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Abstract
A  new  methodology  for  financial  and  insurance  operational  risk  capital  estimation  is  proposed.  It  is
based on using the finite time probability of (non-)ruin as an operational risk measure, within a general
risk model. It allows for inhomogeneous operational loss frequency (dependent inter-arrival times) and
dependent  loss  severities  which  may  have  any  joint  discrete  or  continuous  distribution.  Under  the
proposed  methodology,  operational  risk  capital  assessment  is  viewed  not  as  a  one  off  exercise,  per-
formed at some moment of  time, but  as dynamic reserving,  following a certain risk capital  accumula-
tion  function.  The  latter  describes  the  accumulation  of  risk  capital  with  time  and  may  be  any  non-
decreasing, positive real  function hHtL.  Under these reasonably  general  assumptions,  the probability of
non-ruin is explicitly expressed using closed form expressions, derived by Ignatov and Kaishev (2000,
2004, 2007) and Ignatov, Kaishev and Krachunov (2001) and by setting it to a high enough preassigned
value, say 0.99, it is possible to obtain not just a value for the capital charge but a (dynamic) risk capital
accumulation strategy, hHtL.
In  view of  its  generality,  the  proposed  methodology  is  capable  of  accommodating  any  (heavy  tailed)
distributions,  such  as  the  Generalized  Pareto  Distribution,  the  Lognormal  distribution  the  g-and-h
distribution and the GB2 distribution.  Applying this methodology on numerical examples, we demon-
strate that dependence in the loss severities may have a dramatic effect on the estimated risk capital. In
addition,  we  show  also  that  one  and  the  same high  enough  survival  probability  may  be  achieved  by
different risk capital accumulation strategies one of which may possibly be preferable to accumulating
capital just linearly, as has been assumed by Embrechts et al. (2004). The proposed methodology takes
into account also the effect of insurance on operational losses, in which case it is proposed to take the
probability of joint survival of the financial institution and the insurance provider as a joint operational
risk measure. The risk capital allocation strategy is then obtained in such a way that the probability of
joint survival is equal to a preassigned high enough value, say 99.9 %.

Keywords: operational  risk  losses;  operational  risk  capital  assessment;  dependent  losses;  Poisson  loss
arrivals; capital accumulation function; loss severity distribution; finite-time ruin probability; copulas



1. Introduction

Our aim in this paper is to propose a new methodology for modelling operational risk, based

on risk and ruin theory. This is in compliance with the commitment of the Basel Committee

on Banking Supervision (2001) (see its consultative report on the New Basel Capital Accord

(Basel II)) to improve stability in the financial sector by reducing market risk, credit risk and

operational risk. The first pillar, under the three pillar approach of Basel II, considers Mini-

mal  Capital  Requirements and this  is  where new quantitative  modelling methods,  based on

sound  mathematical,  statistical  and  probabilistic  methodology  are  expected  to  provide  a

practically  applicable  tool  for  quantitative  risk  management.  The  demand  for  such  new

methods,  which  relate  to  solvency  issues  within  the  insurance  industry,  is  also  recognized

within  the  new  EU  Solvency  II  project  and  the  working  programme  of  the  International

Association of Insurance Supervisors (IAIS)  (see e.g. Linden and Ronkainen 2004). Actuar-

ial techniques for quantifying operational risk in general insurance have recently been summa-

rized by Tripp et al. (2004). 

There are three alternative groups of methods for mitigating operational risk, outlined in the

Basel  Committee  on  Banking  Supervision  (2004),  the  basic  indicator  approach  (BIA),  the

standardized  approach  (TSA)  and  the  advanced  measurement  approach  (AMA).  The  latter

focuses  on  using  internal  and  external  loss  data,  among  other  techniques,  and  is  often

referred to as the Loss Distribution Approach (LDA). Under the AMA modelling framework

the  role  of  insurance  in  mitigating  operational  risk  is  also  recognized.  There  are  several

examples of works under the LDA approach and here we will mention the common Poisson

shock  models of Ebnöther et al. (2001, 2002) and of Brandts (2004), and the ruin probability

based  models  considered  by  Embrechts  and  Samorodnitsky  (2003)  and  Embrechts  et  al.

(2004). A more recent paper, considering the effect of insurance on setting the capital charge

for operational risk is that of Bazzarello et al. (2006). The LDA approach has recently been

used by Dutta and Perry (2006), who have considered fitting appropriate loss distributions to

operational loss data under the 2004 Loss Data Collection Exercise (LDCE) and the Quantita-

tive Impact Study 4 (QIS-4).  Thus, it is more and more evident that LDA methods are becom-

ing  important  for  internal  risk  modelling  purposes  and  at  Basel-defined  business  line  and
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event type level modelling in order to improve the stability of the financial services industry.

LDA methods are flexible and could be used within the whole financial  industry sector,  by

central and commercial banks, insurance companies and supervisory bodies (see Cruz 2002,

McNeil  et  al.  2005, Panjer  2006).  No doubt,  a great  potential  for  developing such methods

lies within the paradigm of ruin theory as has already been noted by  Embrechts et al. (2004).

The classical ruin theory is over 100 years old and since the fundamental paper of Lundberg

(1903), the number of publications (books, monographs and academic articles) in the probabi-

listic,  statistical  and  actuarial  literature  is  vast.  Some  important  contributions  to  the  field

have  been  made  by  Cramér  (1930),  Seal  (1978),  Gerber  (1988),  Shiu  (1987),  Dickson

(1994),  Waters  (1983),  Grandell  (1990),  Picard  and  Lefèvre  (1997),  De  Vylder  (1999),

Asmussen  (2000),  Willmot  (2002),  Gerber  and  Shiu  (1998,  2005),  Ignatov  and  Kaishev

(2000,  2004,  2006)  to  mention  only  a  few.   Ruin  theory  may be  viewed  as  the  theoretical

foundation  of  insolvency  risk  modelling.  Under  the  classical  ruin  theory  model,  the

(premium)  income  to  an  (insurance)  company  is  modelled  by  a  straight  line  hHtL = u + c t,

where  u ¥ 0  is  the  company's  initial  risk  capital  at  time  t = 0  and  c ¥ 0  is  the  premium

income per unit of time, received by the company. The outgoing flow of claims paid by the

company is modelled by a stochastic process, 

(1)SHtL = ⁄i=1
NHtL Wi

where, Wi,  i = 1, 2, ... are assumed independent  identically  distributed (i.i.d.)  random vari-

ables,  modeling  the  amount  of  the  consecutive  individual  losses,  occurring  at  random

moments  in  time.  The  stochastic  process  NHtL,  usually  assumed  a  homogeneous  Poisson

process  with  parameter  l,  is  counting  the  number  of  such  losses  up  to  time  t.  The  risk

(surplus) process of the company is then defined as

RHtL = u + c t - SHtL 
and  the  probability,  PHT § ¶L,  that  the  aggregate  amount  of  the  loss  payments,  SHtL,  will

exceed the in-flowing premium income hHtL = u + c t  at some future moment, T, is called the

infinite-time probability  of  ruin of  the company. In  other  words, this  is  the probability  that

the risk process, RHtL,  will  become negative in some future moment, within an infinite time

horizon. 
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The  practical  validity  of  model  (1)  for  the  aggregate  operational  losses  under  the  LDA

approach has been confirmed by Dutta and Perry (2006), who summarize the operational risk

measuring experience of US banks under the QIS-4 submission.

Recently,  Embrechts  et  al.  (2004)  proposed  to  take  an  actuarial  point  of  view  and  directly

apply the (classical) ruin probability model to the context of operational risk, under the LDA

approach. Thus, the random variables Wi, i = 1, 2, ...  in model (1) are viewed as represent-

ing  operational  risk  losses  and  the  aggregate  loss  amount,  SHtL,  due  to  different  types of

operational risk, is expressed as a superposition of the risk processes, corresponding to each

type of risk. The rate c is seen "as a premium rate paid to an external insurer for taking (part

of) the operational risk losses or as a rate paid to (or accounted for by) a bank internal office"

(Embrechts et al., 2004). In order to reserve against operational risk, it is proposed to set the

initial capital u and the income rate c in such a way that it satisfies the equation 

(2)PHT § xL = PK inf
0§t§x

Hu + c t - SHtLL < 0O = e
where the probability of ruin, PHT § xL, over a finite time interval, @0, xD, 0 < x § ¶,  is set

to a pre-assigned appropriate (small) value e > 0. As noted in Embrechts et al. (2004), if the

time interval  is  of  length x and c = 0,  the risk capital  u is  equal  to  the operational  value at

risk at significance level, a, i.e.,

u = OR- VaR1-ax ,

which  is  another  popular  risk  measure  considered  in  defining  the  capital  charge  for  opera-

tional  risk  (see also Embrechts  and Puccetti,  2006).  In  their  paper,  Embrechts  et  al.  (2004)

refer  to  ruin  probability  results,  see  e.g.  Embrechts  and  Veraverbeke  (1982),  Asmussen

(2000) and Schmidli  (1999),  which extend the applicability  of  the classical  ruin probability

model. However, the following major limitations may still be outlined:

è The function  hHtL  is represented by a straight  line,  which is  a simple but not a realistic

assumption for the premium income.

è the losses, Wi, i = 1, 2, ... , are assumed independent and identically distributed which is

also  a  restrictive  assumption,  not  expected  to  hold  for  operational  risk  losses  (see  e.g.

Panjer 2006, Chapter 8).
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è the ruin probability estimates quoted and discussed in Embrechts et al. (2004) are asymp-

totic approximations, i.e., for ruin on infinity, and as mentioned by the authors, "are not

fine  enough  for  accurate  numerical  approximations"  and  their  numerical  properties  are

"far less satisfactory", since these estimates are in an integral form. 

In what follows, we propose a methodology which aims at generalizing the discussed classi-

cal  ruin  probability  framework  and  making  it  a  more  practically  applicable  and  useful

approach for operational risk reserving. In particular, in our model, outlined in Section 2, we

relax the above mentioned limitations and consider more general assumptions on the income

function, on the distribution of the loss severities and their inter-arrival times, allowing them

to be dependent.  In Section 4,  we consider a possible insurance coverage of the operational

losses  from a  certain  risk  class  (i.e.,  line  of  business  or  a  BIS2  event  type,  as  required  by

Basel  Committee on Banking and Supervision 2004).  Under  the  methodology proposed in

Sections 3 and 4, it is possible to set not just a single value of the capital  charge for opera-

tional  risk,  but  to  set  a  dynamic  operational  risk  reserving  strategy  instead.  This  is  briefly

illustrated in Section 5 based on stylized numerical examples.

2. Ruin probabilities under a general model

Recently,  a  more  general  ruin  probability  model,  relaxing  the  restrictive  classical  assump-

tions, has been considered by Ignatov and Kaishev (2000), where an explicit finite-time ruin

probability formula was derived. Thus, the model considered by Ignatov and Kaishev (2000)

assumes

è any  non-decreasing  (premium)  income  function  hHtL  as  an  alternative  to  the  classical

straight line case 

è any joint distribution of the losses Wi, i = 1, 2, ..., allowing dependency between the loss

amounts, as an alternative to the i.i.d. classical assumption

è finite  time ruin probabilities,  as an alternative to the asymptotic approximations of  infi-

nite ruin probabilities, suggested by Embrechts et al. (2004)
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In  a  series  of  recent  papers,  (see  Ignatov  et  al.  2001,  2004,  Kaishev  and Dimitrova 2006a,

and Ignatov  and Kaishev  2004,  2006)  and the above mentioned ruin  probability  model  has

been explored and extended further and the following explicit non-ruin probability formulae

have been derived. 

Assume losses  (claims)  arrive  at  an  insurance  company with  inter-arrival  times t1, t2, ....,

identically, exponentially distributed r.v.s with parameter l, i.e., the number of the claims up

to time t, NHtL = # 8i : ti + ...+ ti § t<, with # denoting the number of elements in the set {.},

is  a  Poisson process  with  intensity  l.  In  the  case  of  discrete  claim severities,  the  latter  are

modeled  by  the  integer  valued  r.v.s.  W1, W2, ...  with  joint  distribution  denoted  by

Pw1,...,wi = PHW1 = w1, ..., Wi = wiL,  where  w1 ¥ 1, w2 ¥ 1, ... wi ¥ 1,  i = 1, 2, ... .  The  r.v.s

W1, W2, ... are assumed to be independent of  NHtL.  Then, the risk process RHtL,  at  time t  is

given by 

(3)RHtL = hHtL - SHtL , 
where hHtL  is a non-negative,  non-decreasing, real function, defined on +,  representing the

premium income of  the  insurance company and SHtL  is  the  aggregate  loss amount  at  time t

defined as in (1) but assuming the losses have a joint distribution Pw1,...,wi .

The  function  hHtL  is  such  that  limtØ¶ hHtL = ¶.  It  may  be  continuous  or  discontinuous,  in

which  case  h-1HyL = inf  8z : hHzL ¥ y<.  It  will  be  convenient  to  denote  the  whole  class of

functions  hHtL,  by  .  We  will  denote  also  vi = h-1HiL,  for  i = 0, 1, 2, ...,  noting  that

0 = v0 § v1 § v2 ... . The time T of ruin is defined as 

(4)T := inf  8t : t > 0, RHtL < 0<
and we will be concerned with the probability of non ruin  PHT > xL in a finite time interval@0, xD, x > 0.  It  has  been  shown  by  Ignatov  and  Kaishev  (2000)  that  under  this  model  the

survival probability is given as

(5)
PHT > xL = ‰-x l ‚

w1¥1
...

wn¥1

Pw1,...,wn
 ‚
j=0

k-1 H-1L j  b jHz1, ..., zjL l j  ‚
m=0

k- j-1 Hx lLm
m!

where  n = @hHxLD + 1,  @hHxLD  is  the  integer  part  of  hHxL,  vn-1 § x < vn,   k  is  such  that
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w1 + ...+ wk-1 § n - 1,  w1 + ...+ wk ¥ n,  (1 § k § n),  zl = vw1+...+wl
,  l = 1, 2, …  and

b jHz1, ..., zjL is defined recurrently as

 b jHz1, ..., zjL = H-1L j+1 zj
j

j ! + H-1L j+2 zj
j-1H j - 1L!  b1Hz1L + ...+ H-1L j+ j  zj

1

1!  b j-1Hz1, ..., zj-1L ,

with b0 ª 1, b1Hz1L = z1.

In Ignatov et al. (2001), formula (5) has been given the following exact, numerically efficient

representation

(6)

PHT > xL =

‰-x l ‚
k=1

n ‚
w1¥1,...,wk-1¥1

w1+...+wk-1§n-1

PHW1 = w1, ..., Wk-1 = wk-1; Wk ¥ n - w1 - ...- wk-1L 

‚
j=0

k-1 H-1L j  b jHz1, ..., zjL l j  ‚
m=1

k- j-1 Hx lLm

m! .

When  claims  have  any  continuous  joint  distribution,  the  probability  of  non-ruin  within  a

finite  time  x  has  recently  been  shown  by  Ignatov  and  Kaishev  (2004)  to  admit  the

representation

(7)

PHT > xL = ‰-l x 1 + ‚
k=1

¶
lk ‡

0

hHxL„ y1 ‡
y1

hHxL„ y2 ... 

‡
yk-1

hHxL
AkIx; h-1Hy1L, ..., h-1HykLM f Hy1, ..., ykL „ yk ,

      

where y0 ª 0,   AkHx; v1, ..., vkL,  k = 1, 2, ...,  are  the classical  Appell  polynomials  AkHxL of

degree k with a coefficient in front of xk equal to 1ê k!,  defined by

 A0HxL = 1, Ak
' HxL = Ak-1HxL, AkHnkL = 0 , k = 1, 2, ... .

and   f Hy1, ..., ykL  is  the  joint  density  of  the  partial  sums  of  consecutive  claims

Y1 = W1, Y2 = W1 + W2, ..., Yi = W1 + ...+ Wi, ... .

Obviously,  the  claim severities  are  related with  the  r.v.s  Y1, Y2, ...  through  the  equalities
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W1 = Y1,  W2 = Y2 - Y1, W3 = Y3 - Y2, ... ,i.e.,  Y1, Y2, ... and the joint  density y Iw1, ..., wkL
of the r.v.s W1, W2, ..., Wk can be expressed as  

yHw1, ..., wkL = f Hw1, w1 + w2, ..., w1 + ...+ wkL 
or      

f Hy1, y2, ..., ykL = yHy1, y2 - y1, ..., yk - yk-1L.
It  is  worth  mentioning  that  the  practical  use  of  the  ruin  theoretic  results  presented  here

critically  depends  on  their  numerical  performance.  Both  formulae  (6)  and  (7)  have  been

implemented numerically (see Ignatov et al. 2001 and Ignatov and Kaishev 2004) and allow

for the efficient computation of PHT > xL for any discrete or continuous joint distribution of

the losses Wi, i = 1, 2, ....  The computational properties of formulae (5) and (6) have been

explored in Ignatov et al. (2001) and as has been demonstrated, formula (6) is an improved

version  of  (5),  and  allows  for  the  exact  and  efficient  computation  of  the  ruin  probability

with  any  prescribed  accuracy  (depending  only  on  the  computational  resources  available).

This is possible because it involves only finite summation of the determinants, b jHz1, ..., zjL,
and  allows  for  some further  recurrent  enhancements.  For  related  details,  numerical  results

and comparisons with Monte Carlo evaluations based on Mathematica implementations, we

refer to Ignatov et al. (2001). It has to be noted that, to the best of our knowledge, there are

no  other  formulae  which  could  produce  exact  ruin  probability  values  under  the  general

models, underlying formulae (6) and (7). Approximate values for these probabilities can be

obtained  by  using  Monte  Carlo  simulation.  However,  it  is  well  known  that  Monte  Carlo

methods have very slow convergence, hence may require millions of time consuming simula-

tions to achieve reasonable accuracy. Furthermore, not all distributions used to model claim

amounts  are  analytically  invertible,   some  multivariate  dependent  distributions  are  not  so

straightforward  to  simulate from, which additionally hinders the application of  the Monte

Carlo  method.  Attempts  to  improve  the Monte Carlo  efficiency,  by  applying various vari-

ance  reduction  techniques  such  as  control  and  antithetic  variates,  and  low  discrepancy

sequences have their limitations and depend on the effective dimension of the problem. For

example  the  use  of  low  discrepancy  sequences  under  the  Quasi  Monte  Carlo  (QMC)

approach  is  restricted  by  the  dimension  of  the  implemented  existing  sequences,  such  as
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Sobol  and  Korobov  sequences.  For  further  details  on  QMC  and  other  variance  reduction

techniques, we refer to Glasserman (2004). 

The  numerical  performance  of  formula  (7)  is  briefly  illustrated  in  Ignatov  and  Kaishev

(2004) and is explored in somewhat greater detail in a separate study, preliminary results of

which  have  been  presented  at  the  10th  International  Congress  on  Insurance:  Mathematics

and Economics (see Kaishev and Dimitrova 2006b) and a related paper is under preparation.

This  study  indicates  that  although  formula  (7)  involves  infinite  summation  of  multiple

integrals with increasing dimension it  still  can be efficiently evaluated with any prescribed

accuracy, following an appropriate algorithmic implementation. The latter substantially uses

a  numerically  efficient  recurrent  representation  of  the  classical  Appell  polynomials,

AkHx; v1, ..., vkL,  combined  with  the  fact  that  they  are  multiplied  by  the  joint  probability

density of the individual claim amounts. This specific structure of formula (7) allows for the

accurate  and  efficient  numerical  evaluation  of  the  multiple  integrals,  practically  up  to  a

dimension of several hundreds, depending on the values of the risk model parameters, such

as x, l, hHtL and the distribution of the claims.

Recently,  a  further  extension of  the underlying risk  model,  beyond Poisson claim arrivals,

has been considered by Ignatov and Kaishev (2007). The authors have obtained closed form

finite-time non-ruin probability expression, under the assumption that inter-arrival times, ti,

i = 1, 2, ... are  independent,  (non-identically)  Erlang  distributed  random  variables  with

density function,

 fti HtL = lgi  tgi-1 ‰-l t ë GHgiL,
where gi, i = 1, 2, ... is a sequence of positive integers, (Erlang shape parameters), and  l is

the  Erlang  rate  parameter.   This  expression  has  been  generalized  further,  to  allow  depen-

dence  in  the  inter-arrival  times,  governed  by  a  reasonably  flexible  dependence  structure.

The  latter  is  imposed  by  appropriately  randomizing  the  Erlang  shape  parameters,

gi, i = 1, 2, ... . This can be viewed as obtaining a dependent distribution of the inter-arrival

times, ti, i = 1, 2, ..., by compounding their Erlang distributions with an appropriate multi-

variate distribution over gi, i = 1, 2, ... .  Such (dependence) features of the risk model and

the  related  non-ruin  probability  formulae  (see  Ignatov  and  Kaishev  2007)  are  especially
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appropriate for modelling operational losses, since they can successfully capture variability

in  the  loss  frequency  over  time.  The  possibly  substantial  inhomogeneity  in  the  loss  fre-

quency  is   a  stylized  fact  in  the  operational  loss  literature  (see  e.g.,  McNeil  et  al.  2005,

Section 10.1.4). 

The flexibility  of  the  results  mentioned in  this  section makes them especially  attractive in

modelling operational risk capital allocation, which is considered in the next section. 

3. Capital assessment under the general ruin probability model

The  (non-)  ruin  probability  formulae  (6)  and  (7),  are  flexible  and  can  be  directly  applied

under the LDA approach to operational risk modelling and capital assessment, assuming ruin

probability  is  selected  as  an  operational  risk  measure.  To  see  this,  note  that  taking  into

account the general ruin probability model outlined in Section 2, equation (2) can be rewrit-

ten as

(8)PHT > xL = 1 - PK inf
0§t§x

HhHtL - SHtLL < 0O = 1 - e
where the non-ruin probability on the left-hand side can be directly expressed by formula (6)

if loss severities Wi, i = 1, 2, ... are assumed discrete or by (7) if they are assumed continu-

ous. Operational risk capital allocation, can now be formulated as "selecting" an appropriate

"capital accumulation" function hHtL œ , such that equation (8) is satisfied for a sufficiently

small preassigned value e > 0. It has to be noted that there may be infinitely many solutions

to the functional equation (8), since the class  is rather general.  In particular the functions

hHtL œ  need  not  be  continuous  and  thus,  may  incorporate  jump  discontinuities  at  some

points  in  time.  Moreover,   need  not  necessarily  be  strictly  increasing  which  means  that

step-wise constant functions hHtL may also be considered. 

Somewhat  surprisingly,  the  flexibility  of  the  class   leads  to  the  possibility  of  selecting  a

function hHtL,  which maximizes the probability  of  non-ruin,  PHT > xL,  of  a  financial  institu-

tion, say a bank,  over an appropriate subclass of . In other words, the bank has the flexibil-

ity  of  selecting  different  capital  accumulation  strategies,  hHtL,  for  reserving  against  opera-

tional risk, so as to maximize its chances of survival from operational losses. For example, if
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the appropriate subclass is the class of all piecewise linear functions on @0, xD, with one jump

of size J, at some instant tJ œ @0, xD the bank may put aside less amount, u, of initial capital

at time t = 0 and top up this capital by an amount J  at some (optimal) later moment tJ. This

point is illustrated numerically in Section 5 (see Fig. 2) where it is demonstrated that one and

the same high non-ruin probability 1 - e  can be achieved by different  alternative choices of

capital accumulations, hHtL, whose values at the terminal time point, x, coincide.

In  general,  to  distinguish  between  different  choices  of  the  reserving  capital  accumulation

function hHtL, and thus to facilitate the solution of (8), these choices can be attached a differ-

ent utility which may for instance be related to the cost of borrowing capital from the bank.

For  example,  the  bank  may  find  it  preferable  to  set  less  initial  reserve  u  and  top  up  its

reserves at a later instant. In order to illustrate this point, assume that preference is measured

by  the  Expected  Present  Value  (EPV)  of  the  continuous  cash  flow  h'HtL = „ hHtL ê „ t.  Then,

from two different  solutions of  (8),  which provide equal  probabilities  of  survival,  the bank

will  chose  the  solution  with  lower  EPV.   Since  our  purpose  here  is  to  introduce  the major

concepts and discuss model (8) we will  restrain from going into greater details with respect

to this utility modelling aspect. 

A  second  point  which  deserves  to  be  made in  connection  with  setting  operational  reserves

according to (8) is that the joint distribution of the operational losses W1, W2, ... can be any

joint  distribution,  continuous  or  discrete.  This  is  possible  since  formulae  (6)  and  (7)  are

general  and are valid  for  any i.i.d  or  dependent  losses.  Thus,  they can easily  accommodate

any of the widely advocated one dimensional heavy tailed operational loss distributions, such

as the Generalized Pareto Distribution (GPD), the Lognormal distribution or the less popular

g-and-h and Generalized Beta Distribution of Second Kind (GB2) distributions, recently put

forward  by Dutta  and Perry  (2006).  Properties  of  the g-and-h distribution in  the context of

operational  loss  modelling  and  extreme value  theory  has  recently  been  explored further  by

Degen et al. (2007).

It is a common argument in the operational risk modelling literature (see e.g. Embrechts and

Puccetti  2006)  that  operational  losses  do,  in  general,  exhibit  dependence  in  their  severity.

Taking  account  of  this  dependence  may  require  significantly  higher  capital  reserves  on

aggregate  as  illustrated  in  Section  5,  (see  Fig.  3),  based  on  ruin  probability  as  operational
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risk measure. Thus, allowing for modelling dependence is an important feature of the method-

ology proposed here. Dependence can be incorporated in the loss distribution using  any of

the  available  dependence  modelling  techniques,  for  example  Markovian-type  dependence

structures  (see  Albrecher  and  Boxma  2004),  copulas  or  any  of  the  existing  multivariate

distributions. It  has to be noted that there are very few examples in the literature of depen-

dent multivariate distributions which have been used to model dependent severities of consec-

utive insurance claims and operational losses. Illustrations of how this can be done are to be

found in Ignatov, Kaishev and Krachunov (2001, 2004) for multivariate discrete distributions

and Ignatov and Kaishev (2004) for continuous distributions.

We believe there is  a great potential  in exploring the applicability  of  appropriate classes of

multivariate  distributions  in   modelling  dependence  of  operational  losses  and  insurance

claims. An extensive list of such candidate distributions is to be found in Johnson and Kotz

(1994)  Johnson,  Kotz  and Balakrishnan (1997)  and elsewhere in  the statistical  literature.  A

few examples  in  this  direction  are the class  of  multivariate  gamma distributions,  the skew-

normal distribution proposed by Azzalini and Valle (1996), the slash and skew-slash Student

t distributions, recently explored by Tan and Peng (2005). 

Alternatively,  copulas can serve the purpose of  modelling dependence in insurance  losses,

and for details of how this can be done we refer to Kaishev and Dimitrova (2006a). Although

copulas have recently gained considerable popularity in various applications in insurance and

finance  (see  e.g.  McNeil  et  al.  2005,  Chapter  5  and  Cherubini  et  al.  2004)  some practical

difficulties,  related  to  their  multivariate  versions,  their  appropriate  parameterization  and

estimation,  based  on  data,  still  exist.  In  particular  there  are  only  a  few  families of

(multivariate)  copulas  which  involve  sufficiently  many  parameters,  so  as  to  be  flexible

enough and capture real world multivariate loss dependences.  One such popular example is

the family of Elliptical copulas to which Gaussian and t-copulas belong. The family of Archi-

medean copulas is also a popular choice in practice, although they offer less flexibility due to

their  symmetry  (exchangeability)  and  scarce  parameterization.  Most  popular  Archimedean

copulas,  such as  Gumbel,  Frank,  Clayton copulas  involve  only  one parameter.  More richly

parameterized  Archimedean copulas  and  their  estimation  have  been  recently  considered  by

Lambert  (2006)  in  the  bivariate  case,  applying  Bayesian  splines  and  by  Dimitrova  et  al.

(2007) in the multivariate  case,  using so called Geometrically  Designed (GeD) splines. For
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extensions of  the Archimedean copulas to non-exchangeability  (asymmetry)  see McNeil  et

al. (2005), where further references are to be found. For summarized information on copulas

and their  application,  we refer  to  McNeil  et  al.  (2005),  Nelsen (2006)  and Cherubini  et  al.

(2004). 

As has been noted, in the operational loss literature (see e.g., McNeil et al.  2005) loss fre-

quency may exhibit strong inhomogeneity. One way of reflecting this is to depart from the

assumption of Poisson loss arrivals at a constant rate l,  and assume that inter-arrival times

are  independent  but  have  different  distribution  (as  in  the  Sparre  Andersen  model),  or  are

dependent  random  variables  with  a  certain  joint  distribution.  Under  such  assumptions  the

left hand side of (8) may be replaced by the corresponding formulae for PHT > xL, given in

Ignatov  and  Kaishev  (2007),  for  the  case  of  (compound)  Erlang  distributed  inter-arrival

times,  in  order  to  obtain  an appropriate  operational  risk  capital  accumulation function  hHtL
for a fixed level e.
Further  aspects  of  the  methodology  outlined  in  this  section  are  discussed  and  illustrated

numerically in Section 5.

4. Capital assessment under insurance on operational losses

Another important aspect of modelling operational risk capital assessment, recognized under

the AMA approach, is the effect on it of insurance on operational losses. The latter has been

considered recently by Brandts (2004) and Bazzarello et al. (2006) where it is assumed that

individual  operational  losses  are  insured  with  an  external  insurer  under  an  excess  of  loss

(XL)  contract.  Under  this  model  there  is  a  deductible  d > 0  and  a  policy  limit  m > 0,  and

what is covered by the insurer is

Wi
r = minHmaxHWi - d, 0L, mL, i = 1, 2, ...

whereas the net loss covered by the internal operational risk management (ORM) office of a

financial institution is

(9)Wi
c = Wi - Wi

r = min HWi, dL + maxH0, Wi - Hd + mLL , i = 1, 2, ...
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Thus, under such an arrangement, there are two parties providing the operational loss cover,

the ORM office,  which plays the role  of  an internal  direct  insurer  and the external  insurer,

which could be viewed as a reinsurer. The role of the latter party is essential and the probabil-

ity of it defaulting has been considered by Brandts (2004) and by Bazzarello et al. (2006). 

Here, we take a different approach, motivated by the observation that both parties share the

operational  risk  they  jointly  cover,  and  hence  in  defining  the  total  risk  capital,  allocated

overall  and  split  by  the  two  parties,  it  is  meaningful  to  consider  their  joint  chances  of  not

defaulting,  i.e.,  to  consider  the  probability  of  their  joint  survival.  To  follow  details  of  this

approach we will introduce some further notation.

Denote  by  Y1
c = W1

c,  Y2
c = W1

c + W2
c, ... and  by  Y1

r = W1
r ,  Y2

r = W1
r + W2

r , ... the  partial  sums

of consecutive operational losses to the ORM office and to the external insurer, respectively.

Obviously, in view of (9), we have that Yi
c + Yi

r = Yi, i = 1, 2, ... , i.e., operational losses are

shared.  Under  this  XL  reinsurance  model,  the  total  capital,  hHtL,  accumulated  by  the  ORM

office  is  also divided  between the two parties  so that  hHtL = hcHtL + hrHtL,  where hcHtL,  is  the

ORM office's capital accumulation function and hrHtL  models premium income of the exter-

nal insurer, assumed also non-negative, non-decreasing functions on +. As a result, the risk

process, RHtL,  can be represented as a superposition of  two risk processes, that  of  the ORM

office

(10)Rt
c = hcHtL - YNt

c

and of the insurer

(11)Rt
r = hrHtL - YNt

r

i.e., RHtL = Rt
c + Rt

r .

Denote  by  PHTc > x, Tr > xL,  the  probability  of  joint  survival  of  the  bank  ORM office  and

the external insurer up to time x, where Tc and Tr, denoting the moments of ruin of  the two

parties,  are  defined  as  in  (4),  replacing  RHtL  with  Rt
c  and  Rt

r  respectively.  Clearly,  the  two

events HTc > xL and HTr > xL, of survival of the bank ORM office and the insurer are depen-

dent since the two risk processes Rt
c and Rt

r  are dependent through the common loss arrivals

and the loss severities Wi, i = 1, 2, ..., as seen from (10) and (11). This motivates us to con-
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sider  the  probability  of  joint  survival,  PHTc > x, Tr > xL,  as  a  joint  measure  of  operational

risk when operational losses  are insured. The following risk capital  allocation problem can

then be formulated, which takes into account the fact that the two parties share the risk and

the total capital accumulated.

Problem  1.  For  fixed  deductible  d  and  policy  limit  m,  find  capital  accumulation  function

hHtL œ  with a representation hHtL = hcHtL + hrHtL, hcHtL, hrHtL œ  such that

(12)PHTc > x, Tr > xL = 1 - e.
Clearly, this problem may in general have more than one solution. Further conditions may be

imposed to restrict the set of possible solutions.

In  order  to  solve  Problem  1,  the  following  explicit  expression  for  the  probability  of  joint

survival  up  to  a  finite  time  x,  recently  derived  by  Kaishev  and  Dimitrova  (2006a),  can  be

used in the case of continuous loss severities. We have

(13)

PHTc > x, Tr > xL =
‰-l x 1 + ‚

k=1

¶
lk ‡

0

hHxL‡
0

hHxL-w1

∫ ‡
0

hHxL-w1-...-wk-1

AkHx ; nè1, ..., nèkL
yHw1, ..., wkL „ wk ...„ w2 „ w1

where

nè j = minHzè j , xL, zè j = maxIhc
-1Iy j

cM, hr
-1Iy j

r MM, y j
c = ⁄i=1

j wi
c, y j

r = ⁄i=1
j wi

r, j = 1, ...,k,

wi
c = minHwi, dL + maxH0, wi - Hd + mLL, wi

r = minHm, maxH0, wi - dLL, and

AkHx ; nè1, ..., nèkL , k = 1, 2, ... are the classical Appell polynomials AkHxL of degree k, defined

as in (7).

Let us note that expression (13) is a generalization of formula (7) which follows from (13) in

the special case of m = 0. Formula (13) has been implemented using the Mathematica system

and to follow its  numerical  performance (also in solving optimal  reinsurance problems) we

refer  to  Kaishev  and Dimitrova (2006a).  Thus,  formula  (13)  can be successfully  applied  to

represent  the  left-hand  side  of  equation  (12)  and  solve  Problem  1.  In  the  case  of  discrete
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claim amounts, Problem 1 can also be formulated and solved with formula (13) replaced by a

discrete analog due to Ignatov et al. (2004).

It can be argued that a typical (re)insurance company would most likely only insure a small

percentage of the bank's losses and would also insure many other banks and firms and many

other perils at the same time in order to diversify. However, often big banks and firms would

prefer to insure substantial part of their losses with one particular big (re)insurance company

and  these  losses  would  represent  substantial  part  of  the  total  business  underwritten  by  the

(re)insurer. It is in such cases, where joint survival of the two parties is critical and default of

any of them with respect to the risk-sharing contract, may cause downgrading of their credit

rating or even bankruptcy, as was recently the case with the 6-th largest worldwide reinsur-

ance company Gerling Global Re. With the increased frequency and severity of catastrophic

events  such  scenarios  become  even  more  likely  and  this  is  why  the  simple  model  of  joint

survival of two parties sharing the risk is relevant. Of course, in cases where there are many

parties  involved  in  a  risk sharing arrangement,  the two-party  model  presented here may be

applied on a bilateral bases and is obviously a necessary first step towards further generaliza-

tions to the more complex multi-party multi-risk sharing reality.

Next, we provide some numerical illustrations of the methodology described in Section 3.

5. Numerical illustrations

In  order  to  illustrate  the  methodology  outlined  in  Section  3,  we  consider  five  alternative

distributions  of  the  consecutive  losses.  In  our  first  example,  operational  risk  losses  are

assumed i.i.d. with a discrete, logarithmic distribution, i.e. Wi ~ LogHaL with a generic p.m.f.

PHW = iL = -ai ë Hi ln H1 - aLL.  We  have  calibrated  this  distribution  against  operational  risk

loss  data  by  approximately  matching  its  mean  and  variance  to  the  Lognormal  distribution

fitted by Brandts (2004), (see Table 5 therein) to the aggregate losses from the 2002 LDCE

data file.  This  is  achieved for  a = 0.73.  Of  course,  the logarithmic  distribution  we use,  has

lighter tail than the Lognormal one, but it suits our illustrative purposes here. A set of opera-

tional losses arriving in the interval @0, 2D with inter-arrival times distributed as ExpH20L and

with  severities  simulated  from the  LogH0.73L  distribution  are  presented  in  the  left  panel of
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Fig. 1. In the right panel of Fig. 1, for hHtL = u + c t with c = 25, we have presented values of

the initial capital u for different choices of the probability of survival PHT > 2L.
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Fig.  1.  Left  panel:  Simulated  operational  loss  data,  Wi ~ LogH0.73L.  Right  panel:  initial

capital   u,  for  choices  of  PHT > 2L  equal  to  90%,  95%,  99%,  99.5%  and  99.9%,

hHtL = u + 25t, ti ~ ExpH20L.
As can be seen, the capital charge u increases nonlinearly with the increase of the probability

of  survival,  at  a  much higher  rate  as PHT > 2L  approaches  one.  The calculations  have been

performed in Mathematica, solving (8) with PHT > 2L expressed by (6), applying the Newton

algorithm.  In particular,  PHT > 2L = 0.99 is achieved for  hHtL = 79.4+ 25t.  To illustrate  the

fact  that  the  same  probability  0.99 can  be  achieved  by  alternative  choices  of  the  capital

accumulation function hHtL, we have next assumed that it belongs to the subclass of all piece-

wise linear functions on @0, xD, with one jump of size J, at some instant tJ œ @0, xD, i.e., 

hHtL = : u + c1 t , 0 § t < tJ
u + c1 tJ + J + s1Ht - tJ L , tJ § t § x

,

In the left panel of Fig. 2., two choices of hHtL are plotted, h1HtL = 79.4+ 25t and 

h2HtL = : 59.4+ 27 t , 0 § t < 1
59.4+ 27+ 20+ 23Ht - 1 L , 1 § t § 2

 .

As illustrated  in  the  right  panel  of  Fig.  2,  moving the location  tJ  of  the  jump J = 20 from

tJ = 0 to tJ = 2, while keeping the rest of the parameters fixed, we can see that a maximum

of PHT > 2L = 0.99 is achieved for tJ = 1. Indeed, both functions h1HtL and h2HtL provide equal

chances of survival, 99% and also, accumulate equal risk capital at the end of the time inter-

val,  x = 2,  i.e.  h1H2L = h2H2L = 129.4.  But  obviously  the  choice  h2HtL  is  preferable  since  it
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requires less capital,  u = 59.4,  to be put aside initially,  compared to u = 79.4 for  the choice

h1HtL.
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Fig.  2.  Left  panel:  Two  choices  of  the  capital  accumulation  function,  h1HtL = 79.4+ 25t

(thick  line)  and  h2HtL = H59.4+ 27 t L 80§t<1< + H59.4+ 27+ 20+ 23Ht - 1 LL 81§t§2<  (dashed

line). Right panel: PHT > 2L as a function of the location tJ of the jump in h2HtL of size J = 20.

In order to demonstrate how the methodology works under the assumption that losses have a

continuous  multivariate  distribution,  we  consider  two  alternatives,  a  light-tail  exponential

distribution  and  a  heavy-tail  Pareto  distribution,  assuming both  independent  and dependent

risk  losses.  First,  the  severities  of  the  consecutive  risk  losses  Wi,  i = 1, 2, ...,  are  assumed

independent,  identically  distributed  following  Exp(0.5)  or  Pareto(2.41,1.17),  so  that  their

mean matches the mean of the 2002 LDCE data. A simulation from the joint distribution of

the  severities  of  two  i.i.d.  risk  losses,  Wi,  i = 1, 2 is  given  in  Fig.  3  (a),  in  the  case of

Wi ~ ExpH0.5L,  and  Fig.  3  (c),  in  the  case  of  Wi ~ ParetoH2.41, 1.17L.  Secondly,  Wi,

i = 1, 2, ... are  assumed  dependent,  with  joint  distribution  function  given  by  the  Rotated

Clayton  copula,  CRClHu1, ..., uk; qL  and  the  marginals  are  assumed  to  be  ExpH0.5L  or

Pareto(2.41,1.17)  distributed.  Considering  these  four  cases  allows  us  to  study  the  effect of

assuming a heavier  tail  distribution and the effect  of  dependence on the risk capital  alloca-

tion, in particular on the size of the initial capital charge u.

The Rotated Clayton copula, CRClHu1, ..., uk; qL, is defined as

(14)CRClHu1, ..., uk; qL = ⁄i=1
k ui - k + 1 + I⁄i=1

k H1 - uiL-q - k + 1M-1êq
,

with  density  cRClHu1, ..., uk; qL = cClH1 - u1, ..., 1- uk; qL  and  parameter  q œ H0, ¶L.  The

value q = 0  corresponds to independence. The Rotated Clayton copula has upper tail depen-
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dence with coefficient lU = 2-1êq  and is suitable for modeling dependence between extreme

operational losses. 

Losses  with  dependence  according  to  a  Rotated  Clayton  copula  with  parameter  q = 1  are

illustrated through a random sample of 2000 data points in Fig. 3 (b), in the case of identical

ExpH0.5L marginals, and Fig. 3 (d), in the case of identical Pareto(2.41,1.17) marginals. The

presence  of  positive  dependence,  determined  by  q = 1,  and  of  upper  tail  dependence,

lU = 2-1, is clearly visible.We refer the reader to Kaishev and Dimitrova (2006a) for further

applications of this copula in modelling dependence of insurance claim severities combined

with other (heavy-tailed) marginal distributions.

Fig. 4 illustrates the heavy impact of dependence between loss severities on the value of the

initial  capital  charge  u,  given  hHtL = u + 25t,  x = 2  and  Poisson  inter-arrival  times

ti ~ ExpH20L. As can be seen in the left panel of Fig. 4, in order to achieve survival probabil-

ity  PHT > 2L = 0.90 the capital  charge should be u = 55.7 in  the case of  i.i.d.  Wi ~ ExpH0.5L
and u = 112 when assuming dependence. Furthermore, if a probability of PHT > 2L = 0.999 is

to be achieved, the corresponding values are u = 98.3 for i.i.d. losses and u = 466, for depen-

dent losses, which is 4.74 times higher. The values of the capital charge u have been calcu-

lated  solving  (8),  with  PHT > 2L  given  by  formula  (7).  Similar  results  are  presented  for

Pareto(2.41, 1.17) risk losses in the right panel of Fig. 4. Comparing it with the exponential

case,  one can see that  lower  level  of  capital  is  required for  probabilities  0.90 and 0.95 and

similar or greater u is needed for higher probabilities (between 0.99 and 0.999) both for the

independent  and the dependent  cases,  due to the effect  of  the heavy-taildness of  the Pareto

distribution and its left truncation which rules out losses smaller than 1.17.

Of course, the choice of the Rotated Clayton copula with parameter q = 1,  leads to Kendall's

t = 0.33 and upper tail dependence lU = 0.5, which tailors a reasonably strong dependence,

so  the  result  could  be  extreme,  but  convincingly  illustrates  the  importance  of  considering

dependence when setting operational risk capital  charge. However, our experience indicates

that different choices of dependence structures (e,g, Markovian type dependence or different

copulas) and loss distributions may have quite a different effect on the level of capital charge

over the entire probability range. 
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Fig.  3.  (a)  simulated  i.i.d.  Exp(0.5)  losses;  (b)  simulated  dependent  losses  following

CRClHu1, u2; 1L  with  ExpH0.5L  marginals;  (c)  simulated  i.i.d.  Pareto(2.41,1.17)  losses;  (d)

simulated dependent losses following CRClHu1, u2; 1L with ParetoH2.41, 1.17L marginals.
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Fig. 4. Initial capital u, for choices of PHT > 2L equal to 90%, 95%, 99%, 99.5% and 99.9%,

hHtL = u + 25t, ti ~ ExpH20L, in the case of: Left panel - i.i.d. Exp(0.5) losses (thick line) and

dependent  losses  following  CRClHu1, u2; 1L  with  ExpH0.5L  marginals  (dashed  line);  Right

panel  -  i.i.d.  Pareto(2.41,1.17)  losses  (thick  line)  and  dependent  losses  following

CRClHu1, u2; 1L with ParetoH2.41, 1.17L marginals (dashed line).
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6. Comments and conclusions

We  have  demonstrated  that  the  proposed  methodology  which  is  based  on  solving  (8)  and

(12) using the explicit formulae (6), (7) and (13) is a promising modelling tool for (dynamic)

operational risk capital allocation. An important conclusion is that dependence of the sizes of

operational  losses may have a  dramatic  effect  on the operational  loss  reserving strategy.  A

further  investigation  into  this  phenomenon would look into  the  effect  of  introducing cross-

over dependence between inter-occurrence times of losses and their amounts. Further insight

into the numerical methods which need to be called upon in order to implement the proposed

methodology (solve equation (8) and Problem 1) is also required and is a subject of an ongo-

ing research.
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