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Abstract: Clinical decision support systems are interactive software systems 
designed to assist clinicians with decision making tasks, such as determining a 
diagnosis or recommending a treatment for a patient. Clinical decision support 
systems are a widely researched topic in the Computer Science community but 
their inner workings are less well understood by and known to clinicians. In this 
article we provide a brief explanation of clinical decision support systems and 
provide some examples of real world systems.  We also describe some of the 
challenges to implementing these systems in clinical environments and posit 
some of the reasons for limited adoption of decision support systems in practice.  
We aim to engage clinicians in the development of decision support system that 
can meaningfully help with their decision making tasks and open up a discussion 
about the future of automated clinical decision support as a part of healthcare 
delivery. 
 

Keywords: Clinical Decision Support Systems, Adoption of Decision Making 
Tools in Clinical Practice. 

 

Context 

Information technology (IT) is now commonplace in almost every branch of 
healthcare. Electronic health records (EHR), e-prescribing and digital medical 
imaging are now well known to clinicians and have been implemented with 
varying degrees of success [1]. In addition clinicians increasingly make use of 
online repositories such as PubMed and Google Scholar [2], or specialised 
search engines such as FindZebra [3] to help answer clinical questions. One 
often overlooked set of IT tools are Clinical Decision Support Systems (CDSSs), 
which have been defined as systems that ‘provide clinicians or patients with 
computer-generated clinical knowledge and patient-related information, 
intelligently filtered or presented at appropriate times, to enhance patient care’ 
[4]. CDSSs have been the subject of academic Computer Science research for 
over 50 years [5], and offer the potential for better supported clinician decision 
making, improved compliance with medical standards and improved clinical 
efficiency and safety [6, 7]. Nonetheless, CDSS utilization remains limited and 
most healthcare IT systems do not include robust CDSS functions that can be 
widely employed across organizations, clinical presentations and domains [8]. 

Some of the challenges to CDSS implementation relate to the volume of high 
quality data required for state-of-the-art systems, the translation of such data to 
machine readable states, and the mapping of CDSS processes so that they fit 
with existing clinical workflows. As a result successful CDSSs implementations 



have tended to be site and domain specific and there have been major difficulties 
in replicating these successes more extensively throughout healthcare systems 
[9]. This is in contrast to commercial fields such as finance where decision 
support technologies have been widely deployed. For example, risk profiling tools 
for financial experts have been developed as easy-to-use programs that can 
assimilate information and guide users through complex financial information and 
associated decisions tailored to individual customer needs. Healthcare decision 
making is significantly more complex than financial planning, however some of 
the challenges in both domains are similar; large quantities of data that need to 
be linked, integrated and translated to machine readable formats, and expert 
knowledge required to contextualize and apply the data in a meaningful way. In 
the following sections we discuss some reasons for limited dissemination and 
adoption of CDSSs to date and reflect on the major barriers that need to be 
overcome for wider adoption of these useful tools. 

A Brief Taxonomy of CDSSs 

CDSSs vary widely in their type and complexity. Systems can be passive (the 
user explicitly makes a request for support); semi active (watchdog systems that 
are invoked automatically and present information when the user requests it); or 
active (triggered automatically and present information without it being requested 
and in some cases make decisions without the intervention of the clinician).  

CDSSs have been implemented to support clinicians across the spectrum of 
medical specialities, as well been abstracted for different levels of clinical 
expertise from novice (e.g. student nurses) [10], to non-specialist (e.g. in 
community hospital settings) [11], and highly specialist healthcare professionals 
(e.g. digital pathology) [12].  

In terms of complexity, CDSSs vary widely. Simple CDSSs usually check the 
input provided by a clinician and verify whether it is an allowable value or within a 
specified range, or if there are any predefined contra-indications. The output of 
the CDSS is usually in the form of an alert or reminder. Examples of such CDSS 
are usually embedded in order entry systems and include functions for drug-

allergy checking, basic dosing guidance, duplicate therapy checking and drug–
drug interaction checking [13].   

CDSS of mid-level complexity include prognostic calculators and automated 
clinical practice guideline systems. Prognostic calculators are used to 
automatically determine prognosis usually by implementing established clinical 
scoring systems. Examples include the GBM (glioblastoma multiforme) 
Calculator which implements the EORTC (European Organisation for Research 
and Treatment of Cancer) Scoring System [14] and Adjuvant Online which is a 
tool to assist with decisions about adjuvant therapy in patients with early invasive 
breast cancer [15].  

Automated clinical practice guideline systems represent clinical knowledge from 
practice guidelines in one of a number of guideline modelling languages which 



allows a CDSS to execute extracted guideline rules or algorithms to compute 
decisions about possible diagnoses or interventions. By coupling a computer-
based guideline system with an EHR, recommendations can be personalized to 
the individual patient. Guideline based CDSSs have been developed for a range 
of clinical specialities [16] and are also widely used as a basis for helplines where 
less expensive or experienced clinical staff perform triage services, or in 
Telemedicine services where diagnoses are performed remotely [17].  These 
systems are also gaining traction in the consumer health informatics arena as the 
basis for online self-assessment tools for patients e.g. NHS Direct [18].  

Complex CDSSs use Artificial Intelligence (AI), data mining, or statistical 
methods to reason about the classification or prediction of a disease or patient 
state. These methods automatically identify key features that are important for 
the clinical classification or prediction problem and use mathematics to determine 
the way in which the these features should be combined to create an output 
representing the classification or prediction [19]. Commonly used techniques 
include logistic regression, artificial neural networks and support vector 
machines. These complex methods have been applied to a wide range of clinical 
decision making problems including diagnosis of prostate cancer [20], screening 
for obstructive sleep apnea in persons with ischemic heart disease [21], and 
identifying psychiatric problems [22]. 

In systems of simple or mid-level complexity, the decision computed by the 
CDSS can usually be easily explained to the clinician (e.g. by showing a trace of 
the rules used to compute the outcomes). However in complex systems 
decisions are computed using advanced mathematics and non-linear 
transformations and it is therefore difficult to document how specific decisions are 
reached and thus explain the output to clinicians. However, these complex 
CDSSs better mirror clinicians’ decision making processes by integrating and 
reasoning over multiple facets of patient data and computing a likely outcome for 
a specific patient state.  

Challenges to Implementation and Adoption of CDSSs 

Most literature focuses on operational aspects that act as a barrier to CDSS 
implementation [23]. In particular, slowly emerging standards for healthcare IT 
and poor interoperability between clinical systems limits the development of 
generic, reusable and scalable CDSSs. However, valuable work is being carried 
out to remedy these technical gaps by standards agencies such as HL7 [24] as 
well as on-going work on developing comprehensive biomedical terminologies 
such as SNOMED-CT [25]. Furthermore the increasing prevalence of EHRs 
should improve accuracy and standardization in data collection as well as link 
disparate parts of patient records. These developments have important 
implications for CDSSs - for CDSSs to operate optimally they require accurate 
and comprehensive data, and to operate in different settings they require 
standardized data. We posit that these developments will ease practical 
development of CDSSs; however, there remain other significant issues not 
related to technology that will still present challenges. These challenges are 



related to so-called “softer” elements and include vendors and users of systems 
as well as organizational, legal and ethical challenges. 

A survey of the CDSS capabilities of major commercial Clinical Information 
Systems (CISs) in the USA found that the majority have small-scale in-built 
functionalities mostly comprised of alerts and reminders with scant support for 
more complex decision-making tasks [26]. The reasons for the emphasis on 
simpler functionality is clear: in order for commercial systems to be viable, they 
need to scale to different contexts and work environments and thus providers 
focus on simpler tasks that are homogeneous across institutions (e.g. 
computerized order entry). The development of CDSSs to support more complex 
decision making (e.g. prediction of patient states or classification of diseases), is 
significantly more difficult and time consuming and such efforts have remained 
largely confined to academic environments, where researchers possess the time 
required and advanced computational expertise to create appropriate solutions. 
However the nature of these academic projects is such that they are funded for 
relatively short periods of time and, if deployed clinically, they usually remain 
standalone small-scale systems used only by the clinicians who were involved in 
their development. This is exacerbated by the fact that complex CDSSs are 
difficult to customize to different tasks and contexts (e.g. different CDSS are often 
required for paediatric and adult conditions, or systems may not generalize for 
similar patient cohorts from different countries [15]), as they use specific learning 
algorithms that have been trained to achieve optimal accuracy on a specified set 
of patient attributes and states. Wider deployment of any CDSS will also include 
the requirement to tailor the system to the local clinical setting including the 
established clinical workflow, the site-specific clinical vocabulary and locally 
installed hardware and software IT systems. In addition maintenance presents a 
significant challenge both in the face of rapidly advancing clinical knowledge and 
a lack of standardized institutional guidelines on periodic review of CDSSs. The 
maintenance dilemma is also intensified by the fact that many graduates who 
develop academic CDSSs tend to find limited opportunities in the healthcare 
domain and find more lucrative opportunities in developing decision support tools 
for finance or industry. 

A common criticism of CDSSs is their poor usability [27]. Clinicians work in busy 
environments under demanding time and other pressures and any system that 
adds to those burdens will not be accepted. Reviews of clinicians’ information 
seeking behaviour show that a lack of time and formal training with IT systems, 
as well as having to distract from the current workflow and clinical task at hand 
because decision making software is often not embedded directly within relevant 
CISs resulted in clinicians using colleagues as their first source when seeking 
information about decisions [28].  

As already mentioned, the most commonly available CDSSs are alert and 
reminder systems and even such rudimentary systems are frequently ill-
designed, for example providing alerts that appear too frequently, or alerts that 
are not sufficiently specific and thus impede the clinical workflow. More complex 



CDSSs, for example those that employ so-called “black-box” methods such as 
neural networks from AI, come with a different set of usability issues; these 
include a lack of understanding of these methods on the part of clinicians and an 
associated lack of comprehensibility about how the CDSS has computed its 
decision. However, these methods are necessary for the successful development 
of robust CDSSs that can reason over large clinical datasets as well as 
incorporate clinical knowledge in order to compute accurate outputs. These 
methods will gain in importance as complex high volume genomic data becomes 
commonplace in clinical practice and application of these techniques will play an 
important role in achieving the benefits of personalized medicine [29]. 

An important tenet of Human Computer Interaction, the domain of Computer 
Science that deals with the interaction between users and computers, is to 
design with the end user in mind. In the case of CDSSs, computer scientists are 
often developing software for the manipulation of complex clinical concepts that 
they do not fully understand, for clinicians who clearly understand these concepts 
but who may not well understand the technologies and methodologies that 
underpin CDSSs. It is clear that the most effective CDSSs will be developed via 
close collaboration between computer scientists and clinicians, where computer 
scientists require better understanding of the real clinical needs that CDSSs 
should satisfy, and clinicians need to better understand the “inner workings” of 
CDSSs. Sophisticated CDSSs, beyond alerts and reminders, require better 
informed end users, and with the growing prevalence of computers in medicine, 
clinicians must be better supported so that their informatics training needs are 
met, thereby fostering understanding and trust in computerized knowledge used 
to generate decisions. Better motivation on the part of clinicians to use CDSSs 
would also drive commercial development, and vendors of CIS would be forced 
to expend more investment in CDSS technologies. 

Whilst closer collaboration between the medical and computer science 
communities is required for useful and usable CDSSs, it must be recognised that 
these communities have different foundations. Medicine is a long established, 
highly regulated discipline when compared to Computer Science. In Computer 
Science no licence is required to practice the profession although possible 
computer system errors could have a direct impact on patient safety. Whilst the 
US Food and Drug Administration has developed guidance regarding medical 
software and other safety critical health care IT systems, software validation is 
not usually subject to such stringent protocols as for other healthcare 
interventions (e.g. Randomized Controlled Trials for new therapies). Furthermore 
computer scientists usually work in teams who collectively develop software, 
whereas it is often the individual clinician that is solely responsible for medical 
decisions related to patients’ health. Questions therefore arise about the legal 
risks to clinicians when relying on decisions generated by a CDSS, particularly 
when these systems use complex “black box” methods. On the other hand there 
is also the potential for CDSSs to be used to decrease medical litigation. If 
CDSSs embed best practices, clinical guidelines and recommended standards of 
care, they could be used as a focus for quality control, including auditing of 



clinical decisions.     

It is worth noting that until recently the vast majority of CDSS development has 
been aimed at clinicians; however the increasing rate of patient engagement with 
online medical content is giving rise to a new market for consumer-oriented 
CDSSs. A recent survey of 1132 patients in the United States showed that 67% 
were favourably disposed to using online health resources as a complement to 
in-person doctor visits and 47% would use them as a substitute [30].  On the one 
hand consumer-oriented CDSSs have the potential to encourage patients to 
become more involved in and informed about their care and can encourage them 
to make healthy choices to improve or maintain their health. It may also be 
possible to use these systems to relieve pressures on front line services by 
allowing patients to self-manage some conditions. On the other hand there are 
justifiable concerns about patients’ ability to interpret medical information 
correctly as well as the quality of health information online. A recent study that 
assessed the quality of 60 mobile phone “apps” providing health promotion in the 
areas of ‘healthy diet', ‘obesity', ‘smoking cessation', and ‘cancer prevention' 
found that less than 5% of the apps indicated that the educational material was 
peer reviewed by appropriate clinical parties [31]. CDSSs for consumer health 
informatics clearly opens up many questions for both the medical and computer 
science communities and is an area where collaboration between both parties is 
essential to ensure the safe delivery of services within this new healthcare 
paradigm.  

Questions for CDSSs’ stakeholders 

From a technical standpoint, the time is now ripe for developing CDSSs that can 
offer meaningful support for clinical decision-making. The growing prevalence of 
healthcare IT, including EHR, standards such as HL7 for sharing and integrating 
patient data, and mobile applications to aid with point of care consultations lend 
themselves to the development of CDSSs that can support complex decision 
making as part of clinical workflow. However, there remain other important 
challenges and we conclude with some food for thought on the future of CDSSs: 

 The computerization of healthcare is something that is only going to 
increase and hence the clinician’s educational needs must include 
generally relevant areas of IT. Should clinicians also be educated in the 
specific computer science methodologies that underpin CDSSs? 

 If clinicians gain more knowledge of, and trust in, CDSSs, are vendors of 
CISs ready to change their approach and to focus on decision support 
needs of clinicians in addition to operational tasks?  

 The decisions computed by complex CDSSs using techniques from AI are 
often not transparent and there is a lack of institutional guidance on 
decision-making supported by CDSSs. Should developers of CDSSs bear 
some responsibility for decisions taken by clinicians starting from CDSS 
suggestions? 



 Finally, if all challenges outlined in this viewpoint were addressed and it 
became possible to develop CDSSs such that their performance was on a 
par with the expert clinician, would clinicians want to use them? 

 

List of abbreviations used 

IT: Information Technology  
EHR: Electronic Health Records  
CDSS: Clinical Decision Support System 

AI: Artificial Intelligence 

CIS: Clinical Information System 
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