotspot 

maps of the same tumors to generate more realistic 

assumptions for models of drug distribution. Also, as 

implied in Suppl. Figure 1, tumor cell proliferation 

visualized by Ki67 could be quantitatively assessed in 

whole slide images and be matched to angiogenic hotspot 

probability maps to generate new insights for more 

accurate theoretical models of solid tumors.

A novel approach for quantitative analysis of 

histological slides: implications for histopathology

Objective, quantitative image analysis in histology 

is a key prerequisite for individualized cancer therapy 

[40]. Assessment of tumor MVD is performed using 

different methods like manual counting or Chalkley 

count that are not objective and cannot be used in a high-

throughput manner [6]. In the present study, we deine a 
continuous hotspot probability function in histological 

slides, which is a fundamentally new notion of quantitative 

analysis of histological slides. In histopathological 

routine, quantiication of MVD is often performed either 
in randomly sampled high power ields (HPFs) or in 
subjectively selected HPFs within areas of interest, for 

example angiogenic hotspots [19]. A more objective 
approach used in quantitative analysis is to divide the 

specimen into a regular grid and count blood vessels in 

each cell of this grid. This has been done manually [22] 

and automatically [27]. While these grid-based methods 
are useful for exploratory analysis of tumor MVD, they are 

not suitable to automatically detect hotspots. Tumor MVD 

distribution deined on a regular grid is not invariant with 
respect to grid cell size and grid translation or rotation. 

The algorithm we use in the present study is different: For 

computational reasons, whole slide images are divided 

into tiles for image segmentation, but a tile overlap ensures 

that the segmentation result is invariant with respect to 

tile dimensions. We then deine a continuous hotspot 
probability map which is computationally represented at 

approx. 106 sampling points and does not require arbitrary 

grid cell parameters. The single most important parameter 

in our model is kernel bandwidth used to determine the 

density function and this parameter is optimally estimated 

for each sample according to a well-established algorithm 
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[41]. 

The paradigm shift we propose for quantiication 
of MVD also bears consequences for other areas of 

quantitative histopathology. For example, random 

sampling or subjective placement of HPFs is used to 

measure parameters like the Ki67 index in histological 

tumor samples. These quantitative measurements have 

profound consequences for therapy and prognosis. Still, 

these measurements methods are partly error-prone and 

there is no rigorous deinition and no scalable tool for 
their detection in a more or less heterogeneous tumor 

sample. The method for continuous probability mapping 

of angiogenic hotspots presented in this study could be a 

starting point to establish similar methods for other target 

variables in routine histopathology, thereby extending 

beyond MVD quantiication. 
To implement our indings in histopathological 

routine, we would envision the incorporation of the 

presented method in digital pathology worklows. For 
example, a digital pathology workstation could enable 

the pathologists to select a tumor tissue of interest in a 

given whole slide image. Then, angiogenic hotspots 

could be automatically delineated (including a p-value 

for each hotspot) and MVD within these hotspots 

could be recorded. Another possibility would be double 

immunostaining for endothelial markers and proliferation 

markers, so that proliferating angiogenesis could be 

selectively monitored.

Integrating global and local aspects of spatial 

analysis

While in histopathology, spatial statistical methods 
are not widely used, these methods are well established 

in other ields such as geography or epidemiology. 
Conventionally, global measures for particle clustering 

are obtained by methods to detect whether signiicant 
clustering or dispersion is present in a pattern, for example 

by measuring distances between particles or by measures 

of autocorrelation. While many classical methods rely on 
aggregation of spatial variables into grid cells, k-means 

clustering and other methods do not aggregate data 

before analysis. For example, the latter was used in image 

analysis of histological slides to detect Ki67 hotspots [42]. 

The novel method we present in this study is different to 

previously presented methods: The whole pattern is taken 

into account and compared against a null hypothesis of 

a homogenous two-dimensional Poisson process. Then, 

the density is assessed locally and by normalizing to the 

null hypothesis, a probability map for the presence of 

non-random clustering is generated (Figure 3C for fat, 4C 

for tumor). Thus, without using binning or other means 

of aggregation, it can be determined whether statistically 

signiicant clustering is present in the dataset and where 
these clusters are located. 

Limitations and perspectives

Although the tumor vasculature extends in three-

dimensions, vessel distribution is commonly assessed 

in two-dimensional slices. Thus, objects in histological 

images are randomly or systematically sampled from 

a larger population. This 2D sampling may introduce 

errors into quantitative methods in histopathology, 

including the method presented in the present study. To 

reconstruct a 3D pattern from observations in a plane, 

serial section reconstruction is one of the most widely 

used techniques [43]. It would therefore be possible to 

measure vessel distributions in serial, registered sections 

of tumor samples and derive a three-dimensional hotspot 

probability map. However, in the present study, we 

restrict ourselves to the 2D case since serial sections and 

subsequent 3D-reconstruction are not yet relevant for 

clinical histopathology. Furthermore, the methodological 

implications arising from a third dimension are not 

negligible (e.g. vessel segmentation and statistical 

comparison of distributions in three dimensional space). 

In order to automatically create vessel hotspot 

probability maps in clinical histopathology, two further 

possible issues would have to be controlled: First, 

MATLAB implementation of the presented algorithm 

is well suited for prototype building but not readily 

applicable in routine histopathology. Second, we 

performed a manual quality check of the stained slides and 

requested new stainings for macroscopically folded or torn 

tissue samples. For a fully digital pathology worklow, this 
quality check should be done by automatic image analysis 

methods. 

Still, our study opens up another intriguing 

perspective: By turning from microscopic structures like 

single, small vessels to angiogenic hotspots of a certain 

size and distribution, it seems to be possible to change 

the measurement scale from µm to mm. Consequently, 

histological vascular patterns could be compared with 

radiological data (e.g. tumor perfusion). Also, it would be 

possible to combine our approach with new techniques 

using high resolution Magnetic Resonance Microscopy 

[44].

Summary

In this study we present a new method to create 

continuous angiogenic hotspot probability maps of 

histological whole slide images automatically and with 

reasonable computational eficiency. We believe that this 
tool will prove useful to further develop and challenge 

theoretical models of tumor biology, especially in the 

ield of tumor angiogenesis research. Furthermore, the 
presented approach may advance digital quantitative 

histopathology with regard to personalized cancer 

diagnosis. 
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MATERIALS AND METHODS

Tissue sample acquisition, staining and 

digitization

Tissue specimens of formalin-ixed parafin-
embedded human tumors were retrieved from the 

pathology archive. We retrieved N = 9 colon carcinomas 
(each from a different patient). Seven tumors yielded one 

tissue slide, one tumor yielded two tissue slides and one 

tumor yielded an unusually large tissue slide that had to 

be split in two parts. All resulting slides were completely 

separated and did not overlap in any dimension. Therefore, 

in total, we analyzed N = 11 independent colorectal 

cancer images (Table 1). A pathologist (CAW) conirmed 
the diagnosis independently of the original report and 

checked the tissues slides for artifacts such as torn tissue 

or unspeciic staining artifacts. Also, a sample of fat 
tissue was used for initial validation of the procedure, 

as described above. The specimens were CD31, CD34 

and Ki67 immunostained (DAB) with hematoxylin 

background staining using a routine immunoperoxidase 

technique (CD31: DakoCytomation M0823, 1:500; CD34: 

Immunotech PNIMO786, 1:500; Ki67: DakoCytomation 

M7240, 1: 800; pH 6, 40 minutes). We found that CD31 
staining of colon carcinoma tissue labeled high numbers 

of CD31-expressing immune cells (e.g. macrophages) 

in addition to endothelial cells in the tumor tissue ROIs. 

Therefore, for colorectal carcinoma samples, we used 

CD34 staining that did not label non-endothelial structures 

in the carcinoma regions of the tissue samples we studied. 

Subsequently, the slides were fully digitalized using an 

Aperio ScanScope (Aperio/Leica biosystems) and saved 

as compressed Aperio svs iles, typically yielding 300 MB 
per slide. All experiments were in accordance with the 

Declaration of Helsinki and all image processing methods 

were in accordance with Digital Image Ethics [45]. All 

images were anonymous and use of patient samples 

complied with the guidelines of the institutional reviewer 

board. 

Whole-slide image segmentation and post-

processing

The basis for this spatial analysis of vascularization 

pattern in histological whole-slide images is to segment 

blood vessels in a fully automatic, unbiased and reliable 

fashion. To achieve this, we combined various well-

described and mature image-analysis techniques. A core 

component is the morphological post-processing algorithm 

published by Reyes-Aldasoro et al. [46, 47]. In the present 

study, we expanded this algorithm to whole slide images 

by a tesselating the large image into overlapping tiles 

and by subsequently rearranging the whole slide image. 

Thus, the computationally expensive procedure of object 

recognition was successively applied to sub-images and 

could be run on a desktop workstation (see also Suppl. 

Figure 2). The following image-segmentation steps were 

performed: a) A whole slide image was tessellated into 

1600 x 1600 pixels sections, each of which was processed 

separately (Figure 1A). b) Ruifrok’s color deconvolution 
[48] was applied to extract the brown (DAB / CD31 or 

CD34) channel (Figure 1B). c) The brown channel was 

thresholded using Yen’s automatic threshold detection 
method [49]. d) Morphological post-processing steps as 
described by Reyes-Aldasoro [46, 47] were applied to 

join nearby objects, split objects and close gaps within 

objects (Figure 1C). e) Objects smaller than a minimal size 

(default: 65 pixels) were discarded from the analysis as 

these objects were considered as noise (e.g. single CD31-

positive non-endothelial cells, for example macrophages). 

A lowchart of the computational algorithm is shown in 
Suppl. Figure 2. 

Computational implementation of image 

segmentation

To scale and divide whole slide images, we used 

the open-source tool VIPS/Nip2 version 7.40.2 (Imperial 

College London, UK), which is well suited to handle 
extremely large images > 100 MB [50]. For color 

deconvolution and Yen segmentation, we wrote a macro 

for Fiji/ImageJ version 1.48s with Java version 1.6.0 

(http://iji.sc/About) making use of Fiji plugins [51]. 
MATLAB programming was used for all subsequent data 

analysis steps (MATLAB R2014b, Mathworks, Natick, 

MA, USA). For technical details on computational 
analyses, see supplements (“Details of the computational 

procedures” and Suppl. Figure 2).

Spatial analysis of tumor blood vessels

After all blood vessels in a histological whole slide 

image were identiied, their centroid coordinates were 
saved for further processing. Approximately 10,000 to 

50,000 blood vessels were detected per whole slide image, 

yielding a dataset of approximately 5 MB. This highly 

condensed representation of blood vessels in a histological 

image made it possible to perform spatial statistical 

analysis of whole slide datasets. Since a whole slide image 

typically contains several tissue types (tumor and non-

tumor), a pathologist (CAW) manually delineated one or 
more polygonal regions of interest (ROIs) in each whole-

slide image (Figure 2 A and B). ROIs did not contain any 

torn tissue regions or staining artifacts. ROI coordinates 

were transferred to the vessel map and all vessels within 

the ROI were saved as a map subset. 
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Comparison of observed patterns to the null 

hypothesis

Blood vessel distribution in each map subset was 

compared to the null hypothesis of complete spatial 

randomness (CSR). To achieve this, a random point 

pattern was created in each ROI by a homogenous two-

dimensional Poisson process. This pattern contained the 

same number of objects as the observed pattern so that 

the overall density within each ROI did not vary between 

the observed pattern and the random pattern. This random 

point map was used as an intrinsic internal control for each 

observed vessel map and vessel density of the observed 

pattern was normalized to vessel density of the random 

pattern.

Kernel density estimation and probability 

mapping

KDE included convolution of the dataset with a 

Gaussian kernel, yielding a density function 

. This density function  was sampled on a 

regular 1024 by 1024 grid. The optimal bandwidth for 

a symmetric Gaussian kernel for KDE was calculated 

using Botev’s algorithm [41]. Using a modiied version 
of Botev’s Matlab implementation of two-dimensional 
KDE, the same bandwidth was used for KDE of the 

random pattern in Ω
i
 yielding the CSR density function 

. 
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