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1 Introduction

Typical panels in econometrics are largely asymmetric, in the sense that

their cross-sectional dimension is much larger than its temporal one. Conse-

quently, most of the concerns that affect cross-sectional models harm panel

data models similarly. This is surely the case of heteroskedasticity, a subject

that has played a substantial role in the history of econometric research and

practice, and still occupies a relevant place in its pedagogical side: all basic

texts include a chapter on the subject. As it is well known, heteroskedasticity

invalidates standard inferential procedures, and usually calls for alternative

strategies that either accommodate heterogeneous conditional variances, or

are insensitive to them. The one-way error components model is the most

basic extension of simple linear models to handle panel data, and it is widely

used in the applied literature. In this model, heteroskedasticity may now be

present in either the ‘individual’ error component, in the observation-specific

‘remainder’ error component, or in both simultaneously.

Consider the case of testing for heteroskedasticity. In the cross-sectional

domain, the landmark paper by Breusch and Pagan (1979) derives a widely

used, asymptotically valid test in the Lagrange multiplier (LM) maximum-

likelihood (ML) framework under normality. Further work by Koenker

(1981) proposed a simple ‘studentization’ that avoids the restrictive Gaus-

sian assumption. This is an important result since non-normalities severely
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affect the performance of the standard LM based test, as clearly documented

by Evans (1992) in a comprehensive Monte Carlo study. Wooldridge (1990,

1991) and Dastoor (1997) consider a more general framework allowing for

heterokurtosis.

The literature on panel data has only recently produced results ana-

log to those available for the cross-sectional case.1 For the one-way error

component, Holly and Gardiol (2000) study the case where heteroskedastic-

ity is only present in the individual-specific component, and derive a test

statistic that is a direct analog of the classic Breusch-Pagan test in an LM

framework under normality.2 Baltagi, Bresson and Pirotte (2006) allow for

heteroskedasticity in both components and derive a test for the joint null

of homoskedasticity, again, in the Gaussian LM framework. They also de-

rive ‘marginal’ tests for homoskedasticity in either component, that is, tests

that assume that heteroskedasticity is absent in the component not being

checked, of which, naturally, the test by Holly and Gardiol (2000) is a par-

ticular case. Both articles propose LM-type tests and, consequently, are

based on estimating a null homoskedastic model, which makes them compu-

tationally attractive.3 Closer to our work is Lejeune (2006), who proposes

a pseudo maximum likelihood framework for estimation and inference of a

1An early contribution on this topic is the seminal paper by Mazodier and Trognon
(1978).

2Recently, Baltagi, Jung and Song (2010) extend this test to incorporate serial corre-
lation as well.

3Other related contributions include Roy (2002) and Phillips (2003).
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full heteroskedastic model.

This paper derives new tests for homoskedasticity in the error compo-

nents model that possess two robustness properties. Though the term robust

has a long tradition in statistics (Huber, 1981), in this paper it is used to

mean being resistant to 1) misspecification of the conditional variance of the

remainder term, and 2) departures away from the strict Gaussian framework

used in the ML-LM context.

The first robustness property is related to resistance to misspecification

of the a priori admissible hypotheses, that is, to ‘type-III errors’ in the

terminology of Kimball (1957) (see Welsh, 1996, pp. 119-120, for a discussion

of these concepts). The negative effects of this type of misspecification on

the performance of LM tests have been studied by Davidson and MacKinnon

(1987), Saikonnen (1989) and Bera and Yoon (1993), and are found to occur

when the score of the parameter of interest is correlated with that of the

nuisance parameter. This type of misspecification affects the Holly and

Gardiol (2000) test in the case where the temporal dimension of the panel

is fixed, which assumes that heteroskedasticity is absent in the remainder

term, and therefore, rejects its null spuriously not due to heteroskedasticity

being present in the individual component being tested, but in the other

one. This problem can be observed directly in the corresponding non-zero

element of the Fisher information matrix presented in Baltagi et al. (2006).

As discussed in Section 4, Lejeune’s (2006) tests are similarly affected. In
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such cases, it is difficult to identify the presence of heteroskedasticity in the

individual component since it is ‘masked’ by the other source. We propose

a modified test for heteroskedasticity in the individual component that is

immune to the presence of heteroskedasticity in the remainder term, and

hence can identify the source of heteroskedasticity.

The second robustness property is related to the idea of robustness of

validity of Box (1953), that is, tests that achieve an intended asymptotic

level for a rather large family of distributions (see Welsh, 1996, ch. 5, for

a discussion). In this paper, through an extensive Monte Carlo experiment,

non-normalities are shown to severely affect the performance of the tests

by Holly and Gardiol (2000) and Baltagi et al. (2006), consistent with

the results found by Evans (1992) for the cross-sectional case. We derive

new tests using a conditional moments framework, and thus, they are by

construction distribution-free, subject to mild regularity assumptions. In

this context, the LM-type tests proposed by Lejeune (2006) are also resistant

to non-normalities. We also consider the case of possible heterokurtosis, as

convenient and simple extension of our framework, along the line of the work

by Wooldridge (1990, 1991) and Dastoor (1997).

An additional advantage of all our proposed statistics is that of simplic-

ity, since they are based on simple transformations of pooled OLS residuals

of a fully homoskedastic model, unlike the case of the tests by Holly and

Gardiol (2000) and Baltagi et al. (2006) that require ML estimation. Fur-

5



thermore, all tests proposed in this paper can be computed based on the R2

coefficients from simple artificial regressions.

The paper is organized as follows. Section 2 presents the heteroskedastic

error components model and the set of moment conditions used to derive test

statistics in Section 3. Section 4 presents the results of a detailed Monte

Carlo experiment that compares all our statistics and those obtained by

Holly and Gardiol (2000), Baltagi et al. (2006) and Lejeune (2006). Section

5 considers an extension of the proposed statistics to handle heterokurtosis.

Section 6 concludes and presents suggestions for practitioners and future

research.

2 Moment conditions for the one-way heteroskedas-

tic error components model

Baltagi et al. (2006) use a parametric error components model under nor-

mality, and a ML estimator. In order to highlight differences and similarities,

our search for distribution-free tests for heteroskedasticity will be based on

a set of appropriate moment conditions. Consider the following regression

model with general heteroskedasticity in a one-way error components model:

yit = x′
itβ + uit, uit = µi + νit, i = 1, ...N, t = 1, ..., T, (1)

where yit, uit, µi and νit are scalars, x′
it is a kβ-vector of regressors, and β

is a kβ-vector of parameters. As usual, the subscript i refers to individual,

and t to temporal observations. We follow the conditional moments frame-
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work introduced by Newey (1985), Tauchen (1985) and White (1987), and

consider a set of conditioning variables wit, containing the not necessarily

disjoint elements xit, zµi and zνit. Here zµi and zνit are vectors of regressors

of dimensions kθµ
and kθν

respectively. For notational convenience we also

define wi = {wi1, ..., wit, ..., wiT } and xi = {xi1, ..., xit, ..., xiT }. Throughout

the paper we assume that the conditional mean of model (1) is well specified,

that is, E[uit|wi] = E[uit|xi] = 0. In the context of the general framework

specified by Wooldridge (1990, p. 18) this implies that the validity of the

derived tests actually imposes more than just the hypothesis of interest, by

ruling out misspecification in the conditional mean.4

Further, we assume that the conditional processes µi|wi and νit|wi are

conditionally uncorrelated, independent across i, with νit|wi also uncorre-

lated across t, and with zero conditional mean, conditional variances given

by

σ2
µi ≡ V [µi|wi] = σ2

µhµ(z′µiθµ) > 0 , i = 1, ..., N , (2)

σ2
νit ≡ V [νit|wi] = V [νit|wit] = σ2

νhν(z
′
νitθν) > 0 , i = 1, ..., N, t = 1, ..., T ,

(3)

and finite fourth moments. hµ(.) and hν(.) are twice continuously differ-

entiable functions satisfying hµ(.) > 0, hν(.) > 0, hµ(0) = 1, hν(0) = 1,

h
(1)
µ (0) 6= 0 and h

(1)
ν (0) 6= 0, where h(j) denotes their j-th derivatives.

4Before testing for heteroskedasticity, it would be necessary first to check that the
conditional mean is correctly specified. Lejeune (2006) provides robust tests for that
purpose.
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In this set-up, θµ and θν will be the parameters of interest. A test for

heteroskedasticity in the individual-specific component is based on the null

hypothesis H
σ2

µ

0 : θµ = 0; and a test for heteroskedasticity in the remainder

error term is based on H
σ2

ν

0 : θν = 0. Testing for the validity of the full

homoskedastic model implies a joint test with null hypothesis H
σ2

µ,σ2
ν

0 : θν =

θµ = 0. Because, in general, the nature of the heteroskedasticity is unknown,

zµ and zν may be similar, when not identical, hence we cannot rely on them

to distinguish among different types of heteroskedasticity.

Let ui ≡ T−1
∑T

t=1 uit be the between residuals and ũit ≡ uit − ūi the

within residuals. Different moment conditions on these errors provide alter-

native ways of testing for both sources of heteroskedasticity.

The squared between residual provides moment conditions for testing

H
σ2

µ

0 :

E[ū2
i |wi] = σ2

µhµ(z′µiθµ) + T−2σ2
ν

T
∑

t=1

hν(z
′
νitθν). (4)

If H
σ2

ν

0 is true, that is, if there is no heteroskedasticity in the remainder

component, it simplifies to

E[u2
i |wi] = σ2

µhµ(z′µiθµ) + T−1σ2
ν . (5)

Moreover, if H
σ2

ν

0 does not hold, but N → ∞ and T → ∞, the presence of

heteroskedasticity in the remainder component has no effect on a test for

homoskedasticity in the individual component based on (5). In this case a

test for H
σ2

µ

0 is said to be robust to the validity of H
σ2

ν

0 . Second, if N → ∞
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and T is fixed, but H
σ2

ν

0 is true, the moment condition in (5) holds. A test

for these cases can be based on N times the centered R2 of an auxiliary

regression of ū2 on zµ and a constant, as shown in the next section.

However, if N → ∞, T is fixed and H
σ2

ν

0 does not hold, tests based on (4)

may led to spurious rejections because of the presence of heteroskedasticity

in the remainder component. For this case, define

˜̄u2
i = ū2

i −T−2
T
∑

t=1

ũ2
it −T−3

T
∑

t=1

ũ2
it −T−4

T
∑

t=1

ũ2
it ..... = ū2

i −
T−2

1 − T−1

T
∑

t=1

ũ2
it,

and note that

E
[

˜̄u2
i |wi

]

= E

[

ū2
i −

T−2

1 − T−1

T
∑

t=1

ũ2
it

∣

∣

∣ wi

]

= σ2
µhµ(z′µiθν). (6)

Unlike (4), this moment condition does not involve parameters related to

heteroskedasticity in the remainder component, and, hence, it will be used

in Section 3.2 to construct tests for heteroskedasticity in the individual com-

ponent in short panels that are robust to the presence of heteroskedasticity

in the remainder component.

Consider now the moment condition based on the squared within resid-

ual:

E[ũ2
it|wi] = σ2

ν



(1 − 2T−1 + T−2)hν(z
′
νitθν) + T−2

T
∑

j 6=t

hν(z
′
νijθν)



 . (7)

This condition can be used to construct tests for H
σ2

ν

0 . Note that σ2
µ and

θµ do not appear anywhere in (7), which means that a test based on this

9



moment condition will be robust to the presence of heteroskedasticity in the

individual error component, i.e. when θµ 6= 0. A test for heteroskedasticity

in the remainder component will be based on NT × R2, where R2 is the

centered coefficient of determination of an auxiliary regression of ũ2 on zν

and a constant (see Section 3.3). Note, there may be differences between

short and long panels because E[ũ2
it|wi] = σ2

ν

(

hν(z
′
νitθν) + O(T−1)

)

. This

is expored in Section 3.4.

3 Robust tests for heteroskedasticity

Our tests will be based on the moment conditions considered in the previ-

ous section, following Koenker’s (1981) studentization procedure. We use

the asymptotic framework of Dastoor (1997) adapted to the one-way error

components model structure described above.

Assumption 1 For each i = 1, ..., N and t = 1, ..., T , E[wj,itw
′
j,it] is a

finite positive definite matrix, where wj,· is a column vector containing the

distinct elements of w and 1. Moreover, E[|wj,it|2+ǫ], E[|wj,it µ2
i |2+ǫ] and

E[|wj,it ν2
it|2+ǫ] are uniformly bounded for some ǫ > 0.

Dastoor’s framework includes Wooldridge’s (1990, 1991) set-up for het-

erokurtosis, that is, the case where the error term is allowed to have different

conditional fourth moments. In our case, this would involve allowing that

both E[(µ2
i − σ2

µ hµ(z′µiθµ))2|wi] and E[(ν2
it − σ2

ν hν(z
′
νitθν))

2|wi] are not
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constants. In this section we derive tests assuming homokurtosis, since it

provides an intuitive framework to motivate the statistics. The heterokurtic

case and a related Monte Carlo exploration are treated as an extension, in

Section 5.

Assumption 2 For each i = 1, ..., N , and t = 1, ..., T , E[(µ2
i−σ2

µ hµ(z′µiθµ))2|wi] =

Gµ < ∞ and E[(ν2
it − σ2

ν hν(z
′
νitθν))

2|wi] = Gν < ∞.

The test statistics will be based on transformations of the OLS residuals

ûit ≡ yit − x′
itβ̂, where β̂ is the OLS estimator of regression model (1).

3.1 Test for H
σ2

µ

0 . Cases N, T → ∞ and N → ∞, T finite and

θν = 0

For these two cases, a test for H
σ2

µ

0 will be based on ¯̂ηi = ¯̂u2
i , where ûi ≡

T−1
∑T

t=1 ûit. Define ¯̂η, a N -vector containing the sample squared between

residuals, Zµ, a N × kθµ
matrix with the sample matrix of covariates for

testing this hypothesis, and MN ≡ IN − J̄N , where J̄N = ιN ι′N/N and ιN is

a (N × 1) vector of ones. Consider a sequence of alternatives à la Pitman

such that θµ = δµ/
√

N and 0 ≤ ‖δµ‖ < ∞, where ||.|| is the Euclidean

norm. The following Theorem derives a valid test statistic for H
σ2

µ

0 for the

two cases being considered.

Theorem 1 Let φµ = V ar
[

ū2
i |wi

]

, Dµ = limN→∞ E
[

1
N
ZµM ′

NZµ

]

and

λµ =
σ4

µh
(1)
µ (0)2

φµ
δ′µDµδµ. Then, under Assumptions 1 and 2, as N, T → ∞ or

11



N → ∞, T fixed and H
σ2

ν

0 , and under H
σ2

µ

A : θµ = δµ/
√

N ,

mµ ≡ N × (¯̂η′MN
¯̂η)−1 ¯̂η′MNZµ(Z′

µMNZµ)−1
Z
′
µMN

¯̂η
d→ χ2

kθµ
(λµ). (8)

Proof: Note that the sequence of random variables {ū2
i } is independent.

Moreover, by taking a Taylor series explansion of the function hµ(.) and As-

sumption 1, 1√
N
Z
′
µMN η̄ = σ2

µh
(1)
µ (0)δ′µDµ+op(1) and lim

N→∞
V ar

[

1√
N
Z
′
µMN η̄

]

=

φµDµ, where η̄ = {ū2
1, ..., ū

2
N}. Also note that φµ = 1

N
η̄′MN η̄ + op(1). Now

we apply Theorem 1 in Dastoor (1997) for our sequence of squared OLS be-

tween residuals on i = 1, ..., N , which under Assumption 2 (homokurtosis)

gives the desired result. Q.E.D.

Note that if µ is Gaussian, φµ = 2×(σ2
µ+T−1σ2

ν)
2, and then the Koenker-

type test reduces to the Holly and Gardiol (2000) marginal test, which is

analog to the Breusch and Pagan (1979) test where the between OLS resid-

uals are used instead of the untransformed OLS residuals.

Consider now the auxiliary regression model (see Davidson and MacK-

innon, 1990, on the use of artificial regressions)

¯̂u2
i = α + z′µiγ + residual. (9)

Note that mµ is N×R2
µ where R2

µ is the centered coefficient of determination

of this regression model, i.e. an auxiliary regression of ¯̂η on zµ and a constant

(see Koenker, 1981, p. 111).
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3.2 Test for H
σ2

µ

0 . Case N → ∞, T finite and θν 6= 0

A test for the individual component in short panels with potential het-

eroskedasticity in the remainder component requires the use of condition

(6). A test for H
σ2

µ

0 will be based on ˜̂̄ηi = ˜̂̄u2
i , where ˜̂̄u2

i = ¯̂u2
i − T−2

1−T−1

∑T
t=1

˜̂u2
it

and ˜̂uit ≡ ûit − ¯̂ui. Define ˜̂̄η, a N -vector containing the transformed sample

residuals.

Theorem 2 Let φ∗
µ = limN→∞ V ar

[

˜̄u2
i |wi

]

and λ∗
µ =

σ4
µh

(1)
µ (0)2

φ∗
µ

δ′µDµδµ.

Then, under Assumptions 1 and 2, as N → ∞ and under H
σ2

µ

A : θµ =

δµ/
√

N ,

m∗
µ ≡ N × (˜̂̄η′MN

˜̂̄η)−1 ˜̂̄η′MNZµ(Z′
µMNZµ)−1

Z
′
µMN

˜̂̄η
d→ χ2

kθµ
(λ∗

µ). (10)

Proof: similar to that in Theorem 1.

Consider the auxiliary regression model

˜̂̄u2
i = α + z′µiγ + residual. (11)

Using a similar argument as before, m∗
µ = N × R2∗

µ where R2∗
µ is the cen-

tered coefficient of determination of the regression model. Note that the

auxiliary regression model (11) covers that in model (9), and therefore, the

case analyzed here is a generalization of the former.

3.3 Test for H
σ2

ν

0 . N, T → ∞

Consider a test for homoskedasticity in the remainder component in long

panels with N, T → ∞. Define ˜̂ηit = ˜̂u2
it, where ˜̂uit ≡ ûit − ¯̂ui, ˜̂η, a NT -
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vector containing the sample within residuals squared, Zν , a NT×kθν
matrix

with the sample matrix of covariates for testing this hypothesis, and MNT =

INT − (J̄N ⊗ J̄T ), where J̄T ) = ιT ι′T /T , ⊗ is the Kronecker product, and ιT

is a (T ×1) vector of ones. Consider a sequence of local alternatives (Pitman

drift) such that θν = δν/
√

NT and 0 ≤ ‖δν‖ < ∞. The following Theorem

derives an asymptotically valid test for this hypothesis.

Theorem 3 Let φν = limN,T→∞ V ar[ũ2
it|wi] = Gν , Dν = limN,T→∞ E

[

1
NT

ZνM
′
NTZν

]

and λν = σ4
νh

(1)
ν (0)2

φν
δ′νDνδν . Then, under Assumptions 1 and 2, as N, T → ∞

and under H
σ2

ν

A : θν = δν/
√

NT ,

mν ≡ NT × (˜̂η′MNT
˜̂η)−1 ˜̂η′MNTZν(Z

′
νMNTZν)

−1
Z
′
νMNT

˜̂η
d→ χ2

kθν
(λν).

(12)

Proof: Note that the sequence of random variables {ũ2
it} is asymptotically in-

dependent as T → ∞, because Cov[ũ2
it, ũ

2
kh|wi, wk] = 0, i 6= k and Cov[ũ2

it, ũ
2
ih|wi] =

O(T−2), t 6= h. Then follow the proof of Theorem 1 for our sequence on

i = 1, ..., N and t = 1, .., T , which under Assumption 2 (homokurtosis) gives

the desired result. Q.E.D.

Note that if νit is Gaussian, φν = 2 × σ4
ν , so this Koenker type test is

the same as the Breusch-Pagan style test where the within OLS residual is

used instead of the untransformed OLS residual.

Consider now the auxiliary regression model

˜̂u2
it = α + z′νitγ + residual. (13)

14



Again, mν = NT ×R2
ν , where R2

ν is the centered coefficient of determination

of the regression model.5

3.4 Test for H
σ2

ν

0 . N → ∞ and T finite

Consider now the case where N → ∞ and T finite. For this case, consider

a Taylor expansion of eq. (7) where θν is expanded about 0,

E[ũ2
it|wi] = σ2

ν + σ2
ν



(1 − 2T−1)h(1)
ν (0) z′νitθν + T−2

T
∑

j=1

h(1)
ν (0) z′νijθν



+ o(||θ∗ν ||)

= σ2
ν + σ2

ν

(

(1 − 2T−1)h(1)
ν (0) z′νitθν + T−1h(1)

ν (0)z̄′νiθν

)

+ o(||θ∗ν ||)

where z̄νi = T−1
∑T

t=1 zνit, i = 1, ..., N and θ∗ν is between θν and 0.

Moreover, note that Cov[ũ2
it, ũ

2
ih|wi] = c = O(T−2), then, for T finite,

additional covariance terms need to be taken into consideration. Define

lim
N→∞

V ar
[

1√
NT

Z̃ ′
νMNT η̃

]

= Ων , where Z̃ν is a NT × kθν
matrix with the

sample matrix of covariates with typical element {(1− 2T−1)zνit +T−1z̄νi},

η̃ is vector of within residuals {ũit}, and let Φ̂ν be a consistent estimate of

that variance-covariance matrix of η̃.

Theorem 4 Let λν = σ4
νh

(1)
ν (0)2δ′νD̃νΩ

−1
ν D̃νδν where D̃ν = limN→∞ E

[

1
NT

Z̃νM
′
NT Z̃ν

]

.

Then, under Assumptions 1 and 2, as N → ∞, T fixed and under H
σ2

ν

A :

5As noted by an anonymous referee a significant limitation of this test is that νit|wi

is not serially correlated and it should not be very difficult to construct a modified test
that do not rely on this assumption (see for instance next subsection, where additional
covariance terms are considered).
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θν = δν/
√

NT ,

m∗
ν ≡ NT×˜̂η′MNT Z̃ν(Z̃

′
νMNT Z̃ν)(Z̃

′
νMNT Φ̂νMNT Z̃ν)

−1(Z̃ ′
νMNT Z̃ν)Z̃

′
νMNT

˜̂η
d→ χ2

kθν
(λν).

Proof: The proof follows from Theorem 3 and Dastoor’s (1997) Theorem 1.

A convenient way to implement this test is based on the auxiliary re-

gression model

˜̂u2
it = α + z̃′νitγ + residual, (14)

and noting that NT × R2∗
ν = m∗

ν + o(T−(2+ǫ)) for any ǫ > 0, where R∗2
ν is

the centered coefficient of determination of this regression model.6

3.5 Test for H
σ2

ν ,σ2
µ

0

Following Baltagi et al. (2006) we construct a joint test based on the sum

of the individual tests,

mµ,ν = mµ + mν . (15)

With N and T tending to infinity, the joint test is trivially derived by

exploiting the two orthogonal moment conditions (5) and (7) and hence a

valid test is based on the sum of the marginal tests for each source of het-

eroskedasticity, which involve the sum of independent chi-squared random

6The Monte Carlo experiments of the next section are carried out with T ≥ 5, and we
find no significant discrepancies between the results obtained from model (14) and those
carried out based the statistic in Theorem 4, where the within individuals covariance terms
c in Φ̂ν are estimated as 1

NT (T−1)

∑N

i=1

∑T

t=1

∑T

h6=t
˜̂u2

it
˜̂u2

ih.
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variables, and therefore, we have that mµ,ν
d→ χ2

kθµ+kθν
. Note that the

joint test by Baltagi et al. (2006) also reduces to the sum of two marginal

tests when T → ∞. A preliminary analysis of the Monte Carlo experiments

showed that with T small, mµ,ν behave similarly to the large T case, and

therefore, we find that it is not necessary to make a small panel correction.

4 Monte Carlo experiments

In order to explore the robustness properties of the proposed tests in small

samples, the design of our Monte Carlo experiment will initially follow very

closely that of Baltagi et al. (2006), to which we refer for further details on

the experimental design, and will be modified accordingly to highlight some

specific features of our tests. The baseline model is:

yit = β0 + β1xit + µi + νit, i = 1, ..., N, t = 1, ..., T, (16)

where xit = wi,t + 0.5wi,t−1 and wi,t ∼ iid U(0, 2). The parameters β0 and

β1 are assigned values 5 and 0.5, respectively. For each xi, we generate

T +10 observations and drop the first 10 observations in order to reduce the

dependency on initial values.

The experiment considers three cases, corresponding to different sources

of heteroskedasticity. In all of them, the total variance is set to σ̄2
µ + σ̄2

ν = 8,

where σ̄2
µ = E(σ2

µi
) and σ̄2

ν = E(σ2
νit

). For all DGPs, νit has zero mean and

variance σ2
νit

, while µi has zero mean and variance σ2
µi

. For each case we
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consider exponential heteroskedasticity, h(z′θ) = exp(z′θ).7 The following

heteroskedastic models are considered:

Heteroskedasticity in the remainder component (case a): σ2
νit

= σ2
νhν(θνxit),

σ2
µi

= σ2
µ, θν ∈ {0, 1, 2, 3}, and θµ = 0.

Heteroskedasticity in the remainder component (case b): σ2
νit

= σ2
νhν(θν x̄i),

x̄i = T−1
∑T

t=1 xit, σ2
µi

= σ2
µ, θν ∈ {0, 1, 2, 3}, and θµ = 0.

Heteroskedasticity in the individual component : σ2
µi

= σ2
µhµ(θµx̄i), x̄i =

T−1
∑T

t=1 xit, σ2
νit

= σ2
ν , θµ ∈ {0, 1, 2, 3}, and θν = 0.

For each replication we have computed the test statistics proposed in this

paper, those based on Lejeune’s (2006) framework (based on pooled OLS

residuals), and those of Baltagi et al. (2006) and Holly and Gardiol (2000),

using residuals after ML estimation. Specifically, the statistics considered

and their corresponding null hypotheses are:

• mµ. H
σ2

µ

0 : θµ = 0. The statistic is N -times the R2 from the pooled

OLS regression of ¯̂u2
i on x̄i and a constant (see Section 3.1, eq. (8)).

• m∗
µ. H

σ2
µ

0 : θµ = 0. This test statistic is robust to the validity of H
σ2

ν

0

in short panels, and is N -times the R2 from the pooled OLS regression

7Simulations were also run for quadratic heteroskedasticity, h(z′θ) = (1+z′θ)2, and the
results are similar for size and power to those of exponential heteroskedasticity. Following
the referees’ suggestions we omit these results but they are available from the authors
upon request.
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of ˜̂̄u2
it on xit and a constant (see Section 3.2, eq. (10)).

• HGµ. H
σ2

µ

0 : θµ = 0. Holly and Gardiol (2000) ‘marginal’ test for no

heteroskedasticity in the individual component.

• Lµ. H0 : θµ = θν = 0. Lejeune’s (2006) ‘marginal’ test for no het-

eroskedasticity in the individual component.

• mν . H
σ2

ν

0 : θν = 0. The statistic is NT -times the R2 from the pooled

OLS regression of ˜̂u2
it on xit and a constant (see Section 3.3, eq. (12)).

• m∗
ν . H

σ2
ν

0 : θν = 0. This is a finite T corrected version of the previous

statistic, and is NT -times the R2 from the pooled OLS regression of

˜̂u2
it on x̃it and a constant, with x̃∗

it = (1 − 2T−1)xit + T−1x̄i. (see

Section 3.4, eq. (14)).

• BBPν . H
σ2

ν

0 : θν = 0. This is the marginal tests for the null of

no heteroskedasticity in the remainder component in Baltagi et al.

(2006), for the case where heteroskedasticity varies with i and t, see

their Section 3.2, eq. (10).

• BBP ′
ν . H

σ2
ν

0 : θν = 0. In this case, it is assumed that the variance of

νit varies only with i = 1, ..., N . See Baltagi et al (2006), Section 3.2,

eq. (11).

• Lν . H0 : θµ = θν = 0. Lejeune’s (2006) ‘marginal’ test for no het-

eroskedasticity in the remainder component.
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• mµ,ν . H0 : θµ = θν = 0. This is the proposed statistic for the joint

null of homoskedasticity in both components, and is the sum of mµ

and mν .

• BBPµ,ν . H0 : θµ = θν = 0. This is Baltagi et al.’s (2006) test for the

joint null, see their Section 3.2, eq. (13).

• Lµ,ν . H0 : θµ = θν = 0. This is Lejeune’s (2006) test for the joint null.

We have performed 5000 replications for each case, and the proportion of

rejections was obtained based on a 5% nominal level. The main goals of the

experiment are to quantify 1) the effects of misspecified heteroskedasticity

on new and existing tests, 2) the effects of departures away from gaussianity,

3) the ‘cost of robustification’, that is, the potential power losses due to using

robust tests when the ‘ideal’ conditions (normality and correct specification)

used to derive the ML-LM based tests hold, and hence a robustification is

not necessary. In order to isolate each problem, in the first subsection we will

focus on robustness to misspecification, and in the second one on robustness

of validity, measuring robustification costs for each case.

4.1 Robustness to misspecified heteroskedasticity

Tables 1, 2 and 3 present simulation results for the Gaussian DGP, for

(N, T ) = (50, 5) and (N, T ) = (25, 10) panel sizes, with µi ∼ N(0, σ2
µi

), νit ∼

N(0, σ2
νit

). Each table is split into four horizontal panels, corresponding to
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different variance values and panel sizes.

It is important to note that all tests are constructed using parameters es-

timated under the joint null hypothesis of full homoskedasticity. Therefore,

Holly and Gardiol (2000), Baltagi et al. (2006) and Lejeune (2006) statistics

may be affected by the presence of heteroskedasticity in the other component

not being tested and which is ignored. For instance, as discussed in Section

3, misspecified heteroskedasticity is expected to affect the performance of

the Holly and Gardiol (2000) statistic, that is, a test for heteroskedasticity

in the individual component assuming no heteroskedasticity in the remain-

der component. Similarly, it should affect the performance of mµ, our test

robustified to non-normalities only. We expect our fully robust test m∗
µ to

be more resistant to this type of misspecification.

INSERT TABLE 1 HERE

INSERT TABLE 2 HERE

Consider first Tables 1 and 2, that is, when there is heteroskedasticity

in the remainder component only, cases a and b, respectively. As predicted

by the results in Section 3, in terms of size distortion, mµ and HGµ become

negatively affected by the presence of heteroskedasticity in the remainder

component, that is, they tend to reject their nulls not due to the presence

of heteroskedasticity in the individual component but in the other one. For

example, in Table 1, with small T , the rejection rates reach 0.3 for a nominal
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size of 0.05. The Monte Carlo results show that this problem affects the

corresponding test by Lejeune (Lµ) as well. Monte Carlo results on Lejeune’s

(2006) procedures are new, so it is relevant to observed that the test designed

specifically to detect heteroskedasticity in the remainder component Lν has

correct size and power increasing with the strenght of heteroskedasticity, as

can be seen in Table 1. Interestingly, the robustified test m∗
µ presents much

lower rejection rates (almost a third of their competitors), hence being more

resistant to misspecifications in the alternative hypothesis.

It is important to observe that, as predicted by the results of Section

2, the effects of misspecification are stronger the smaller T is and the more

important is the between variation in the remainder component. The first

effect can be appreciated by comparing results for different panel sizes, and

the second by comparing the cases σ2
µ = 6, σ̄2

ν = 2 and σ2
µ = 2, σ̄2

ν = 6 in

Tables 1 and 2.

In order to highlight these points, consider the following experiments,

which are a variation of the exponential heteroskedasticity in the remainder

component, case a, where σ2
µ = 2 for all i, λν = 3, and σ̄2

ν = 6. First,

to assess the sensitivity of the proposed statistics to the panel size, we fix

N = 50 and consider 1000 simulations for each T ∈ {2, 3, ..., 30}. Simula-

tion results are presented graphically in Figure 1, and show that the main

problem arises because of short panels. Moreover, it shows that the main

gain of using m∗
µ is in the small T case, the most likely situation in practice.
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All tests achieve correct size for large T , but m∗
µ achieves the correct size in

shorter panels.

INSERT FIGURE 1 HERE

Second, we have also computed rejection rates depending on the size of

the cross-sectional dimension of the panel, N , keeping fixed the temporal

dimension, see Figures 2 and 3. In particular, we fix T = 2, 5 and consider

1000 simulations for each N ∈ {10, 20, ..., 200}. Results show that mµ, HGµ

and Lµ increasingly (and wrongly) reject as N increases. Nevertheless, m∗
µ

remains insensitive to changes in N , although rejection rates are above 0.05.

INSERT FIGURES 3 2 HERE

Finally, we explored the effects of the relative importance of between vs.

within heteroskedasticity in the remainder component. Consider now the

following form of functional heteroskedasticity:

σ2
νit

= σ2
ν ∗ exp (λν ∗ (α ∗ (xit − x̄i) + (1 − α) ∗ xit)) ,

with α ∈ [0, 1]. If α = 0, this corresponds to case a in Table 1. If α = 1,

by construction, there is only within heteroskedasticity, and therefore no

differences in the variance across individuals. For different values of α, we

have generated 1000 replications for (N, T ) = (50, 5), and calculate the

empirical size at a theoretical level of 5% of HGµ, Lµ, mµ and m∗
µ. Results

23



are shown graphically in Figure 4. HGµ, Lµ and mµ reject too often for small

α, while m∗
µ has better size properties. Moreover, for the four statistics, the

simulated empirical size approaches the theoretical level as α goes to 1.

INSERT FIGURE 4 HERE

Regarding robustification costs, tests specifically designed to react to

heteroskedasticity in the remainder (mν , BBPν , BBP ′
ν , Lnu) increase their

empirical power with the strength of this type of heteroskedasticity and, as

expected under normality, the power of BBPν is the largest. Interestingly,

our robust test mν performs relatively close to the Baltagi et al. (2006) LM

statistics, implying that robustifications costs for these particular experi-

ments are low, that is, the loss in power for unnecessarily using a robust test

is minor. Finally, note that the performance of m∗
ν , our proposed statistic

designed to increase its power in small samples, is not as good as expected.

First, it shows over-rejection for the (σ2
µ = 6, σ2

ν = 2) case. Second, its power

outperforms that of mν only in Table 2.

INSERT TABLE 3 HERE

Consider now Table 3, where we allow for heteroskedasticity in the in-

dividual component only, under gaussianity. The Holly and Gardiol (2000)

test is locally optimal and should have correct asymptotic size, so robus-

tifications are not necessary. Our robust statistics mµ and m∗
µ have very
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similar rejection rates for all values of θµ, suggesting that robustification

cost are small in this case too. Interestingly, ,the test by Lejeune (1996) has

incresing power, and for the (50, 5) case it outperforms the test by Holly

and Gardiol (2000).

As heteroskedasticity in the individual component increases, (mν , BBPν , BBP ′
ν)

present rejection rates similar to their nominal levels, consistent with the

fact that tests that check heteroskedasticity in the remainder component

are immune to the presence of heteroskedasticity in the individual one. In-

terestingly Lν and m∗
ν present unwanted power, that is, they reject their

nulls due to heteroskedasticity in the other component, and hence are not

robust to this misspecification.

Finally, joint tests present increasing power, though, as expected, they

are outperformed by the marginal tests specifically designed to detect de-

partures in a single component. The distribution free joint statistic mµ,ν has

less power than BBPµ,ν (which assumes gaussianity) but the power loss is

very small, suggesting again that robustification costs are negligible. Results

are similar when the relative importance of each component is altered (that

is, by comparing the two horizontal panels). Again, for the N = 50, T = 5

case and when the individual variance is relatively larger than the individual

one (second panel of Table 3), the joint test by Lejeune (2006) presents the

highest power.

Although not reported (results are available from the authors upon re-
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quest), for completeness, we have also considered the case of heteroskedas-

ticity in both components.8 Our proposed moment-based marginal tests do

not diminish their power as we add misspecification of the type not being

tested. That is, in general, their power performance increases for greater

heteroskedasticity in the other component, and in fact, they have a similar

performance to the Baltagi et al. (2006) LM tests.

To summarize, the robustification costs incurred by all our new statistics

are small, as measured by the loss in power by unnecesarily using resistant

tests in the Gaussian case.

4.2 Robustness of validity

In order to explore the effect of departures away from gaussianity, we eval-

uate the performance of all the test statistics under H0 : θµ = θν = 0,

N = 50 and T = 5, for non-normal DGP’s using 5000 replications. First, we

generate t-Student DGP’s with 3 and 5 degrees of freedom. Second, we con-

sider skewed-Normal distributions constructed as in Azzalini and Capitanio

(2003).9 Finally, we have also considered log-normal, exponential, χ2
1 and

uniform distributions. In all cases, the random variables are standardized

to have the required variances.

INSERT TABLE 4 HERE
8Parameters were set as follows: σ2

µi
= σ2

µhµ(θµx̄i), σ2
νit

= σ2
νhµ(θνxit), θµ ∈

{0, 1, 2, 3}, and θν ∈ {0, 1, 2, 3}.
9We are grateful to an anonymous referee for pointing out this distribution. We have

used the SN package in R and the rsn command, with a shape parameter α = 20. This
random variable has a kurtosis of 1 and considerable skewness.
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The effects of departures away from gaussianity are dramatic. For the

t-Student cases, the empirical sizes of the LM Gaussian-based statistics are

considerably large. Moreover, the simulations show that rejection rates de-

crese as degrees of freedom increase, and thus the DGP becomes closer to

normal. Even higher rejection rates are observed for the log-normal, expo-

nential, χ2
1 and uniform DGPs. For instance, the log-normal has rejection

rates above 0.24 for HGµ, and close to 0.50 for BBPν . However, rejection

rates are close to the nominal level for the skewed-Normal distribution (with

considerable skewness but limited kurtosis). These results are in line with

Evans’ (1992) simulations for the Breusch-Pagan cross-sectional test, which

was found to be highly sensitive to excess kurtosis but less so to skewness.

Interestingly our new test statistics and those of Lejeune’s (2006) are

robust to departures away from gaussianity, presenting empirical sizes very

close to their nominal values. Surprisingly, we also find good empirical

size for the t-Student case with 3 degrees of freedom, which has infinite

fourth moment, and therefore, it does not satisfy the assumptions used in

the theorems of Section 3. Finally, all tests derived under Lejeune’s (2006)

framework present good empirical size and are, hence, robust to distribu-

tional misspeficications. Although not reported, in all cases, the proposed

tests have monotonically increasing empirical power as heteroskedasticity in

the tested component augments.
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To summarize, the analysis confirms that, although optimal in the Gaus-

sian case, LM tests derived under this assumption are severely affected by

non-normalities, and that, on the contrary, our new statistics and those

based on Lejeune’s (2006) context remain unaltered by changes in the un-

derlying distribution of the error terms.

5 An extension: the heterokurtic case

We consider an extension of the tests proposed above to the case of finite but

non-identical fourth moments, i.e. heterokurtosis. This is, thus, a general-

ization of the procedures of Wooldridge (1990, 1991) and Dastoor (1997) in

the cross-sectional case, to the error components model in panel data. In this

case, Assumption 2 should be dropped and the asymptotic results should be

modified to allow for different variances of the conditional squared residu-

als. We illustrate this procedure by modifying Theorem 1 (for the tests for

heteroskedasticity in the individual component), which provides a guidance

for straighforward extensions for Theorems 2 and 3.

Recall from Section 3.1 that ¯̂ηi = ¯̂u2
i . Define

Φ̂µ = diag







(

¯̂η1 −
1

N

N
∑

i=1

¯̂ηi

)2

, ...,

(

¯̂ηN − 1

N

N
∑

i=1

¯̂ηi

)2






.

Consider the following assumption, that ensures existence of the fourth mo-

ments:

Assumption 2’ Let η̄ = {ū2
1, . . . , ū

2
N}, then lim

N→∞
V ar

[

1√
N
Z
′
µMN η̄

]

= Ωµ
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is a finite positive define matrix.

The following theorem provides the asymptotic distribution of a Wooldridge

(1990)-type statistic for testing heteroskedasticity in the individual compo-

nent with heterokurtosis. The intuition is that, as argued in Wooldridge

(1990, p.23), the White (1980) covariance matrix (in our case based on Φ̂µ)

can be used to compute heteroskedasticity tests that are not affected by

heterokurtosis. A similar procedure can be used to construct tests that are

robust to heterokurtosis for all the test statistics considered in this paper.

Theorem 5 Let λh
µ = σ4

µh
(1)
µ (0)2δ′µDµΩ−1

µ Dµδµ. Then, under Assumptions

1 and 2’, as N, T → ∞ or N → ∞, T fixed and H
σ2

ν

0 , and under H
σ2

µ

A : θµ =

δµ/
√

N ,

mh
θµ

≡ N×¯̂η′MNZµ(Z′
µMNZµ)(Z′

µMN Φ̂µMNZµ)−1(Z′
µMNZµ)Z′

µMN
¯̂η

d→ χ2
kθµ

(λh
µ).

Proof: The proof follows from Theorem 1 and Dastoor’s (1997) Theorem 1.

Interestingly, following Wooldridge (1990, Example 3.2, p.32-34) this test

can also be implemented in an artificial regression set-up, as N ×R2h
µ of the

regression of a vector of ones on
(

¯̂η − 1
N

∑N
i=1

¯̂ηi

)(

zµ − 1
N

∑N
i=1 zµi

)

, where

R2h
µ is the uncentered coefficient of determination of the regression.

Note that this procedure can be extended for a general variance-covariance

matrix of the transformed residual η. In this case, we could define a general
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matrix Φ = (Mηη′M)⊙A, where M is a square matrix with the dimension

of η (either MN or MNT ), A is a selector matrix of the same dimension,

with 0’s and 1’s that indicate which elements are non-zero, and ‘⊙’ denotes

the element-by-element matrix multiplication operator. By imposing ade-

quate restrictions on the type of dependence, test statistics that are robust

to heterokurtosis and several type of panel dependence can be constructed.

INSERT TABLE 5 HERE

We conduct a small Monte Carlo experiment to evaluate the effect of het-

erokurtosis on our proposed statistics, and the corresponding heterokurtic-

robust modifications based on the artificial regression set-up explained above.

We generate 1000 replications under H0 : θµ = θν = 0, N = 50 and T = 5,

for non-normal DGPs with varying kurtosis. We consider 3 different cases.

First, we generate half of the observations with a t-Student with 5 degrees

of freedom and half with 10 degrees of freedom. Second, half with t-Studnt

(df=5) and half with a log-Normal. Finally, one fifth with t-Student (df=5),

one fifth with t-Student (df=5), one fifth with t-Student (df=5), one fifth

normal and one fifth with log-Normal. In all cases we use the adjustment

explained in the Monte Carlo section to get the required variances. Results

appear in Table 4. The tests based on homokurtosis have good empirical

size. In general, the Wooldridge-type statistics show rejection rates below

the nominal size of 5%. Overall this suggests that heterokurtosis may not
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produce great size distortions.

6 Concluding remarks and suggestions for practi-

tioners

As in the cross-sectional case, heteroskedasticity is likely to affect panel

models as well. A futher complication in the standard error components

model is to correctly identify in which of the two components, if not in both,

is present. Available LM based tests are shown to have difficulties solving

this problem. First, by relying strictly on distributional assumptions, they

are prone to be negatively affected by departures away from the Gaussian

framework in which they are derived. This paper shows that this is clearly

the case, since alternative distributions (in particular, heavy tailed ones) lead

to spurious rejections of the null of homoskedasticity. Second, joint tests of

the null of homoskedastcity in both components, though helpful in serving

as a starting diagnostic check, are by construction unable to identify the

source of heteroskedasticity. More importantly, the marginal LM test for the

individual component rejects its null in the presence of heteroskedasticity in

either component, and hence, cannot help identifying which error is causing

it.

Our new tests are robust in these two senses, that is, they have correct

asymptotic size for a wide familiy of distributions and they have power

only in the direction intended for. An extensive Monte Carlo experiment
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confirms the severity of these problems and the adequacy of the our new

tests in small samples. Our new tests are computationally convenient, since

they are based on simple algebraic transformations of pooled OLS residuals,

unlike the tests by Baltagi et al. (2006) or Holly and Gardiol (2000) that

require ML or pseudo ML estimation. Also, the extension to the case of

unbalanced panels is immediate in the case of our tests, due to the use of

simple moment conditions, in contrast with many other error components

procedures whose derivation for the unbalanced case requires complicated

algebraic manipulations (see Sosa Escudero and Bera, 2008, for a recent

case). Note that Lejeune’s (2006) tests allow for unbalanced panels too.

In practice, the use of our new tests will depend on the hypothesis of

interest. Obviously, joint tests are a useful starting point as a general di-

agnostic test, since they have correct size and power to detect departures

away from the general null of homoskedasticity. Marginal tests can be used

when the interest lies in one particular direction, our tests being particularly

helpful in small samples. Additionally, marginal tests can be combined in

a Bonferroni approach, to produce a joint test that is compatible with the

marginal ones (see Savin, 1984, for further details). That is, compute both

marginal tests, and reject the joint null if at least one of them lies in its

rejection region, where the significance level for the marginal tests is halved,

in order to guarantee that the resulting joint test has the desired asymptotic

size. This is the essence of the ‘multiple comparison procedure’ in Bera and
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Jarque (1982).

Regarding further research, this paper focuses mostly on preserving con-

sistency and correct asymptotic size, with minimal power losses with respect

of existing ML based test. Power improvements can be expected from us-

ing a quantile regression framework, as in Koenker and Bassett (1982), who

find power gains by basing a test for heteroskedasticity on the difference in

slopes in a quantile regression framework, for the cross sectional case. The

literature on quantile models for panels is still incipient, though promising

(see Koenker, 2004, Canay, 2008, and Galvao, 2009), so futher developments

along the results of this research line seems promising.
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Figure 1: Heteroskedasticity in the Remainder Component with T varying
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Figure 2: Heteroskedasticity in the Remainder Component with N varying,
T=2
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Figure 3: Heteroskedasticity in the Remainder Component with N varying,
T=5
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Figure 4: Within-Between Heteroskedasticity in the Remainder Component

Table 1. Empirical rejection probabilities. DGP: Normal.
Heteroskedasticity in the remainder component (case a)

Exponential heteroskedasticity

θµ θν mµ m∗

µ HGµ Lµ mν m∗

ν BBPν BBP ′

ν Lν mµ,ν BBPµ,ν Lµ,ν

σ2

µ = 6, σ̄2

ν = 2

N=25,T=10
0 0 0.047 0.047 0.045 0.032 0.052 0.0930 0.045 0.045 0.050 0.041 0.044 0.025
0 1 0.053 0.049 0.048 0.054 1.000 0.4626 0.999 0.900 0.998 0.364 0.998 0.361
0 2 0.055 0.054 0.056 0.080 1.000 0.8084 1.000 0.998 1.000 0.634 1.000 0.654
0 3 0.063 0.061 0.061 0.097 1.000 0.8892 1.000 0.999 1.000 0.698 1.000 0.661

N=50,T=5
0 0 0.053 0.054 0.040 0.041 0.062 0.0920 0.057 0.043 0.047 0.057 0.045 0.034
0 1 0.056 0.055 0.046 0.083 1.000 0.4280 1.000 0.695 0.324 1.000 1.000 0.343
0 2 0.054 0.054 0.042 0.164 1.000 0.7876 1.000 0.949 0.619 1.000 1.000 0.658
0 3 0.053 0.054 0.045 0.209 1.000 0.8784 1.000 0.975 0.695 1.000 1.000 0.693

σ2

µ = 2, σ̄2

ν = 6

N=25,T=10
0 0 0.055 0.054 0.049 0.0392 0.056 0.0524 0.053 0.047 0.047 0.050 0.049 0.0346
0 1 0.099 0.069 0.092 0.288 0.999 0.9964 1.000 0.903 0.999 0.9848 1.000 0.944
0 2 0.181 0.088 0.183 0.485 1.000 1.0000 1.000 0.998 1.000 0.996 1.000 0.9806
0 3 0.276 0.119 0.300 0.512 1.000 1.0000 1.000 0.999 1.000 0.980 1.000 0.9368

N=50,T=5
0 0 0.049 0.049 0.042 0.045 0.050 0.0526 0.049 0.048 0.047 0.050 0.044 0.041
0 1 0.053 0.053 0.046 0.610 1.000 0.9970 1.000 0.698 0.990 1.000 1.000 0.968
0 2 0.066 0.055 0.052 0.877 1.000 1.0000 1.000 0.956 0.998 1.000 1.000 0.993
0 3 0.076 0.069 0.069 0.865 1.000 1.0000 1.000 0.970 0.987 1.000 1.000 0.966

Notes: Monte Carlo simulations based on 5000 replications. Theoretical size 5%. Heteroskedasticity in the

remainder component, case a: σ2

νit
= σ2

νhν(θνxit), σ2

µi
= σ2

µ, θν ∈ {0, 1, 2, 3}, and θµ = 0.
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Table 2. Empirical rejection probabilities. DGP: Normal.
Heteroskedasticity in the remainder component (case b)

Exponential heteroskedasticity

θµ θν mµ m∗

µ HGµ Lµ mν m∗

ν BBPν BBP ′

ν Lν mµ,ν BBPµ,ν Lµ,ν

σ2

µ = 6, σ̄2

ν = 2

N=25,T=10
0 0 0.050 0.050 0.047 0.0364 0.048 0.0486 0.047 0.050 0.0392 0.045 0.040 0.0228
0 1 0.053 0.053 0.046 0.0534 0.205 0.2376 0.194 0.745 0.0536 0.165 0.146 0.0336
0 2 0.053 0.053 0.045 0.0896 0.493 0.5670 0.554 0.995 0.0730 0.396 0.479 0.0530
0 3 0.054 0.053 0.041 0.1432 0.680 0.7552 0.787 1.000 0.1020 0.582 0.730 0.0736

N=50,T=5
0 0 0.044 0.045 0.043 0.0438 0.057 0.0628 0.052 0.051 0.0470 0.056 0.047 0.0358
0 1 0.052 0.048 0.046 0.0882 0.547 0.6936 0.531 0.924 0.0738 0.454 0.446 0.1006
0 2 0.058 0.056 0.056 0.1966 0.917 0.9776 0.943 1.000 0.1534 0.874 0.912 0.1404
0 3 0.070 0.064 0.065 0.2814 0.979 0.9976 0.993 1.000 0.2140 0.956 0.990 0.1614

σ2

µ = 2, σ̄2

ν = 6

N=25,T=10
0 0 0.046 0.048 0.038 0.0404 0.048 0.0512 0.045 0.051 0.0470 0.047 0.044 0.0318
0 1 0.052 0.053 0.043 0.3364 0.212 0.2448 0.191 0.735 0.1166 0.167 0.447 0.1992
0 2 0.072 0.071 0.064 0.6974 0.509 0.5862 0.553 0.996 0.2614 0.436 0.917 0.4812
0 3 0.096 0.093 0.093 0.7640 0.687 0.7570 0.777 1.000 0.3738 0.618 0.990 0.5538

N=50,T=5
0 0 0.046 0.048 0.043 0.0404 0.053 0.0554 0.051 0.040 0.0508 0.055 0.044 0.0412
0 1 0.103 0.065 0.095 0.3364 0.556 0.6964 0.514 0.934 0.3372 0.492 0.447 0.0572
0 2 0.232 0.117 0.242 0.6974 0.922 0.9790 0.934 1.000 0.6786 0.906 0.917 0.0704
0 3 0.377 0.182 0.396 0.7640 0.979 0.9970 0.992 1.000 0.7742 0.970 0.990 0.0732

Notes:

Monte Carlo simulations based on 5000 replications. Theoretical size 5%. Heteroskedasticity in the remainder

component, case b: σ2

νit
= σ2

νhν(θν x̄i), σ2

µi
= σ2

µ, θν ∈ {0, 1, 2, 3}, and θµ = 0.

Table 3. Empirical rejection probabilities. DGP: Normal.
Heteroskedasticity in the individual component

Exponential heteroskedasticity

θµ θν mµ m∗

µ HGµ Lµ mν m∗

ν BBPν BBP ′

ν Lν mµ,ν BBPµ,ν Lµ,ν

σ2

µ = 6, σ̄2

ν = 2

N=25,T=10
0 0 0.048 0.047 0.045 0.0352 0.054 0.0946 0.049 0.050 0.0430 0.049 0.044 0.0268
1 0 0.326 0.327 0.344 0.0668 0.055 0.1724 0.049 0.049 0.0720 0.255 0.276 0.0416
2 0 0.776 0.773 0.815 0.1510 0.054 0.3298 0.049 0.051 0.1314 0.662 0.737 0.0772
3 0 0.952 0.953 0.974 0.2324 0.051 0.4944 0.046 0.055 0.2048 0.881 0.950 0.1256

N=50,T=5
0 0 0.053 0.053 0.039 0.0388 0.050 0.0924 0.049 0.044 0.0424 0.048 0.043 0.0328
1 0 0.122 0.121 0.121 0.2350 0.049 0.3684 0.047 0.048 0.1932 0.095 0.098 0.1366
2 0 0.298 0.298 0.315 0.5474 0.049 0.7432 0.049 0.044 0.4588 0.217 0.253 0.3336
3 0 0.511 0.511 0.562 0.6424 0.050 0.9114 0.047 0.050 0.5750 0.373 0.467 0.4302

σ̄2

µ = 2, σ2

ν = 6

N=25,T=10
0 0 0.047 0.050 0.047 0.0400 0.054 0.0526 0.049 0.047 0.0456 0.053 0.050 0.0344
1 0 0.175 0.169 0.175 0.0498 0.052 0.0666 0.047 0.057 0.0548 0.141 0.139 0.0398
2 0 0.476 0.462 0.504 0.0880 0.053 0.0948 0.050 0.071 0.0554 0.377 0.413 0.0518
3 0 0.721 0.694 0.747 0.1194 0.055 0.1448 0.053 0.084 0.0760 0.598 0.654 0.0732

N=50,T=5
0 0 0.052 0.054 0.042 0.0490 0.056 0.0564 0.053 0.040 0.0460 0.052 0.051 0.0420
1 0 0.093 0.096 0.088 0.0954 0.050 0.0936 0.050 0.046 0.0780 0.076 0.079 0.0674
2 0 0.218 0.219 0.220 0.2020 0.051 0.1932 0.045 0.051 0.1192 0.159 0.173 0.1230
3 0 0.380 0.378 0.412 0.2652 0.051 0.3130 0.050 0.051 0.1566 0.279 0.333 0.1618

Notes: Monte Carlo simulations based on 5000 replications. Theoretical size 5%. Heteroskedasticity in the

individual component: σ2

µi
= σ2

µhµ(θµx̄i), x̄i = T−1
∑T

t=1
xit, σ2

νit
= σ2

ν , θµ ∈ {0, 1, 2, 3}, and θν = 0.
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Table 4. Empirical rejection probabilities.
Size distortions with different DGP. N=50, T=5.

Exponential heteroskedasticity

mµ m∗

µ HGµ Lµ mν m∗

ν BBPν BBP ′

ν Lν mµ,ν BBPµ,ν Lµ,ν

DGP σ2

µ = 6, σ̄2

ν = 2

Gaussian 0.053 0.053 0.039 0.039 0.050 0.092 0.049 0.044 0.042 0.048 0.043 0.033
t3 0.049 0.049 0.207 0.042 0.055 0.083 0.320 0.324 0.049 0.055 0.384 0.042
t5 0.055 0.055 0.105 0.050 0.050 0.086 0.176 0.189 0.047 0.051 0.192 0.052

Skewed-N 0.049 0.051 0.065 0.047 0.056 0.074 0.092 0.088 0.055 0.049 0.091 0.044
Log Normal 0.051 0.050 0.314 0.046 0.054 0.065 0.485 0.500 0.051 0.061 0.590 0.041
Exponential 0.048 0.048 0.177 0.032 0.059 0.072 0.238 0.242 0.043 0.055 0.297 0.031

χ2

1
0.057 0.056 0.275 0.051 0.064 0.080 0.333 0.353 0.048 0.064 0.439 0.039

Uniform 0.055 0.055 0.193 0.049 0.053 0.091 0.013 0.006 0.053 0.051 0.141 0.041

σ2

µ = 2, σ2

ν = 6

Gaussian 0.052 0.054 0.042 0.049 0.056 0.056 0.053 0.040 0.046 0.052 0.051 0.042
t3 0.048 0.050 0.153 0.043 0.054 0.052 0.341 0.344 0.046 0.054 0.359 0.049
t5 0.050 0.051 0.077 0.047 0.050 0.052 0.182 0.187 0.046 0.049 0.170 0.045

Skewed-N 0.056 0.057 0.057 0.054 0.054 0.049 0.092 0.087 0.065 0.051 0.088 0.055
Log Normal 0.054 0.054 0.243 0.051 0.054 0.055 0.494 0.496 0.046 0.063 0.543 0.049
Exponential 0.050 0.049 0.115 0.039 0.059 0.052 0.240 0.251 0.049 0.053 0.248 0.033

χ2

1
0.056 0.055 0.166 0.045 0.056 0.048 0.359 0.364 0.046 0.056 0.386 0.051

Uniform 0.057 0.057 0.202 0.050 0.049 0.056 0.011 0.007 0.046 0.050 0.140 0.045

Notes: Monte Carlo simulations based on 5000 replications. Theoretical size 5%.

Table 5. Empirical rejection probabilities.
Heterokurtosis. N=50, T=5.

Test statistic mµ m∗

µ mh
µ m∗h

µ mν mh
ν m∗

ν m∗h
ν mµ,ν mh

µ,ν

DGP σ2

µ = 6, σ2

ν = 2

t5&t10 0.045 0.043 0.033 0.031 0.045 0.044 0.055 0.050 0.044 0.036
t5&log − N 0.058 0.054 0.026 0.021 0.058 0.038 0.077 0.054 0.056 0.032

t5&t7&t10&Normal&log − N 0.054 0.059 0.038 0.043 0.070 0.055 0.072 0.068 0.064 0.048

DGP σ2

µ = 2, σ2

ν = 6

t5&t10 0.049 0.048 0.043 0.042 0.050 0.038 0.057 0.049 0.046 0.044
t5&log − N 0.051 0.052 0.022 0.021 0.057 0.038 0.071 0.053 0.062 0.034

t5&t7&t10&Normal&log − N 0.048 0.052 0.030 0.031 0.054 0.045 0.060 0.056 0.051 0.039

Notes: Monte Carlo simulations based on 5000 replications. Theoretical size 5%.
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