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Abstract

This paper derives tests for skewness and kurtosis for the panel data one-way error
components model. The test statistics are based on the between and within transforma-
tions of the pooled OLS residuals, and are derived in a moment conditions framework.
We establish the limiting distribution of the test statistics for panels with large cross-
section and fixed time-series dimension. The tests are implemented in practice using
the bootstrap. The proposed methods are able to detect departures away from nor-
mality in the form of skewness and kurtosis, and to identify whether these occur at
the individual, remainder, or both error components. The finite sample properties of
the tests are studied through extensive Monte Carlo simulations, and the results show
evidence of good finite sample performance.
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1 Introduction

The need to check for non-normal errors in regression models obeys to both methodological

and conceptual reasons. From a strictly methodological point of view, lack of Gaussianity

sometimes harms the reliability of simple estimation and testing procedures, and calls for

either better methods under alternative distributional assumptions, or for robust alternatives

whose advantages do not depend on distributional features. Alternatively, whether errors

should be more appropriately captured by skewed and/or leptokurtic distributions may be

a statistical relevant question per se.

The normality assumption also plays a crucial role in the validity of specification tests.

Blanchard and Mátyás (1996) examine the consequences of non-normal error components for

the performance of several tests. In a recent application, Montes-Rojas and Sosa-Escudero

(2011) show that non-normalities severely affect the performance of the panel heteroskedas-

ticity tests by Holly and Gardiol (2000) and Baltagi, Bresson and Pirotte (2006), in line with

the results of Evans (1992) for the cross-sectional case. Despite these concerns the Gaussian

framework is widely used for specification tests in the one-way error components model; see,

for instance, the tests for spatial models in panel data by Baltagi, Song and Koh (2003), and

Baltagi, Song, Jung, and Koh (2007).

Even though there is a large literature on testing for skewness and kurtosis in cross-

sectional and time-series data, including Ergun and Jun (2010), Bai and Ng (2005), Pre-

maratne and Bera (2005), Dufour, Khalaf and Beaulieu (2003), Bera and Premaratne (2001),

Henze (1994) and Lutkepohl and Theilen (1991) to cite a few of an extensive list that dates

back to the seminal article by Jarque and Bera (1981), results for panel data models are

scarce. A natural complication is that, unlike their cross-section or time-series counterparts,

in simple error-components models lack of Gaussianity may arise in more than one compo-

nent. Thus, an additional problem to that of detecting departures away from normality is the

identification of which component is causing it. Previous work on the subject include Gilbert

(2002), who exploits cross-moments, and Meintanis (2011), who proposes an omnibus-type

test for normality in both components jointly based on empirical characteristic functions.

This paper develops tests for skewness (lack of symmetry), kurtosis, and normality for

panel data one-way error component models. The tests are constructed based on moment

conditions of the within and between transformations of the OLS residuals. These conditions

are exploited to develop tests for skewness and kurtosis in the individual-specific and the
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remainder components, separately and jointly. We show that under the corresponding null

hypothesis the limiting distributions of the tests are asymptotically normal. To obtain

the asymptotic distributions of the test statistics, we consider the most important case

where the number of individuals, N , goes to infinity, but the number of time periods, T ,

is fixed and might be small. The proposed methods and associated limiting theory are

important in practice because, in the panel data case, the standard Bera-Jarque test is

not able to disentangle the departures of the individual and remainder components from

non-Gaussianity.

The proposed tests are implemented in practice using a bootstrap procedure. Since the

tests are asymptotically normal, the bootstrap can be used to compute the corresponding

variance-covariance matrices of the statistics of interest and carry out inference. In partic-

ular, the tests are implemented using a cross-sectional bootstrap. We formally prove the

consistency of the bootstrap method applied to our case of short panels.

A Monte Carlo study is conducted to assess the finite sample performance of the tests in

terms of size and power. The Monte Carlo simulations show that the proposed tests and their

bootstrap implementation work well for both skewness and kurtosis, even in small samples

similar to those used in practice. The results confirm that the test for the individual specific

component depends on the cross-section dimension only, and hence it is invariant to the

time-series dimension. The proposed tests detect departures away from the null hypothesis

of skewness and/or kurtosis in each component, and are robust to the presence of skewness

and/or kurtosis in the other component.

Finally, to highlight the usefulness of the proposed tests, we apply the new tests to the

Fazzari, Hubbard and Petersen (1988) investment equation model, in which firm investment

is regressed on a proxy for investment demand (Tobin’s q) and cash flow.

The paper is organized as follows. Section 2 presents the relevant moment conditions that

characterize skewness and kurtosis for each error component. Section 3 derives the tests and

their asymptotic distributions. Section 4 describes the implementation through bootstrap.

Section 5 presents Monte Carlo results. A brief application is given in Section 6. Finally,

Section 7 concludes and discusses extensions.
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2 Skewness and kurtosis in the one-way error compo-

nents model

2.1 The model and the hypotheses

Consider the following standard panel data one-way error components model

yit = α0 + x⊤
itβ0 + uit, uit = µi + νit, i = 1, ...N, t = 1, ..., T, (1)

where α0 is a constant, β0 is a p-vector of parameters, and µi, νit, and xit are copies of

random variables µ, ν, and x, respectively. As usual, the subscript i refers to individual

and t to time. Here µi and νit refer to the individual-specific and to the remainder error

component, respectively, both of which have mean zero.

The quantities of interest are each component skewness,

sµ =
µ3

σ3
µ

=
E[µ3]

(E[µ2])3/2
, and sν =

ν3
σ3
ν

=
E[ν3]

(E[ν2])3/2
,

and kurtosis,

kµ =
µ4

σ4
µ

=
E[µ4]

(E[µ2])2
, and kν =

ν4
σ4
ν

=
E[ν4]

(E[ν2])2
.

We are interested in testing for skewness and kurtosis in the individual-specific and the

remainder components, separately and jointly. When the underlying distribution is normal,

the null hypotheses of interest become H
sµ
0 : sµ = 0 and Hsν

0 : sν = 0 for skewness and

H
kµ
0 : kµ = 3 and Hkν

0 : kν = 3 for kurtosis. We also consider testing for skewness and

kurtosis jointly. Under normality, the null hypotheses for these cases are given by

H
sµ&kµ
0 : sµ = 0 and kµ = 3,

Hsν&kν
0 : sν = 0 and kν = 3.

It is common in the statistics and econometrics literature to check for the third and

fourth moment of a random variable and compare them with the corresponding values of a

normal distribution. This corresponds to a test for normality of each component. Thus, the

last hypotheses can be regarded as tests for normality. The following sections develop the

corresponding test statistics.

We introduce the following notation. ui ≡ T−1
∑T

t=1 uit are the between residuals, and

ũit ≡ uit − ui are the within residuals. Let νi ≡ T−1
∑T

t=1 νit such that ui = µi + νi.
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Similarly, xi ≡ 1
T

∑T
t=1 xit. In general, a line over a variable with a subscript i indicates a

group average. A tilde will denote variables expressed as deviations from the corresponding

group mean. A line over a variable without a subscript indicates the total average across

i and t, e.g., x ≡ 1
NT

∑N
i=1

∑T
t=1 xit. Also, for a generic random vector Xi indexed by i,

let E[Xi] denote
1
N

∑N
i=1 Xi. Let ûit = yit − α̂0 − x⊤

itβ̂ be the pooled ordinary least squares

(OLS) residuals, where β̂ is the pooled OLS estimator. It is straightforward to show that

the slope coefficients admit an asymptotic representation such that
√
N(β̂ − β0) = Op(1).

2.2 Skewness

In this section we develop statistics for testing skewness. In order to derive moment con-

ditions to test for skewness in each component, consider the cube of the between residuals,

u3
i = (µi + νi)

3 = µ3
i + ν3

i + 3µ2
i νi + 3µiν

2
i . Taking expectations on both sides of the last

equation, we have

E[u3
i ] = µ3 + T−2ν3.

The cube of the within residuals is given by ũ3
it = (νit − νi)

3 = ν3
it − ν3

i − 3ν2
itνi +3νitν

2
i , and

after taking expectations

E[ũ3
it] = ν3 − T−2ν3 − 3T−1ν3 + 3T−2ν3 = ν3

(
1− 3T−1 + 2T−2

)
.

Solving these equations for ν3 and µ3, we obtain

ν3 =
1

1− 3T−1 + 2T−2
E[ũ3

it],

µ3 = E[u3
i ]−

1

T 2 − 3T + 2
E[ũ3

it].

Therefore, the tests for skewness in each component make use of u3
i and ũ3

it. To carry tests in

practice, we need to construct the sample counterpart of these equations. First, we rewrite

the equations. Recall that ũ3
it = (uit − ui)

3 = u3
it − u3

i − 3u2
itui + 3uitu

2
i , and that in the

one-way error components model (using the assumptions below), for each i, the {ũit}’s are
identically distributed, then it follows that E[ũ3

it] = E[ũ3
i ] where ũ3

i =
1
T

∑T
t=1 ũ

3
it, and

ν3 =
1

1− 3T−1 + 2T−2
E[u3

i − 3uiu2
i + 2u3

i ],

µ3 =
T 2 − 3T

T 2 − 3T + 2
E[u3

i ]−
1

T 2 − 3T + 2
E[u3

i − 3uiu2
i ].
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However, the above equations are functions of the unobservable innovations. Thus, we

define ν̂3 and µ̂3 as the estimators of ν3 and µ3, respectively, which are constructed using

ûit, the OLS residuals. Then, we have that

ν̂3 =
1

1− 3T−1 + 2T−2
E[û3

i − 3ûiû2
i + 2û

3

i ],

µ̂3 =
T 2 − 3T

T 2 − 3T + 2
E[û

3

i ]−
1

T 2 − 3T + 2
E[û3

i − 3ûiû2
i ].

Finally, the following statistics are useful to construct tests for skewness

ŜKν =
ν̂3
σ̂3
ν

, (2)

ŜKµ =
µ̂3

σ̂3
µ

. (3)

In Section 3 we construct tests for skewness based on these statistics, and derive their

limiting distributions under some regularity conditions (Assumptions 1 and 2, in the next

section). The estimators σ̂3
ν and σ̂3

µ are given in Appendix A1. It is easy to show that under

Hsν
0 , ŜKν

p→ 0. Note that the use of the within transformation to construct the estimator

implies that ŜKν is not affected by skewness (or kurtosis) in µ.

Consider now the estimator for skewness in the individual component, sµ. As in the

previous case, ŜKµ
p→ sµ, as N → ∞ and fixed T . In addition, under the null hypothesis of

normality H
sµ
0 , ŜKµ

p→ 0. Note that ŜKµ is robust to the presence of skewness (or kurtosis)

in the remainder component, sν , even in small panels, i.e., finite T .

2.3 Kurtosis

In order to derive similar statistics to test for kurtosis, consider the fourth power of the

between residuals, u4
i = (µi + νi)

4 = µ4
i + ν4

i + 4µ3
i νi + 4µiν

3
i + 6µ2

i ν
2
i . Taking expectations

of u4
i we obtain

E[u4
i ] = µ4 + T−3(ν4 + 3(T − 1)σ4

ν) + 6T−1σ2
µσ

2
ν .

Consider now the fourth power of the within residuals, ũ4
it = (uit − ui)

4 = ν4
it + ν4

i − 4ν3
itνi −

4νitν
3
i + 6ν2

itν
2
i . Taking expectations of ũ4

it we obtain

E[ũ4
it] = ν4

(
1− 4T−1 + 6T−2 − 3T−3

)
+ σ4

ν(T − 1)(6T−2 − 12T−3).

These expectations are linear functions of ν4 and µ4, suggesting, again, that tests for

kurtosis of each component can be based on u4
i and ũ4

it. In particular, solving the equations
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for ν4 and µ4 and noting that ũ4
it = (uit − ui)

4 = u4
it + u4

i − 4u3
itui − 4uitu

3
i +6u2

itu
2
i , it follows

that

ν4 =
E[ũ4

it]

1− 4T−1 + 6T−2 − 3T−3
− (T − 1)(6T−2 − 12T−3)

1− 4T−1 + 6T−2 − 3T−3
σ4
ν

=
E[u4

i ]− 4E[u3
iui] + 6E[u2

iu
2
i ]− 3E[u4

i ]

1− 4T−1 + 6T−2 − 3T−3
− (T − 1)(6T−2 − 12T−3)

1− 4T−1 + 6T−2 − 3T−3
σ4
ν

µ4 = E[u4
i ]− T−3(ν4 + 3(T − 1)σ4

ν)− 6T−1σ2
µσ

2
ν

= E[u4
i ]

T 3 − 4T 2 + 6T

T 3 − 4T 2 + 6T − 3
− E[u4

i ]− 4E[u3
iui] + 6E[u2

iu
2
i ]

T 3 − 4T 2 + 6T − 3

− (T − 1)(3T 3 − 12T 2 + 12T + 3)

(T 3 − 4T 2 + 6T − 3)T 3
σ4
ν −

6

T
σ2
µσ

2
ν .

As in the previous section, the above equations are functions of the unobserved innova-

tions. Define ν̂4 and µ̂4 as the estimators of ν4 and µ4, respectively, constructed using ûit,

the OLS residuals. Thus, we have that

ν̂4 =
E[û4

i ]− 4E[û3
i ûi] + 6E[û2

i û
2

i ]− 3E[û
4

i ]

1− 4T−1 + 6T−2 − 3T−3
− (T − 1)(6T−2 − 12T−3)

1− 4T−1 + 6T−2 − 3T−3
σ̂4
ν

µ̂4 = E[û
4

i ]
T 3 − 4T 2 + 6T

T 3 − 4T 2 + 6T − 3
− E[û4

i ]− 4E[û3
i ûi] + 6E[û2

i û
2

i ]

T 3 − 4T 2 + 6T − 3

− (T − 1)(3T 3 − 12T 2 + 12T + 3)

(T 3 − 4T 2 + 6T − 3)T 3
σ̂4
ν −

6

T
σ̂2
µσ̂

2
ν .

Finally, the following statistics are useful to construct tests for kurtosis.

K̂Uν =
ν̂4
σ̂4
ν

, (4)

K̂Uµ =
µ̂4

σ̂4
µ

. (5)

It is important to notice that when testing for kurtosis (or both skewness and kurtosis)

based on moment conditions, skewness might influence kurtosis. This might be an impor-

tant drawback of these tests. Jones, Rosco, and Pewsey (2011) show that certain kurtosis

measures, when applied to certain wide families of skew-symmetric distributions, display the

attractive property of skewness-invariance. The authors provide quantile-based measures of

kurtosis and their interaction with skewness-inducing transformations, identifying classes of

transformations that leave kurtosis measures invariant.

We use the statistics in (4) and (5) to construct tests for kurtosis. Consider first the

estimator for kurtosis in the remainder component, kν . Under the assumptions listed below

6



K̂Uν
p→ kν , for N → ∞ and fixed T . Then for the purpose of testing normality, under

Hkν
0 , K̂Uν

p→ 3. Note that the statistic K̂Uν is not affected by kurtosis (or skewness) in µ.

Consistent estimators for σ4
ν and σ4

µ are presented in Appendix A1.

Finally, consider the estimator for kurtosis in the individual component, kµ. As before,

K̂Uµ
p→ kµ, as N → ∞ and fixed T . Thus, under the null hypothesis of normality H

kµ
0 ,

K̂Uµ
p→ 3. As in the previous case, the statistic K̂Uµ is not affected by the presence of

kurtosis (or skewness) in the remainder component.

3 Asymptotic theory

In order to implement the tests in practice we first derive the asymptotic distributions of the

corresponding statistics developed in the previous section. Consider the regression model

described by equation (1). We will impose the following regularity conditions to derive the

asymptotic properties of the statistics.

Assumption 1. Let {µi} be a sequence of i.i.d. random variables, and {(x⊤
it , νit)} be an

array of i.i.d. random vectors across i and t. In addition, xit, µi and νit are independent.

Both µi and νit have mean zero and finite E[µ8] and E[ν8].

Assumption 2. E[xitx
⊤
it ] is a finite positive definite matrix. In addition, E[||xit||4] is finite.

Assumptions 1 and 2 are standard in the literature. The first one imposes restrictions

on the sampling scheme and on the moments of the individual-specific and the remainder

error components. The need to bound high order moments relates to the fact that the

limiting distribution of the proposed statistics involves the variance of skewness and kurtosis

statistics, which eventually depend on the sixth and eighth moments, respectively. The

positive definiteness of E[xitx
⊤
it ] in second assumption is a standard identification condition.

The existence of E[||xit||4] is usually required for the study of variance-covariance matrix.

Assumptions 1 and 2 guarantee that a multivariate version of the Lindeberg-Lévy central

limit theorem for N → ∞ and fixed T can be used to establish the asymptotic normality of

the statistics proposed in the previous section.

We construct tests for skewness and/or kurtosis based on moment conditions, as in pre-

vious work such as Jarque and Bera (1981), Bai and Ng (2005) or Bontemps and Meddahi
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(2005). It is well known in this literature, and implied by the restrictions of Assumption 1,

that a drawback of tests requiring high order moments is that they are not theoretically valid

for numerous distributions. We will assess the finite sample performance of the proposed

tests using a series of Monte Carlo experiments, reported in Section 5.

A novel aspect of our proposed framework is the ability to identify skewness and kurtosis

in the error components of a standard linear panel model, separately and jointly. We provide

a general framework to develop these tests and to suggest directions in which particular

deviations from the model, other than non-Gaussianity, can be considered. We will focus

only on the one-way error components model and leave extensions for future research. In

particular, the previous assumptions could be relaxed at the cost of modeling additional

terms in the expectations and variance-covariances given below for skewness and kurtosis.

Suggestions for extensions are discussed in the last section.

The next theorem derives an asymptotic representation for the sample skewness and

kurtosis.

Theorem 1 Under Assumptions 1 and 2, and for N → ∞ and fixed T ,

(i)
√
N(ŜKν − sν) =

(
B1

σ3
ν
− 3sνA1

2σ2
ν

)
1√
N

∑N
i=1 Ai + op(1)

(ii)
√
N(ŜKµ − sµ) =

(
B2

σ3
µ
− 3sµA2

2σ2
µ

)
1√
N

∑N
i=1 Ai + op(1)

(iii)
√
N(K̂Uν − kν) =

(
C1
σ4
ν
− 2kνA1

σ2
ν

)
1√
N

∑N
i=1 Ai + op(1)

(iv)
√
N(K̂Uµ − kµ) =

(
C2
σ4
µ
− 2kµA2

σ2
µ

)
1√
N

∑N
i=1 Ai + op(1),

where Ai = (ui, u2
i − E[u2

i ], u
2
i − E[u2

i ], u
3
i − E[u3

i ], u
3
i − E[u3

i ], u
4
i − E[u4

i ], u
4
i − E[u4

i ], u
2
iui −

E[u2
iui], u3

iui − E[u3
iui], u2

iu
2
i − E[u2

iu
2
i ])

⊤, A1 =
(
0, 1

1−T−1 ,− 1
1−T−1 , 0, 0, 0, 0, 0, 0, 0

)
, A2 =

(
0,− 1

T−1
, T
T−1

, 0, 0, 0, 0, 0, 0, 0
)
, B1 = (0, 0, 0, 1, 2, 0, 0,−3, 0, 0)/(1 − 3T−1 + 2T−2), B2 =(

− 3E[u2
i ], 0, 0,

−1
T 2−3T+2

, T 2−3T
T 2−3T+2

, 0, 0, 3
T 2−3T+2

, 0, 0
)
, C1 = (0, (24T−2 − 12T−1)σ2

ν , (12T
−1 −

24T−2)σ2
ν , 0, 0, 1,−3, 0,−4, 6)/(1−4T−1+6T−2−3T−3), and C2 =

(
−4E[u3

i ],− (3T 3−12T 2+12T+3)
(T 3−4T 2+6T−3)T 2 −

6σ2
µ

T−1
+ 6σ2

ν

T (T−1)
, (3T

3−12T 2+12T+3)
(T 3−4T 2+6T−3)T 2 +

6σ2
µ

T−1
− 6σ2

ν

T−1
, 0, 0, −1

T 3−4T 2+6T−3
, T 3−4T 2+6T
T 3−4T 2+6T−3

, 0, 4
T 3−4T 2+6T−3

, −6
T 3−4T 2+6T−3

)
.

Proof. See Appendix A2.

Based on the previous asymptotic representations, the next result provides the asymptotic

distributions of the statistics of interest.
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Theorem 2 Under Assumptions 1 and 2, and for N → ∞ and fixed T ,

(i)
√
N(ŜKν − sν)/

√
Ωs

ν
d→ N(0, 1), where Ωs

ν = NV ar(ŜKν);

(ii)
√
N(ŜKµ − sµ)/

√
Ωs

µ
d→ N(0, 1), where Ωs

µ = NV ar(ŜKµ);

(iii)
√
N(K̂Uν − kν)/

√
Ωk

ν
d→ N(0, 1), where Ωk

ν = NV ar(K̂Uν);

(iv)
√
N(K̂Uµ − kµ)/

√
Ωk

µ
d→ N(0, 1), where Ωk

µ = NV ar(K̂Uµ).

Proof. See Appendix A3.

Theorem 2 shows that the distributions of the statistics ŜKν , ŜKµ, K̂Uν and K̂Uµ,

after centralization and standardization, are asymptotically standard normal. This result

indicates that tests for skewness and/or kurtosis are simple to implement. For example, to

test H
sµ
0 : sµ = 0 against H

sµ
1 : sµ 6= 0, a simple t-test can be used by standardizing the test

statistic ŜKν by the square root of a consistent estimate of its variance, and imposing the

null hypothesis

Tsµ = ŜKν/

√
V ar(ŜKν)

d→ N(0, 1).

The critical values for this two-sided test are standard. For the case of testingHkν
0 : kν/σ

4
ν = 3

the procedure is analogous

Tkµ = (K̂Uν − 3)/

√
V ar(K̂Uν)

d→ N(0, 1).

The next section discusses how to implement the tests in practice.

4 Implementation

In this section, we develop a bootstrap procedure to estimate the variances of the skewness

and kurtosis test statistics in practice. The implementation of the tests based on the results

of Theorem 2 require a consistent estimator of the asymptotic variances of the correspond-

ing statistics. Even though these variance-covariance matrices exist and are finite by the

boundedness conditions in Assumption 1, they depend on the high order moments of ν and

µ. Therefore their derivation requires a cumbersome calculation. Instead, we consider the

bootstrap as an alternative to estimate the corresponding asymptotic variance-covariance

matrices.

Although the properties of the bootstrap are widely studied for cross-section data, it

is only recently that relevant results are available for panel data. Cameron and Trivedi
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(2005) discuss resampling methods for panel data when N is large but T is assumed small.

Kapetanios (2008) studies the bootstrap for a linear panel data model where resampling

occurs in both the cross-section and time dimensions. Goncalves (2011), allowing for both

temporal and cross-sectional dependence, studies the moving block bootstrap for a linear

panel data model where resampling occurs only in the time dimension.

The bootstrap method we consider is implemented by randomly drawing individuals

with replacement while maintaining the time series structure unaltered. This corresponds

to cross-sectional resampling in Kapetanios (2008). This method resamples {yit,xit} with

replacement from the cross-section dimension with probability 1/N , maintaining the tem-

poral structure intact for each individual i. More specifically, let y∗ = (yi1 , ..., yis , ..., yiN ) be

the vector of bootstrap samples where each element of the vector of indices (i1, ..., iN) is ob-

tained by drawing with replacement from (1, ..., N), and each element is yis = (yis1, ..., yisT )

for s ∈ (i1, ..., iN). The same vector of indices is used to obtain x∗. Therefore, each bootstrap

sample is given by {(y∗it,x∗
it), i = 1, . . . , N ; t = 1, . . . , T}.

Next we describe the bootstrap algorithm for estimating the variances in practice. We

will focus on the implementation of the bootstrap procedure for testing the null hypothesis

Hsν
0 : sν = 0 with the statistic described in equation (2) and using part (i) in Theorem 2.

The algorithms for the remaining cases are analogous. To implement the test we need to

compute Ω̂s∗
ν , the bootstrap variance estimator. The algorithm is as follows:

1. Draw B independent bootstrap samples, (y∗it,x
∗
it)

1, (y∗it,x
∗
it)

2, ..., (y∗it,x
∗
it)

B each consisting

of i = 1, . . . , N ; t = 1, . . . , T, data values as described in the previous paragraph.

2. Having obtained the resampled data, evaluate the bootstrap replication corresponding to

each bootstrap sample to estimate equation (1) and compute the residuals.

3. Given the residuals for each bootstrap sample, calculate the statistic of interest as in

equation (2), which is denoted by ŜK
∗b
ν , b = 1, ..., B.

4. Finally, obtain Ω̂s∗
ν with the sample variance of ŜK

∗b
ν , b = 1, ..., B.

After computing this estimate, the result in part (i) of Theorem 2 can be used to construct

a Wald-type test as Tsµ = NŜK
2

ν/Ω̂
s∗
ν . The intuition for the validity of this test is that the

limit of V ar(ŜK
∗b
ν ) as B goes to infinity approximates the variance of ŜKν . The exact same

procedure is used to construct the estimator of the variances of the other statistics.

10



The practical implementation of the tests using the bootstrap is simple. Let Ω̂s∗
ν , Ω̂s∗

µ , Ω̂k∗
ν ,

and Ω̂k∗
µ be the bootstrap estimator of the variances. Then the following Wald test statistics

can be used: (i) N(ŜKν − sν)
2/Ω̂s∗

ν ; (ii) N(ŜKµ − sµ)
2/Ω̂s∗

µ ; (iii) N(K̂Uν − kν)
2/Ω̂k∗

ν ; (iv)

N(K̂Uµ−kµ)
2/Ω̂k∗

µ . Under the corresponding null hypotheses, the statistics (i), (ii), (iii) and

(iv) have χ2
1 asymptotic distribution. Moreover, (i)+(iii) and (ii)+(iv) have χ2

2 asymptotic

distribution.

Below, we formally prove consistency of the bootstrap estimators of the variances. To

show the result, we consider the following additional condition.

Assumption 3.
(maxi |µi|)4∨(maxi,t |νit|)4

τN

a.s.→ 0, where τ satisfies lim infN τN > 0 and τN =

O(eN
q

) with a q ∈ (0, 0.5).

Assumption 3 is a simple sufficient condition for the consistency of the bootstrap estima-

tors of the variance-covariance estimators and is used to guarantee the technical condition

(3.28) on p. 87 of Shao and Tu (1995).

Proposition 1 Under Assumptions 1–3, the bootstrap estimator of the variances, Ωs
ν, Ω

s
µ,

Ωk
ν, and Ωk

µ, are consistent.

Proof. See Appendix A4.

5 Monte Carlo experiments

In this section, we use simulation experiments to assess the finite sample performance of the

tests discussed in the previous sections. The baseline model for the experiments is

yit = β0 + β1xit + µi + νit, i = 1, ..., N, t = 1, ..., T, (6)

where xit ∼ N(0, 1). The parameters β0 and β1 are assigned a value of 1.

We study the finite sample performance of tests for skewness and kurtosis separately,

and jointly, in both the individual and remainder components. As alternative sample sizes

we have considered N ∈ {100, 200, 500, 1000} and T ∈ {3, 5, 10}. We report the proportion

of rejections over 1,000 Monte Carlo replications, and all results are based on a 5% nominal

size. The bootstrap implementation is based on B = 200 bootstrap replications of the same

corresponding panel sizes.
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We explore the effectiveness of the proposed tests to alternative distributional processes.

Table 1 reports experiments for ν ∼ N(0, 1) and µ ∼ N(0, 1). In this case, all tests should

have empirical size close to 0.05. The results for the tests using bootstrap show very good

empirical size for all different tests and panel sizes. In this case, tests for skewness in both

ν and µ have correct size for the smallest panel size considered (N = 100, T = 3). Tests

for kurtosis start with oversized tests for N = 100 (0.07 to 0.10) but reduces to 0.05 as N

increases. Moreover, tests for joint skewness and kurtosis achieve correct empirical size as

N increases in a similar way to the tests for kurtosis.

[Table 1 about here]

Table 2 reports experiments for ν ∼ t9, µ ∼ N(0, 1) (first set of rows) and ν ∼ N(0, 1), µ ∼
t9 (second set of rows). The t9-Student distribution is symmetric but presents excess kurtosis,

while the 9 degrees of freedom guarantees that all required moments are finite. In the first

case, tests for kurtosis in ν should have non trivial empirical power, while tests for skewness

in ν and skewness and kurtosis in µ should not. In the second case, tests for kurtosis in µ

should have relevant power, while tests for skewness in µ and skewness and kurtosis in ν

should not. The experiments show that this is indeed the case. For ν ∼ t9, µ ∼ N(0, 1), the

kurtosis test for ν has power increasing in either N or T , while the remaining tests have size

close to the 0.05 nominal size. For ν ∼ N(0, 1), µ ∼ t9, the kurtosis test for µ has power

increasing only in N , while the remaining tests have size close to the 0.05 nominal size. The

results show that kurtosis in one component does not affect tests for kurtosis in the other

component.

[Table 2 about here]

Tables 3 and 4 report experiments for skew normal distributions generated as in Azzalini

(1985).1 The fact that skewness affects kurtosis implies that it is difficult to separate their

effects in practice. To this purpose we consider Azzalini’s (1985) skew normal distribution

with small skewness (as given by its shape parameter set to 1) and with minimum effect on

the level of kurtosis; and next we consider a skew normal distribution with large skewness

and, consequently, a large effect on kurtosis (shape parameter set to 10). Table 3 (shape set

1We are grateful to an anonymous referee for pointing this out. See Genton (2004) for a review of
skew-elliptical distributions.
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to 1) reveals that our proposed tests are able to detect departures from symmetry in each

component without altering the empirical size in kurtosis. That is, tests for skewness in ν

have power increasing in either N or T and tests for skewness in µ have power increasing

only in N when the corresponding component follows a skew normal distribution with shape

1. Moreover, the corresponding kurtosis tests have small power (the largest rejection rate is

0.128 for N = 1000, T = 10 in the ν test case and 0.075 for N = 200, T = 10 in the µ test

case). Table 4 shows that a shape parameter of 10 affects the tests for both skewness and

kurtosis. Overall, the results show that skewness (and kurtosis) in one component does not

affect the tests for the other component.

[Table 3 about here]

[Table 4 about here]

Tables 5 and 6 reports experiments for skew t9-Student distributions generated as in

Azzalini and Capitanio (2003) with a shape parameter of 1 and 10.2 In this case we consider

skewness and kurtosis together. The simulation results show that the developed tests are

responsive to both deviations in skewness and kurtosis, and that deviations in one component

does not affect the empirical size in the other component.

[Table 5 about here]

[Table 6 about here]

6 Empirical application: investment models

As an empirical illustration we apply the developed tests to the Fazzari, Hubbard and Pe-

tersen (1988) investment equation model, where firm investment is regressed on a proxy

for investment demand (Tobin’s q) and its cash flow; a widely used model in the corporate

investment literature. Following Fazzari, Hubbard, and Petersen (1988), investment–cash-

flow sensitivities became a standard metric in the literature that examines the impact of

financing imperfections on corporate investment. These empirical sensitivities are also used

2We are grateful to an anonymous referee for pointing this out. Although not reported we also produced
experiments with χ

2

1
(with both skewness and kurtosis) distributions with similar results.
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to draw inferences about efficiency in internal capital markets, the effect of agency on corpo-

rate spending, the role of business groups in capital allocation, and the effect of managerial

characteristics on corporate policies.

Tobin’s q is the ratio of the market valuation of a firm and the replacement value of its

assets. Firms with a high value of q are considered attractive as investment opportunities,

whereas a low value of q indicates the opposite. Investment theory is also interested in the

effect of cash flow, as the theory predicts that financially constrained firms are more likely

to rely on internal funds to finance investment (see Almeida, Campello and Galvao (2010),

for a discussion). The baseline model in the literature is

Iit/Kit = α + βqit−1 + γCFit−1/Kit−1 + µi + νit,

where I denotes investment, K capital stock, CF cash flow, q Tobin’s q, µ is the firm-specific

effect and ν is the innovation term.

We check for skewness and kurtosis in both µ and ν using the proposed tests. We are

interested in testing for skewness and kurtosis for at least three reasons. First, testing

normality plays a key role in forecasting models at the firm level. Second, asymmetry

in both components is used for solving measurement error problems in Tobin’s q. The

operationalization of q is not clear-cut, so estimation poses a measurement error problem.

Many empirical investment studies found a very disappointing performance of the q theory of

investment, although this theory has a good performance when measurement error is purged

as in Erickson and Whited (2000). Their method requires asymmetry in the error term

to identify the effect of q on firm investment. Third, skewness and kurtosis by themselves

provide information about the industry investment patterns. Skewness in µ determines that

a few firms either invest or disinvest considerably more than the rest, while kurtosis in µ

determine that a few firms locate at both sides of the investment line, that is, some invest a

large amount while others disinvest large amounts too. Skewness and/or kurtosis in ν show

that the large values of investment correspond to firm level shocks.

We follow Almeida, Campello and Galvao (2010), who considered a sample of manu-

facturing firms (SICs 2000 to 3999) over the 2000 to 2005 period with data available from

COMPUSTAT’s P/S/T, full coverage. Only firms with observations in every year are used,

in order to construct a balanced panel of firms for the five year period. Moreover, following

those authors, we eliminate firms for which cash-holdings exceeded the value of total assets

and those displaying asset or sales growth exceeding 100%. Our final sample consists of 410
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firm-years and 82 firms. Because we only consider firms that report information in each of

the five years, the sample consists mainly of relatively large firms. We apply the proposed

tests using B = 200 bootstrap repetitions.

The firm level component µ is found to be largely asymmetric (rejecting the null hypoth-

esis H
sµ
0 : sµ = 0 of symmetry with a bootstrap p-value of 0.002) but with kurtosis close

to the normal value of 3 (cannot reject the null hypothesis H
kµ
0 : kµ = 3 with a bootstrap

p-value of 0.967). The joint test for the null hypothesis H
sµ&kµ
0 : sµ = 0 and kµ = 3 is also

rejected with a bootstrap p-value of 0.008. The remainder component ν shows both lack of

symmetry (rejecting the null hypothesis Hsν
0 : sν = 0 of symmetry with a bootstrap p-value

of 0.002) and excess kurtosis (rejecting the null hypothesis Hkν
0 : kν = 3 with a bootstrap

p-value of 0.025), and a joint test for Hsν&kν
0 : sν = 0 and kν = 3 with a bootstrap p-value of

0.001.

7 Conclusion and suggestions for future research

In this paper we have developed tests for skewness and/or for excess kurtosis for the one-way

error components model. The tests are based on moment restrictions and are implemented

after pooled OLS estimation. Besides being informative about non-Gaussian behavior, our

tests can identify whether skewed errors and/or excess kurtosis arise in one or both com-

ponents of the model, separately and jointly, hence providing useful information when non-

normalities may affect the statistical properties of inferential strategies, and when detecting

the possible presence of asymmetric or heavy tailed errors is a statistical and economic

relevant question per se. The tests are implemented using the bootstrap method. The ex-

periments show that empirical sizes are close to nominal ones for sample sizes similar to

those used in empirical practice, and that the tests have very good power properties.

The tests are developed under the assumptions of the standard one-way error compo-

nents model. Although the methodology used in this paper provides a general framework to

develop these tests, deviations from the one-way error components model can be accommo-

dated. In particular, the assumptions could be relaxed at the cost of modeling additional

terms in the expectations and variance-covariances for skewness and kurtosis. For instance, if

serial correlation is allowed for in the remainder component, the skewness and kurtosis statis-

tics become more complicated, as cross-terms within each individual have to be considered.

That is, in this case, the within individual cross expectations like E[νitνij] and E[νitνijνik],
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t 6= j 6= k will not be zero. In that case, Assumption 1 can be replaced by that in Pesaran

and Tosettin (2009), and the statistics should be modified to take into account the non-zero

expectations of cross terms within each individual. In addition, note that the assumptions

imply that the conditional mean and variance of model (1) are well specified. In the context

of the general framework specified by Wooldridge (1990, p. 18) this implies that the validity

of the derived tests actually imposes more than just the hypothesis of interest by ruling

out misspecification in the conditional mean and variance (i.e., heteroskedasticity in either

component). If heteroskedasticity is allowed, the variance component of each error can be

adjusted for differences across individuals and time-periods. This could be accommodated

by the assumptions in Montes-Rojas and Sosa-Escudero (2011), that allow for heteroskedas-

ticity and heterokurtosis. Bootstrap procedures could be used to implement these tests. In

particular, the framework developed in Kapetanios (2008) and Goncalves (2011) allows for

both temporal and cross-sectional dependence.
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Appendix A

A1. Variance

We present estimators of the variance of µ and ν. First, we derive some equalities based on

which we estimate the variance of µ and ν. Note that u2
i = (µi + νi)

2 = µ2
i + ν2

i + 2µiνi.

Taking expectation, we have

E[u2
i ] = σ2

µ + T−1σ2
ν .

The square of the within residuals is given by ũ2
it = (uit − ui)

2 = ν2
it + ν2

i − 2νitνi, and after

taking expectations

E[ũ2
it] = σ2

ν + T−1σ2
ν − 2T−1σ2

ν = σ2
ν

(
1− T−1

)
.

Solving these equations for σ2
µ and σ2

ν , we obtain

σ2
ν =

1

1− T−1
E[ũ2

i ] =
1

1− T−1
E[u2

i ]−
1

1− T−1
E[u2

i ],

σ2
µ = E[u2

i ]−
1

T − 1
E[ũ2

i ] = E[u2
i ]−

1

T − 1
E[u2

i − u2
i ] =

T

T − 1
E[u2

i ]−
1

T − 1
E[u2

i ].

Next, given this derivation, we consider the following statistics that are the sample coun-

terpart of the above expressions, respectively, by replacing the theoretical with the sample

expectations and using ûit, the OLS residuals

σ̂2
ν =

1

1− T−1
E[û2

i ]−
1

1− T−1
E[û

2

i ] =
1

1− T−1
E[u2

i ]−
1

1− T−1
E[u2

i ] + op(N
−1/2),

σ̂2
µ =

T

T − 1
E[û

2

i ]−
1

T − 1
E[û2

i ] =
T

T − 1
E[u2

i ]−
1

T − 1
E[u2

i ] + op(N
−1/2).

The second equalities of the two lines above follows from Lemmas 1 and 2 (in Appendix B)

with j = 2. Therefore,

√
N(σ̂2

ν − σ2
ν) = A1

1√
N

N∑

i=1

Ai + op(1),

√
N(σ̂2

µ − σ2
µ) = A2

1√
N

N∑

i=1

Ai + op(1),
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and by delta method and Slutsky’s lemma, respectively,

√
N(σ̂4

ν − σ4
ν) = 2σ2

νA1
1√
N

N∑

i=1

Ai + op(1),

√
N(σ̂2

µσ̂
2
ν − σ2

µσ
2
ν) = (σ2

µA1 + σ2
νA2)

1√
N

N∑

i=1

Ai + op(1).

A2. Proof of Theorem 1

A2.1 Proof of skewness results in (i) and (ii)

Note that

√
N(ŜKν − sν) =

√
N

(
ν̂3
σ̂3
ν

− ν3
σ3
ν

)
=

√
N

[
ν̂3 − ν3
σ̂3
ν

− 3sνσν(σ̂
2
ν − σ2

ν)

2σ̂3
ν

]
+ op(1),

√
N(ŜKµ − sµ) =

√
N

(
µ̂3

σ̂3
µ

− µ3

σ3
µ

)
=

√
N

[
µ̂3 − µ3

σ̂3
µ

−
3sµσµ(σ̂

2
µ − σ2

µ)

2σ̂3
µ

]
+ op(1).

Then we only need to find asymptotic linear representations of
√
N(ν̂3−ν3) and

√
N(µ̂3−µ3),

since those of
√
N(σ̂2

ν − σ2
ν) and

√
N(σ̂2

µ − σ2
µ) are obtained in Appendix A1. Using the

conclusions of Lemmas 1 and 2 (in Appendix B) for j = 3 and the first equality of Lemma

3 (in Appendix B), we have

√
N(ν̂3 − ν3) =

√
N

(
1

1− 3T−1 + 2T−2
E[û3

i − 3ûiû2
i + 2û

3

i ]− ν3

)

=
1

1− 3T−1 + 2T−2

[(
1√
N

N∑

i=1

u3
i −

√
NE[u3

i ]− 3E[u2
it]

1√
N

N∑

i=1

ui

)

− 3

(
1√
N

N∑

i=1

u2
iui −

√
NE[u2

iui]−
1√
N

N∑

i=1

uiE[u
2
it + 2u2

i ]

)

+2

(
1√
N

N∑

i=1

u3
i −

√
NE[u3

i ]− 3E[u2
i ]

1√
N

N∑

i=1

ui

)]
+ op(1)

=

1√
N

∑N
i=1 u

3
i −

√
NE[u3

i ]− 3 1√
N

∑N
i=1 u

2
iui + 3

√
NE[u2

iui] + 2 1√
N

∑N
i=1 u

3
i − 2

√
NE[u3

i ]

1− 3T−1 + 2T−2
+ op(1)

=B1
1√
N

N∑

i=1

Ai + op(1).
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√
N(µ̂3 − µ3) =

√
N

(
T 2 − 3T

T 2 − 3T + 2
E[û

3

i ]−
1

T 2 − 3T + 2
E[û3

i − 3ûiû2
i ]− µ3

)

=
T 2 − 3T

T 2 − 3T + 2

(
1√
N

N∑

i=1

u3
i −

√
NE[u3

i ]− 3E[u2
i ]

1√
N

N∑

i=1

ui

)

− 1

T 2 − 3T + 2

(
1√
N

N∑

i=1

u3
i −

√
NE[u3

i ]− 3E[u2
it]

1√
N

N∑

i=1

ui

)

+ 3

(
1√
N

N∑

i=1

u2
iui −

√
NE[u2

iui]−
1√
N

N∑

i=1

uiE[u
2
it + 2u2

i ]

)
÷ (T 2 − 3T + 2) + op(1)

=
T 2 − 3T

T 2 − 3T + 2

(
1√
N

N∑

i=1

u3
i −

√
NE[u3

i ]

)
− 1

T 2 − 3T + 2

(
1√
N

N∑

i=1

u3
i −

√
NE[u3

i ]

)

+
3

T 2 − 3T + 2

(
1√
N

N∑

i=1

u2
iui −

√
NE[u2

iui]

)
− 3E[u2

i ]
1√
N

N∑

i=1

ui + op(1)

=B2
1√
N

N∑

i=1

Ai + op(1).

Therefore,

√
N(ŜKν − sν) =

(B1

σ3
ν

− 3sνA1

2σ2
ν

)
1√
N

N∑

i=1

Ai + op(1)

√
N(ŜKµ − sµ) =

(B2

σ3
µ

− 3sµA2

2σ2
µ

)
1√
N

N∑

i=1

Ai + op(1).

A2.2 Proof of kurtosis results in (iii) and (iv)

Note that

√
N(K̂Uν − kν) =

√
N

(
ν̂4
σ̂4
ν

− ν4
σ4
ν

)
=

√
N

[
ν̂4 − ν4
σ̂4
ν

− 2kνσ
2
ν(σ̂

2
ν − σ2

ν)

σ̂4
ν

]
+ op(1),

√
N(K̂Uµ − kµ) =

√
N

(
µ̂4

σ̂4
µ

− µ4

σ4
µ

)
=

√
N

[
µ̂4 − µ4

σ̂4
µ

−
2kµσ

2
µ(σ̂

2
µ − σ2

µ)

σ̂4
µ

]
+ op(1).

Then we only need to find asymptotic linear representations of
√
N(ν̂4−ν4) and

√
N(µ̂4−µ4),

since those of
√
N(σ̂2

ν − σ2
ν) and

√
N(σ̂2

µ − σ2
µ) are obtained in Appendix A1. Using the

conclusions from Lemmas 1 and 2 with j = 4 and the second and third equalities from
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Lemma 3 (in Appendix B),

√
N(ν̂4 − ν4) =

√
N

(
E[û4

i ]− 4E[û3
i ûi] + 6E[û2

i û
2

i ]− 3E[û
4

i ]

1− 4T−1 + 6T−2 − 3T−3
− (T − 1)(6T−2 − 12T−3)

1− 4T−1 + 6T−2 − 3T−3
σ̂4
ν − ν4

)

=

[(
1√
N

N∑

i=1

1

T

T∑

t=1

u4
it −

√
NE[u4

i ]− 4E[u3
it]

1√
N

N∑

i=1

ui

)

− 4

(
1√
N

N∑

i=1

u3
iui −

√
NE[u3

iui]− E[3u2
iui + u3

it]
1√
N

N∑

i=1

ui

)

+ 6

(
1√
N

N∑

i=1

u2
iu

2
i −

√
NE[u2

iu
2
i ]− 2E[u3

i + u2
iui]

1√
N

N∑

i=1

ui

)

−3

(
1√
N

N∑

i=1

u4
i −

√
NE[u4

i ]− 4E[u3
i ]

1√
N

N∑

i=1

ui

)]
÷ (1− 4T−1 + 6T−2 − 3T−3)

− (T − 1)(6T−2 − 12T−3)

1− 4T−1 + 6T−2 − 3T−3
2σ2

νA1
1√
N

N∑

i=1

Ai + op(1)

=C1
1√
N

N∑

i=1

Ai + op(1),

√
N(µ̂4 − µ4) =

√
N

(
E[û

4

i ]
T 3 − 4T 2 + 6T

T 3 − 4T 2 + 6T − 3
− E[û4

i ]− 4E[û3
i ûi] + 6E[û2

i û
2

i ]

T 3 − 4T 2 + 6T − 3

−(T − 1)(3T 3 − 12T 2 + 12T + 3)

(T 3 − 4T 2 + 6T − 3)T 3
σ̂4
ν −

6

T
σ̂2
µσ̂

2
ν − µ4

)

=
T 3 − 4T 2 + 6T

T 3 − 4T 2 + 6T − 3

(
1√
N

N∑

i=1

u4
i −

√
NE[u4

i ]− 4E[u3
i ]

1√
N

N∑

i=1

ui

)

− 1

T 3 − 4T 2 + 6T − 3

(
1√
N

N∑

i=1

u4
i −

√
NE[u4

i ]− 4E[u3
it]

1√
N

N∑

i=1

ui

)

+
4

T 3 − 4T 2 + 6T − 3

(
1√
N

N∑

i=1

u3
iui −

√
NE[u3

iui]−
1√
N

N∑

i=1

uiE[3u2
iui + u3

it]

)

− 6

T 3 − 4T 2 + 6T − 3

(
1√
N

N∑

i=1

u2
iu

2
i −

√
NE[u2

iu
2
i ]− 2

1√
N

N∑

i=1

uiE[u
3
i + u2

iui]

)

− (T − 1)(3T 3 − 12T 2 + 12T + 3)

(T 3 − 4T 2 + 6T − 3)T 3

(
2σ2

νA1
1√
N

N∑

i=1

Ai

)
− 6

T

(
(σ2

µA1 + σ2
νA2)

1√
N

N∑

i=1

Ai

)
+ op(1)

=C2
1√
N

N∑

i=1

Ai + op(1).
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Therefore,

√
N(K̂Uν − kν) =

(C1
σ4
ν

− 2kνA1

σ2
ν

)
1√
N

N∑

i=1

Ai + op(1)

√
N(K̂Uµ − kµ) =

(C2
σ4
µ

− 2kµA2

σ2
µ

)
1√
N

N∑

i=1

Ai + op(1).

A3. Proof of Theorem 2

We prove the conclusion (i) only because the conclusions of the other three are similar.

By Lindeberg-Lévy central limit theorem and Assumption 1, 1√
N

∑N
i=1 Ai converges to a

normal distribution. Then, using the continuous mapping theorem,
(

B1

σ3
ν
− 3sνA1

2σ2
ν

)
1√
N

∑N
i=1 Ai

converges to a normal distribution with mean zero and variance-covariance matrix denoted

by Ωs
ν . Applying the continuous mapping theorem again, we obtain (i).

A4. Proof of Proposition 1

We will prove only the consistency of the bootstrap estimator of Ωs
ν as the the consistency of

the other estimators are similar. We apply Theorem 3.8 of Shao and Tu (1995) as the statistic

is an average E
[(

B1

σ3
ν
− 3sνA1

2σ2
ν

)
Bi

]
, where Bi = (ui, u2

i , u
2
i , u

3
i , u

3
i , u

4
i , u

4
i , u

2
iui, u3

iui, u2
iu

2
i )

⊤. We

focus on verifying condition (3.28). It suffices to show that

max1≤i≤N

∣∣∣
(

B1

σ3
ν
− 3sνA1

2σ2
ν

)
Bi − E

[(
B1

σ3
ν
− 3sνA1

2σ2
ν

)
Bi

]∣∣∣
τN

a.s.→ 0,

which is implied by Assumption 3.

Appendix B

Auxiliary Lemmas

In this appendix we list some results that are useful for the proofs of the theorems.

Lemma 1 Under Assumptions 1 and 2, for j =2, 3, and 4, we have

1√
N

N∑

i=1

ûj
i =

1√
N

N∑

i=1

uj
i − jE[uj−1

it ]
1√
N

N∑

i=1

ui + op(1).
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Proof. The proof is complete if the following equalities hold.

1√
N

N∑

i=1

1

T

T∑

t=1

ûj
it =

1√
N

N∑

i=1

1

T

T∑

t=1

(uit − u)j + op(1),

1√
N

N∑

i=1

1

T

T∑

t=1

(uit − u)j =
1√
N

N∑

i=1

1

T

T∑

t=1

uj
it − jE[uj−1

it ]
1√
N

N∑

i=1

1

T

T∑

t=1

uit + op(1).

The proofs of the first and second equalities are modifications of the proofs of Theorem 5

and Lemma A.1., respectively, of Bai and Ng (2005) to accommodate the one-way error

components panel data model.

Lemma 2 Under Assumptions 1 and 2, for j =2, 3, and 4, we have

1√
N

N∑

i=1

û
j

i =
1√
N

N∑

i=1

uj
i − jE[uj−1

i ]
1√
N

N∑

i=1

ui + op(1).

Proof. Noting that ûit = (uit − u) − (xit − x)⊤(β̂ − β0), we have ûi = (ui − u) − (xi −
x)⊤(β̂ − β0). Also, we will use the fact that β̂ − β0 = Op(N

−1/2) and that

1√
N

N∑

i=1

(ui − u)a
(
(xi − x)⊤(β̂ − β0)

)b
= Op(N

−1/2)

where a ≥ 0 and b > 0 are integers. In fact, whenever a ≥ 0 and b ≥ 2, if E[(ui−u)a||xi−x||b]
exists, the expression equals

Op(N
1/2)Op(N

−b/2) = Op(N
(1−b)/2) = Op(N

−1/2).

When a ≥ 0 and b = 1,

1√
N

N∑

i=1

(ui − u)a(xi − x)⊤(β̂ − β0)

=
1√
N

N∑

i=1

((ui − u)a − E[(ui − u)a])(xi − x)⊤(β̂ − β0) = Op(1)Op(N
−1/2).

For j = 2,

1√
N

N∑

i=1

û
2

i =
1√
N

N∑

i=1

(
(ui − u)− (xi − x)⊤(β̂ − β0)

)2

=
1√
N

N∑

i=1

(ui − u)2 +
1√
N

N∑

i=1

(
(xi − x)⊤(β̂ − β0)

)2
− 2

1√
N

N∑

i=1

(ui − u)
(
(xi − x)⊤(β̂ − β0)

)

=
1√
N

N∑

i=1

(
u2
i + u2 − 2uiu

)
+Op(N

1/2)Op(N
−1)−Op(1)Op(N

−1/2) =
1√
N

N∑

i=1

u2
i + op(1).
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For j = 3,

1√
N

N∑

i=1

û
3

i =
1√
N

N∑

i=1

(
(ui − u)− (xi − x)⊤(β̂ − β0)

)3

=
1√
N

N∑

i=1

(ui − u)3 − 1√
N

N∑

i=1

(
(xi − x)⊤(β̂ − β0)

)3
− 3

1√
N

N∑

i=1

(ui − u)2
(
(xi − x)⊤(β̂ − β0)

)

+ 3
1√
N

N∑

i=1

(ui − u)
(
(xi − x)⊤(β̂ − β0)

)2

=
1√
N

N∑

i=1

(
u3
i − u3 − 3u2

iu+ 3uiu
2
)
−Op(N

1/2)Op(N
−3/2)−Op(1)Op(N

−1/2) +Op(1)Op(N
−1)

=
1√
N

N∑

i=1

u3
i − 3(σ2

µ + T−1σ2
ν)

1√
N

N∑

i=1

ui + op(1).

For j = 4,

1√
N

N∑

i=1

û
4

i =
1√
N

N∑

i=1

(
(ui − u)− (xi − x)⊤(β̂ − β0)

)4

=
1√
N

N∑

i=1

(ui − u)4 +
1√
N

N∑

i=1

(
(xi − x)⊤(β̂ − β0)

)4
− 4

1√
N

N∑

i=1

(ui − u)3
(
(xi − x)⊤(β̂ − β0)

)

− 4
1√
N

N∑

i=1

(ui − u)
(
(xi − x)⊤(β̂ − β0)

)3
+ 6

1√
N

N∑

i=1

(ui − u)2
(
(xi − x)⊤(β̂ − β0)

)2

=
1√
N

N∑

i=1

(
u4
i + u4 − 4u3

iu− 4uiu
3 + 6u2

iu
2
)
+Op(N

−1/2)

=
1√
N

N∑

i=1

u4
i − 4(µ3 + T−2ν3)

1√
N

N∑

i=1

ui + op(1).

Lemma 3 Under Assumptions 1 and 2, the following equalities hold.

(i)
1√
N

N∑

i=1

û2
i ûi =

1√
N

N∑

i=1

u2
iui −

√
NuE[u2

it + 2u2
i ] + op(1)

(ii)
1√
N

N∑

i=1

û3
i ûi =

1√
N

N∑

i=1

u3
iui −

√
NuE[3u2

iui + u3
it] + op(1)

(iii)
1√
N

N∑

i=1

û2
i û

2

i =
1√
N

N∑

i=1

u2
iu

2
i − 2

√
NuE[u3

i + u2
iui] + op(1).
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Proof. To derive the first equality, we conduct the following calculations.

1√
N

N∑

i=1

û2
i ûi =

1√
N

N∑

i=1

[(ui − u)− (xi − x)⊤(β̂ − β0)]2 × [(ui − u)− (xi − x)⊤(β̂ − β0)]

=
1√
N

N∑

i=1

[(ui − u)2 − 2(ui − u)(xi − x)⊤(β̂ − β0) + [(xi − x)⊤(β̂ − β0)]2][(ui − u)− (xi − x)⊤(β̂ − β0)]

=
1√
N

N∑

i=1

[(u2
i − 2ui u+ u2)− 2(ui − u)(xi − x)⊤(β̂ − β0) +Op(N

−1)][(ui − u)− (xi − x)⊤(β̂ − β0)]

=
1√
N

N∑

i=1

(u2
i − 2ui u+ u2)(ui − u)− 2(ui − u)(ui − u)(xi − x)⊤(β̂ − β0)

− (u2
i − 2ui u+ u2)(xi − x)⊤(β̂ − β0) + op(1)

=
1√
N

N∑

i=1

u2
iui −

√
NuE[u2

it + 2u2
i ]− 2

√
N(β̂ − β0)

⊤(E[uiuixi]− E[u2
ix]) + op(1)

=
1√
N

N∑

i=1

u2
iui −

√
NuE[u2

it + 2u2
i ] + op(1).

Now we establish the second equality.

1√
N

N∑

i=1

û3
i ûi =

1√
N

N∑

i=1

[(ui − u)− (xi − x)⊤(β̂ − β0)]3 × [(ui − u)− (xi − x)⊤(β̂ − β0)]

=
1√
N

N∑

i=1

[(ui − u)3 − 3(ui − u)2(xi − x)⊤(β̂ − β0) + 3(ui − u)[(xi − x)⊤(β̂ − β0)]2

− [(xi − x)⊤(β̂ − β0)]3][(ui − u)− (xi − x)⊤(β̂ − β0)]

=
1√
N

N∑

i=1

[(u3
i − 3u2

i u+ 3ui u
2 − u3)− 3(u2

i − 2uiu+ u2)(xi − x)⊤(β̂ − β0) +Op(N
−1)]

× [(ui − u)− (xi − x)⊤(β̂ − β0)]

=
1√
N

N∑

i=1

(u3
i − 3u2

i u+ 3ui u
2 − u3)(ui − u)− 3(ui − u)(u2

i − 2uiu+ u2)(xi − x)⊤(β̂ − β0)

− (u3
i − 3u2

i u+ 3ui u
2 − u3)(xi − x)⊤(β̂ − β0) + op(1)

=
1√
N

N∑

i=1

u3
iui −

√
NuE[3u2

iui + u3
it]− 2

√
N(β̂ − β0)

⊤(E[uiu2
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=
1√
N

N∑

i=1

u3
iui −

√
NuE[3u2

iui + u3
it] + op(1).
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Finally, we show the third equality.

1√
N

N∑

i=1

û2
i û

2

i =
1√
N

N∑

i=1

[(ui − u)− (xi − x)⊤(β̂ − β0)]2 × [(ui − u)− (xi − x)⊤(β̂ − β0)]
2

=
1√
N

N∑

i=1

[(ui − u)2 − 2(ui − u)(xi − x)⊤(β̂ − β0) + [(xi − x)⊤(β̂ − β0)]2]

× [(ui − u)2 − 2(ui − u)(xi − x)⊤(β̂ − β0) + [(xi − x)⊤(β̂ − β0)]
2]

=
1√
N

N∑

i=1

[(u2
i − 2ui u+ u2)− 2(ui − u)(xi − x)⊤(β̂ − β0) +Op(N

−1)]
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i − 2uiu+ u2)− 2(ui − u)(xi − x)⊤(β̂ − β0) +Op(T

−1)]

=
1√
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N∑
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(u2
i − 2ui u+ u2)(u2
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(u2
i − 2uiu+ u2)2(ui − u)(xi − x)⊤(β̂ − β0) + op(1)

=
1√
N

N∑

i=1

u2
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2
i − 2

√
NuE[u3
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√
N(β̂ − β0)
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√
NuE[u3

i + u2
iui] + op(1).
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Table 1: ν ∼ N(0, 1), µ ∼ N(0, 1)

Remainder component ν Individual component µ
N T Skewness Kurtosis Sk&Ku Skewness Kurtosis Sk&Ku
100 3 0.053 0.082 0.074 0.053 0.038 0.044
100 5 0.052 0.102 0.090 0.056 0.068 0.057
100 10 0.048 0.080 0.082 0.052 0.071 0.051
200 3 0.057 0.078 0.069 0.064 0.054 0.065
200 5 0.051 0.082 0.083 0.059 0.079 0.068
200 10 0.055 0.065 0.066 0.063 0.100 0.081
500 3 0.045 0.071 0.064 0.041 0.053 0.051
500 5 0.047 0.058 0.052 0.055 0.073 0.070
500 10 0.054 0.060 0.056 0.059 0.069 0.069
1000 3 0.055 0.058 0.059 0.052 0.052 0.054
1000 5 0.044 0.052 0.048 0.055 0.059 0.070
1000 10 0.062 0.053 0.065 0.042 0.075 0.065

Notes: Monte Carlo experiments based on R = 1, 000 replications. Bootstrap implementa-
tion uses B = 200 bootstrap replications.
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Table 2: ν ∼ t9, µ ∼ N(0, 1) and ν ∼ N(0, 1), µ ∼ t9

ν ∼ t9, µ ∼ N(0, 1)
Remainder component ν Individual component µ

N T Skewness Kurtosis Sk&Ku Skewness Kurtosis Sk&Ku
100 3 0.032 0.051 0.049 0.045 0.060 0.046
100 5 0.051 0.211 0.137 0.050 0.067 0.054
100 10 0.043 0.665 0.497 0.046 0.076 0.064
200 3 0.048 0.130 0.095 0.043 0.066 0.050
200 5 0.048 0.502 0.337 0.048 0.083 0.073
200 10 0.048 0.903 0.806 0.049 0.067 0.059
500 3 0.043 0.511 0.340 0.056 0.049 0.058
500 5 0.047 0.902 0.805 0.052 0.072 0.067
500 10 0.044 0.984 0.955 0.049 0.074 0.074
1000 3 0.045 0.850 0.721 0.046 0.054 0.057
1000 5 0.058 0.978 0.956 0.060 0.071 0.070
1000 10 0.051 0.992 0.986 0.053 0.078 0.076

ν ∼ N(0, 1), µ ∼ t9
Remainder component ν Individual component µ

N T Skewness Kurtosis Sk&Ku Skewness Kurtosis Sk&Ku
100 3 0.068 0.081 0.064 0.046 0.041 0.054
100 5 0.047 0.088 0.080 0.041 0.045 0.038
100 10 0.045 0.068 0.061 0.062 0.050 0.062
200 3 0.049 0.077 0.060 0.060 0.089 0.085
200 5 0.050 0.057 0.066 0.034 0.076 0.052
200 10 0.052 0.054 0.062 0.034 0.071 0.050
500 3 0.038 0.083 0.068 0.052 0.237 0.165
500 5 0.043 0.074 0.066 0.053 0.258 0.176
500 10 0.064 0.075 0.058 0.038 0.304 0.181
1000 3 0.051 0.076 0.066 0.041 0.584 0.404
1000 5 0.052 0.060 0.064 0.046 0.579 0.404
1000 10 0.042 0.074 0.058 0.052 0.666 0.490

Notes: Monte Carlo experiments based on R = 1, 000 replications. Bootstrap implementa-
tion uses B = 200 bootstrap replications.
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Table 3: ν ∼ skew − normal(shape = 1), µ ∼ N(0, 1) and ν ∼ N(0, 1), µ ∼ skew −
normal(shape = 1)

ν ∼ skew − normal(shape = 1), µ ∼ N(0, 1)
Remainder component ν Individual component µ

N T Skewness Kurtosis Sk&Ku Skewness Kurtosis Sk&Ku
100 3 0.058 0.087 0.088 0.049 0.057 0.045
100 5 0.138 0.061 0.112 0.040 0.071 0.062
100 10 0.324 0.055 0.237 0.059 0.056 0.053
200 3 0.081 0.080 0.095 0.041 0.053 0.043
200 5 0.214 0.046 0.161 0.047 0.082 0.060
200 10 0.534 0.046 0.442 0.053 0.093 0.074
500 3 0.160 0.069 0.133 0.059 0.050 0.049
500 5 0.490 0.054 0.393 0.050 0.069 0.060
500 10 0.915 0.054 0.839 0.048 0.085 0.074
1000 3 0.294 0.049 0.218 0.049 0.059 0.053
1000 5 0.779 0.056 0.690 0.055 0.060 0.058
1000 10 0.997 0.128 0.993 0.052 0.076 0.065

ν ∼ N(0, 1), µ ∼ skew − normal(shape = 1)
Remainder component ν Individual component µ

N T Skewness Kurtosis Sk&Ku Skewness Kurtosis Sk&Ku
100 3 0.052 0.091 0.083 0.063 0.046 0.048
100 5 0.054 0.072 0.065 0.078 0.063 0.063
100 10 0.040 0.078 0.065 0.069 0.059 0.061
200 3 0.050 0.077 0.076 0.084 0.054 0.063
200 5 0.052 0.083 0.073 0.090 0.064 0.089
200 10 0.057 0.053 0.060 0.077 0.075 0.077
500 3 0.046 0.070 0.063 0.106 0.046 0.086
500 5 0.062 0.054 0.052 0.144 0.067 0.131
500 10 0.056 0.066 0.067 0.168 0.055 0.135
1000 3 0.049 0.072 0.064 0.171 0.055 0.146
1000 5 0.053 0.068 0.075 0.260 0.065 0.209
1000 10 0.048 0.047 0.051 0.328 0.042 0.260

Notes: Monte Carlo experiments based on R = 1, 000 replications. Bootstrap implementa-
tion uses B = 200 bootstrap replications.
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Table 4: ν ∼ skew − normal(shape = 10), µ ∼ N(0, 1) and ν ∼ N(0, 1), µ ∼ skew −
normal(shape = 10)

ν ∼ skew − normal(shape = 10), µ ∼ N(0, 1)
Remainder component ν Individual component µ

N T Skewness Kurtosis Sk&Ku Skewness Kurtosis Sk&Ku
100 3 0.780 0.069 0.673 0.051 0.063 0.050
100 5 0.999 0.193 0.999 0.055 0.073 0.062
100 10 1.000 0.506 1.000 0.048 0.060 0.046
200 3 0.967 0.178 0.960 0.058 0.060 0.058
200 5 1.000 0.422 1.000 0.043 0.066 0.067
200 10 1.000 0.885 1.000 0.042 0.090 0.077
500 3 1.000 0.527 1.000 0.059 0.059 0.066
500 5 1.000 0.908 1.000 0.058 0.079 0.078
500 10 1.000 0.997 1.000 0.049 0.078 0.069
1000 3 1.000 0.901 1.000 0.058 0.057 0.059
1000 5 1.000 0.999 1.000 0.064 0.066 0.068
1000 10 1.000 1.000 1.000 0.050 0.062 0.069

ν ∼ N(0, 1), µ ∼ skew − normal(shape = 10)
Remainder component ν Individual component µ

N T Skewness Kurtosis Sk&Ku Skewness Kurtosis Sk&Ku
100 3 0.052 0.092 0.080 0.596 0.036 0.464
100 5 0.051 0.073 0.065 0.761 0.044 0.616
100 10 0.041 0.079 0.063 0.855 0.049 0.733
200 3 0.054 0.072 0.073 0.917 0.065 0.836
200 5 0.051 0.082 0.070 0.971 0.057 0.914
200 10 0.058 0.056 0.060 0.993 0.078 0.968
500 3 0.046 0.068 0.062 1.000 0.154 0.999
500 5 0.061 0.053 0.051 0.999 0.182 0.998
500 10 0.058 0.067 0.066 1.000 0.217 1.000
1000 3 0.050 0.070 0.066 1.000 0.433 1.000
1000 5 0.054 0.068 0.074 1.000 0.458 1.000
1000 10 0.049 0.048 0.051 1.000 0.506 1.000

Notes: Monte Carlo experiments based on R = 1, 000 replications. Bootstrap implementa-
tion uses B = 200 bootstrap replications.
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Table 5: ν ∼ skew − t9(shape = 1), µ ∼ N(0, 1) and ν ∼ N(0, 1), µ ∼ skew − t9(shape = 1)

ν ∼ skew − t9(shape = 1), µ ∼ N(0, 1)
Remainder component ν Individual component µ

N T Skewness Kurtosis Sk&Ku Skewness Kurtosis Sk&Ku
100 3 0.287 0.339 0.475 0.060 0.081 0.069
100 5 0.509 0.478 0.645 0.049 0.064 0.058
100 10 0.713 0.623 0.779 0.049 0.085 0.066
200 3 0.496 0.516 0.660 0.048 0.072 0.066
200 5 0.716 0.630 0.779 0.047 0.088 0.079
200 10 0.805 0.664 0.836 0.059 0.081 0.074
500 3 0.744 0.646 0.803 0.054 0.070 0.070
500 5 0.832 0.667 0.847 0.064 0.085 0.083
500 10 0.903 0.752 0.904 0.048 0.081 0.061
1000 3 0.828 0.686 0.844 0.061 0.039 0.058
1000 5 0.909 0.763 0.913 0.046 0.059 0.062
1000 10 0.926 0.785 0.924 0.047 0.073 0.063

ν ∼ N(0, 1), µ ∼ skew − t9(shape = 1)
Remainder component ν Individual component µ

N T Skewness Kurtosis Sk&Ku Skewness Kurtosis Sk&Ku
100 3 0.038 0.075 0.055 0.190 0.171 0.271
100 5 0.047 0.085 0.074 0.163 0.169 0.261
100 10 0.048 0.062 0.058 0.206 0.221 0.316
200 3 0.043 0.071 0.050 0.295 0.294 0.441
200 5 0.061 0.077 0.075 0.292 0.318 0.448
200 10 0.056 0.059 0.056 0.338 0.346 0.487
500 3 0.041 0.079 0.064 0.511 0.491 0.650
500 5 0.053 0.045 0.046 0.520 0.490 0.648
500 10 0.042 0.055 0.048 0.546 0.534 0.677
1000 3 0.052 0.067 0.072 0.695 0.591 0.785
1000 5 0.045 0.052 0.054 0.691 0.573 0.763
1000 10 0.062 0.065 0.066 0.686 0.605 0.774

Notes: Monte Carlo experiments based on R = 1, 000 replications. Bootstrap implementa-
tion uses B = 200 bootstrap replications.
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Table 6: ν ∼ skew−t9(shape = 10), µ ∼ N(0, 1) and ν ∼ N(0, 1), µ ∼ skew−t9(shape = 10)

ν ∼ skew − t9(shape = 10), µ ∼ N(0, 1)
Remainder component ν Individual component µ

N T Skewness Kurtosis Sk&Ku Skewness Kurtosis Sk&Ku
100 3 0.639 0.392 0.685 0.062 0.094 0.089
100 5 0.778 0.458 0.781 0.038 0.074 0.052
100 10 0.831 0.536 0.826 0.054 0.093 0.079
200 3 0.761 0.481 0.761 0.058 0.083 0.088
200 5 0.861 0.560 0.854 0.044 0.104 0.092
200 10 0.896 0.629 0.878 0.048 0.093 0.082
500 3 0.870 0.555 0.857 0.062 0.065 0.079
500 5 0.907 0.666 0.894 0.049 0.094 0.088
500 10 0.935 0.733 0.924 0.042 0.078 0.054
1000 3 0.900 0.668 0.888 0.063 0.058 0.072
1000 5 0.953 0.737 0.940 0.052 0.064 0.063
1000 10 0.948 0.754 0.941 0.046 0.077 0.069

ν ∼ N(0, 1), µ ∼ skew − t9(shape = 10)
Remainder component ν Individual component µ

N T Skewness Kurtosis Sk&Ku Skewness Kurtosis Sk&Ku
100 3 0.047 0.075 0.064 0.629 0.041 0.471
100 5 0.063 0.084 0.078 0.750 0.052 0.630
100 10 0.069 0.076 0.077 0.835 0.050 0.734
200 3 0.050 0.097 0.091 0.922 0.072 0.838
200 5 0.051 0.065 0.069 0.973 0.062 0.939
200 10 0.047 0.082 0.066 0.987 0.056 0.971
500 3 0.049 0.079 0.068 0.999 0.183 0.996
500 5 0.069 0.055 0.058 1.000 0.177 0.999
500 10 0.062 0.062 0.070 1.000 0.200 1.000
1000 3 0.048 0.068 0.059 1.000 0.448 1.000
1000 5 0.035 0.053 0.049 1.000 0.439 1.000
1000 10 0.049 0.050 0.056 1.000 0.539 1.000

Notes: Monte Carlo experiments based on R = 1, 000 replications. Bootstrap implementa-
tion uses B = 200 bootstrap replications.
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