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Abstract

In this paper, we derive a formula for the optimal investment allocation (derived from a dynamic

programming approach) in a defined contribution (DC) pension scheme whose fund is invested in n

assets. We then analyse the particular case of n = 2 (where we consider the presence in the market

of a high-risk and a low-risk asset whose returns are correlated) and study the investment allocation

and the downside risk faced by the retiring member of the DC scheme, where optimal investment

strategies have been adopted. The behaviour of the optimal investment strategy is analysed when

changing the disutility function and the correlation between the assets. Three different risk measures

are considered in analysing the final net replacement ratios achieved by the member: the probability

of failing the target, the mean shortfall and a Value at Risk measure. The replacement ratios

encompass the financial and annuitization risks faced by the retiree. We consider the relationship

between the risk aversion of the member and these different risk measures in order to understand

better the choices confronting different categories of scheme member. We also consider the

sensitivity of the results to the level of the correlation coefficient.
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1. INTRODUCTION
In this paper we first derive and analyse the optimal investment strategy for a defined contribution

pension scheme whose fund is invested in n assets, and then consider the special case of 2 assets

and study the optimal investment strategy behaviour and the downside risk (in terms of the net

replacement ratio achieved at retirement) faced by the member of the scheme, thereby extending the

model introduced in Vigna and Haberman (2001).

The extensions introduced are threefold:

1. we consider n assets instead of 2;

2. we now consider assets which are correlated with each other;

3. we generalise the disutility function in such a way that deviations of the fund above the target

are not penalised to the same degree as deviations below and the risk profile of the individual is

taken into consideration

For the case of the n=2, the downside risk has been studied by examining three risk measures: the

probability of failing the target, the mean shortfall and the Value at Risk measure (VaR) at three

different confidence levels (1%, 5% and 10%).

The annuity risk faced by the member has been analysed through these risk measures by comparing

the results relative to the net replacement ratio both in the case of a fixed conversion factor and in

the case of a random conversion factor, which depends on the prevailing yield on the low risk asset.

2. THE MODEL

We consider a defined contribution pension scheme with n-asset portfolio. The forces of interest

corresponding to the investment returns of the n assets are assumed to be normally distributed and

correlated at any time with a given variance-covariance matrix.

Contributions are paid in advance every year as a fixed proportion of the salary of the scheme’s

member. Taxation, expenses and decrements other than retirement are not taken into consideration.

The scheme member is assumed to join the scheme at time t = 0 and contribute until retirement at

time t = N, which is a time point that is fixed in advance.

The model is presented in discrete time and we assume that the portfolio is reallocated every year

between the n assets, depending on the past history of the market returns and on the current size of

the fund, which is compared to an a priori target. We then find the optimal investment allocation

every year that minimises the deviations of the fund from these corresponding targets. We assume

that there are no real salary increases and that for simplicity the salary is 1 each year.

The fund at time t+1 is given by the following equation:

(2.1) ∑
−

=
+ +−+=

1n

1i

XXXi

tt1t ]e)ee(y)[cf(f t
nn

t
i
t t=0, 1,…, N-1

where:

ft: fund level at time t

c: contribution rate
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i

ty : proportion of the portfolio invested in the i
th

 asset during year [t, t+1], i = 1,2,…,n-1, so that the

proportion invested in the n
th

 asset is ∑
−

=
−

1n

1t

i

ty1

i

tX : force of interest of i
th
 asset in year [t, t+1], assumed to be constant over year [t, t+1], i=1,2…n

For fixed i, the sequences { i

tX }t=0,1,…N-1 are assumed to be IID with a normal distribution, while the

correlation structure for the annual forces of interest i

tX  and j

tX  is given by the variance-covariance

matrix, which is assumed to be constant for any t.

Therefore:
i

tX ≈ N (µi, σi
2
) for t = 0, 1,…, N-1

where we assume, without loss of generality, that:

µ1 > µ2 > …> µn  and σ1
2
 > σ2

2
 > …> σn

2
.

3. THE PROBLEM

3.1 FORMULATION OF THE PROBLEM
We define the “cost” incurred by the fund at time t as follows:

(3.1) Ct = )fF()fF( tt

2

tt −α+− t = 0, 1,…,N-1

(3.2) CN = θ )]fF()fF[( NN

2

NN −α+− t = N

with α ≥ 0 and θ ≥ 1, where Ft is the annual target for the fund at time t. The targets are assumed to

be given a priori (for example, by the investment manager or trustees of the pension scheme) and,

on grounds of simplicity, are assumed to be deterministic. In the specific case with 2 assets, which

we will deal with in a later section, we will give a particular specification of the targets.

The use of target values in the cost function is supported by the analysis of Kahneman and Tversky

(1979). The target-based approach in decision making under uncertainty is investigated and

supported also by Bordley and Li Calzi (2000), although they present a more general model in

which the targets are stochastic and the utility function is the probability of matching the target. The

use of stochastic targets could describe the real situation faced by the investment manager of a

pension fund, who would be likely to change the targets every year in response to actual experience,

but this would increase considerably the complexity of the mathematical model underlying the

problem. We have chosen deterministic targets so that the model is mathematically tractable.

It may be argued that the inclusion of yearly targets between joining the scheme and retirement is

not practical, since it may not be possible for the scheme member to change the annual contribution

to the fund by either withdrawing money from the fund or paying additional money to the fund. A

similar argument regarding decrements other than retirement, which are excluded from our model,

could be advanced. In this case, the cost function should be defined only at retirement, and the

actual fund compared with the final target only. We think that this different formulation of the

problem is interesting and we will consider it in further research. The choice of having a target

every year is adopted for reasons of mathematical tractability of the model as well as reasons of
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cautiousness (since in practice it would probably be easier to meet a final target if the path of the

fund’s growth were monitored at periodic intervals)
1
.

The cost defined by (3.1) and (3.2) is positive when the fund is below the target and above a certain

level, which is equal to the target plus α, and negative between the target and this level. Intuitively,

this means that the deviations below the target are penalised, while the deviations above the target

are rewarded, until a certain level (linked to the target), after which they are penalised again. The

economic interpretation of this choice is that the possibility of gaining from high market returns is

incentivised, but, when the fund becomes too large in relation to the target, the trade-off between

risk and return means that the portfolio is cautiously invested.

Indeed, equation (3.1) can be rewritten as

(3.3) 22

ttt
4

1
)f

2

1
F(C α−−α+=

so that it is clear that the “real” target being pursued by the model is α+
2

1
Ft . With this

formulation, the tf  values are pulled back towards the “real” targets so that the generation of very

high values of tf  is penalized.

By varying the parameter α we are actually considering different disutility functions with different

risk aversion factors, so that we are considering individuals with different risk profiles. In fact, it

can be shown (see Pratt 1964, Owadally 1998) that an individual’s risk aversion can be measured

either by 
)x('u

)x(''u
)x(A −=  if u(x) is the individual’s utility function, or by 

)z('l

)z(''l
)z(A =  if l(z) is the

individual’s disutility (or loss) function, where the relationship between utility and disutility

functions is: u(x)= −al(z)+b (a>0) and the relationship between loss and gain is: x+z=constant.

The disutility function considered here is l(z) = z
2
 + αz (with the loss being z = Ft−ft), and therefore

the resulting risk aversion is:

(3.4)
α+

==
z2

2

)z('l

)z(''l
)z(A .

We observe not only that the risk aversion depends on the value of α, but also that it is decreasing

when α is increasing, which means that lower values of α represent more risk averse individuals

and vice versa.

We also observe that, in our model if α → 0, i.e. for very risk averse individuals, the target pursued

tends to Ft. Instead, if α → ∞, i.e. for risk neutral individuals (A(z) = 0 means a null risk aversion,

which is equivalent to risk neutrality), the target pursued tends to infinity, which means that the

individual wants to make as much money as possible and always gain from higher than usual rates

of return. Thus, Ft and infinity are the lower and upper bounds for our real targets, when we

consider the dependence between them and the risk aversion.

The cost at time N has a weight θ which can be greater than 1. When θ is greater than 1 more

importance is given to the final target than to the yearly ones, and the rationale for this choice is that

                                                       
1 It should be noticed, however, that the different weight given to Ft and FN (1 and θ≥1) reflects the greater importance
of the final target in comparison with the yearly ones.
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decrements other than retirement are not considered in our model, and therefore the achievement of

the final target - at retirement – can be considered more important than the achievement of the

annual ones – before retirement.

The total future cost at time t is obtained by discounting the future costs until N, using a subjective

inter-temporal discount factor β as in Bellman and Kalaba (1965):

(3.5) ∑
=

−β=
N

ts

s

ts

t CG

We define ℑt the σ−field generated by all information available at time t:

(3.6) ℑt = σ(f0, f1, ..., ft, {y0
i
}i=1…n-1, {y1

i
}i,... {yt-1

i
}i) t = 0,1,…,N

with ℑ0 = σ(f0), f0 being the size of the fund when the member joins the scheme, that can be either 0

or greater than 0, if there is a transfer value.

The value function at time t is defined as:

(3.7) J(ℑt) = ]|G[Emin ttt
ℑπ t=0, 1,..., N-1

where πτ is the set of the future investment allocations, i.e.:

πt = {{y
i
s}s = t, t+1,…,N-1;i=1,…,n-1} = {{y

i
t}i=1…n-1, {

i

1ty +  }i=1…n-1,... {
i

1Ny −  }i=1,…n-1)

We now find the future portfolio allocations that minimise the discounted future cost incurred by

the fund.

3.2 BELLMAN’S OPTIMALITY PRINCIPLE
By applying Bellman’s optimality principle we find:

(3.8) J(ℑt) = ]|C[Emin t

N

ts

s

ts

t
ℑβ∑

=

−
π  = ]]|)(J[EC[min t1tt}y{ 1n,...2,1i

i
t

ℑℑβ+ +
−=

Since the sequences { i

tX }t=0,…,N-1 are assumed to be independent for any t, {ft} is a Markov chain

and:

Pr[ft+1 | ℑt] = Pr[ft+1 | ft], and also: Pr[ft+1, ft+2,..., fN | ℑt] = Pr[ft+1, ft+2,..., fN | ft]

so that:

Pr[Gt | ℑt] = Pr[Gt | ft]

and:
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(3.9) J(ℑt) = ]|G[Emin ttt
ℑπ  = )t,f(J]f|G[Emin ttt}y{ 1n,...2,1i

i
t

=
−=

The dynamic programming problem, which we have defined, now becomes:

(3.10) ]]f|)1t,f(J[E)fF()fF[(min)t,f(J t1ttt

2

tt}y{t
1n,...,1it

i +β+−α+−= +
−=

with boundary condition:

(3.11) J(fN, N) = CN = θ )]fF()fF[( NN

2

NN −α+−

with {Ft}t=1,…,N given.

3.3 SOLUTION OF THE DYNAMIC PROGRAMMING PROBLEM
It can be proved by mathematical induction that (a sketch of the proof is in the appendix):

(3.12) ttt

2

ttt RfQ2fP)t,f(J +−= t = 0, 1,…,N

where the sequences {Pt} and {Qt} and {Rt} are given by the recursive relationship:

(3.13)











+−+β+= ∑ ∑∑∑

<

−

=

−

=

−

=
+

ij

1n

1i

X
i

i2

ji
1n

1i

ij

1n

1i
2

2

i
ii1tt )2(g

A

D
d2

A

DD
a

A

D
aP1P

n

(3.14)     
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 +
+β+α+=

∑∑∑∑

∑∑∑∑

−

=<

−

=

−

=
+

−

=<

−

=

−

=
+

1n

1i

X

i

i

ij
2

ij
1n

1i

ij

1n

1i
2

2

i

ii1t

1n

1i

X

iiii

ij
2

ijji
1n

1i

ij

1n

1i
2

ii

ii1ttt

)2(g
A

D
d2

A

DD
a

A

D
acP

)1(g
A

DbBd

A

DBDB
a

A

DB
aQ

2
FQ

n

n

(3.15)

1t

ij

1n

1i

i

i2

ji
1n

1i

ij

1n

1i
2

2

i

ii

1t

2

1t

1n

1i

X
ii

ij
2

ijji
1n

1i

ij

1n

1i
2

ii
ii1t

1n

1i

X
i

i

ij
2

ij
1n

1i

ij

1n

1i
2

2

i
ii1t

2

ttt

R
A

B
b2

A

BB
a

A

B
a

P

Q

)1(g
A

Db

A

DBDB
a

A

DB
acQ2

)2(g
A

D
d2

A

DD
a

A

D
aPcFFR

n

n

+
<

−
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−

=

−
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+

−
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−

=

−

=
+

−
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−

=

−

=
+
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−+β+

+











+−











 +
+β−

−











+−+β+α+=

∑ ∑∑∑
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∑∑∑∑

starting from: PN = θ, QN = θ (FN + α/2) and RN = θ FN
2
 + α FΝ  
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with (when possible, we suppress the time index t, noting that the distributions of the asset returns

do not change over time, in order to simplify the notation):

Wi = iX
e

aij = E[(Wi – Wn) (Wj – Wn)]

bi = E[(Wi – Wn)]

di = E[(Wi – Wn)]-E[(Wn
2
)]

A := (aij) matrix

Bi = determinant of the matrix obtained by A, replacing the i
th

 column with the vector b=(bi)i=1,…,n-1

Di = determinant of the matrix obtained by A, replacing the i
th

 column with the vector d=(di)i=1,…,n-1

)s(g
nX : moment generating function of Xn (therefore, )s(g

nX = E[(Wn
s
)])

In addition, we find that the optimal investment strategy is given by the following optimal

investment allocation at time t:

(3.16) yt
i*

 = 
A

DBk iit −−

with:

kt = 
)cf(P

Q

t1t

1t

++

+

and the other notation as before.

3.4 THE TWO-ASSET CASE
We have analysed the particular case of n = 2, considering the case of a pension fund invested in a

high-risk and a low-risk asset.

The fund at time t+1 is given by the following equation:

(3.17) ]e)y1(ey)[cf(f tt

ttt1t

µλ
+ −++=

where:

ft: fund level at time t

c: contribution rate

yt: proportion of fund invested in the high-risk asset during year [t, t+1]
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λt: real force of interest for the high-risk asset in year [t, t+1], assumed to be constant over the year

[t, t+1]

µt: real force of interest for the low-risk asset in year [t, t+1], assumed to be constant over the year

[t, t+1]

The sequences {µt} and {λt} are assumed to be IID with normal distribution, while the annual

forces of interest µt and λt are correlated with correlation factor ρ, assumed to be constant for any t.

Therefore:

λt ≈ N(λ, σ1
2
) and  µt ≈ N(µ, σ2

2
) for t = 0, 1,…,N-1

where:

λ > µ and  σ1
2
 > σ2

2

It follows that:

(3.18) ttt

2

ttt RfQ2fP)t,f(J +−=

where the sequences {Pt} and {Qt} and {Rt} are given by the recursive relationship:

(3.19) Pt = 1 + β Pt+1 Λ

(3.20) Qt = Ft + α/2 +β[Qt+1Γ - cPt+1Λ]

(3.21) Rt = Ft + α Ft +β[c
2
 Pt+1 Λ-2cQt+1 )1(g

tµ  + 
1t

2

1t

P

Q

+

+  Ω + Rt+1]

starting from: PN = θ, QN = θ (FN + α/2) and RN = θ FN
2
 + α FΝ, where:

Λ = 
])WW[(E

))WW(E()W(E)W(E
2

21

2

21

2

2

2

1

−
−

Γ = 
])WW[(E

)]W(E)W(E)[WW(E)W(E)W(E)W(E)W(E
2

21

2121

2

212

2

1

−
+−+

Ω = 
])WW[(E

)WW(E
2

21

21

2

−
−

)s(g
tµ  is the moment generating function of µt

and with:

W1 = te
λ

and  W2 = te
µ

.

The optimal investment strategy in the 2-asset case is given by:
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(3.22)
])WW[(E

)W(E)WW(E

])WW[(E)cf(P

)WW(EQ
y

2

21

2

221

2

21t1t

211t*

t −
−

−
−+

−
=

+

+

3.5 RELATIONSHIP BETWEEN αα AND THE OPTIMAL INVESTMENT STRATEGY

Looking at formula (3.22) above, we observe that α affects the sequence {Qt} only (observing that

the coefficients Rt do not appear in the formula of yt
*
), which increases in value as α increases,

leading to higher values of yt
*
, everything else being equal. Thus, we conclude that yt

*
 increases as

α increases.

This is a reasonable result as we observe that α measures the risk aversion of the individual: a

higher value of α corresponds to a lower risk aversion and leads to a higher fraction of the portfolio

being invested in the riskier asset. This result is consistent also with intuition: by increasing α we

are increasing both the penalisation of deviations below the target and the reward of deviations

above, pushing the optimal portfolio to be invested more in riskier assets.

In particular, considering the behaviour of the risk neutral investor (α → ∞), we see that, in our

model, the risk neutral individual would short sell as much as possible low-risk assets in order to

buy as much as possible high-risk assets. If short selling were not allowed (a hypothesis that we will

make next in the simulation), the risk neutral investor would invest the whole fund in the high risk

asset and never switch into the low risk asset
2
. This asset allocation is supported by Blake et al

(2001), who argue that there is no evidence for the appropriateness of switching the fund into lower

risk assets prior to retirement for the risk neutral individual, except for prudential reasons. However,

in their analysis they do not consider individuals with different levels of risk aversion.

The meaning of α will be considered again later, when we discuss the simulation results.

                                                       
2 In this case the optimal investment strategy would be: y*t =1 at any time 0≤t≤N-1.
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4. THE SIMULATIONS

4.1 SIMULATIONS FRAMEWORK

We have investigated the solution presented in section 3.4 (2-asset case) for many scenarios, and

have studied the sensitivity of the results to changes in the values of Ft, α and ρ by carrying out

simulations.

We have also considered different generations of members by changing the value of N: 10, 20, 30

and 40 years to retirement. We assume that the member joins the scheme without a transfer value,

which means that f0 = 0. The contribution rate has been taken equal to 12%, the weight θ given to

the final target has been chosen equal to 2 and the subjective inter-temporal discount factor β has

been taken equal to 0.95.

The parameters of the asset returns chosen are:

λ = 10% µ = 4%    σ1 = 15% σ2 = 5%.

The correlation factor ρ takes the values -1, -1/2, 0, 1/2, 1; α takes many values, depending on the

time to retirement.

The choice of different values of α for different durations is not arbitrary and is due to the fact that,

since short selling is not allowed in our simulations (see later in this paragraph), the value of yt
*

stabilises at 1 after a certain value of α (we recall that yt
* 

increases as α increases), which depends

on the time to retirement (see section 6.3). Thus, for N = 10, α takes the following values: 0, 0.25,

0.5, 0.75, 1, 2, 3, 4, 5, 6; for N = 20, α takes the following values: 0, 1, 2, 3, 4, 5, 6, 7, 10, 15, 20,

30; for N = 30, α takes the following values: 0, 1, 2, 3, 4, 5, 7.5, 10, 12.5, 15, 20, 25, 30, 40, 50, 60;

for N = 40, α takes the following values: 0, 1, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25, 30, 35, 40,

50, 75, 100, 150, 200.

For each scenario, 1000 simulations have been carried out by generating, for each simulation, the

asset returns for N years (with N = 10, 20, 30, 40), and deriving, for each year, the optimal portfolio

allocation derived by the model. In all the scenarios investigated, we use the same 1000 paths of

returns and just change the other parameters like Ft, α and ρ. The rationale is that we wish to study

the effect of changing the parameters and we do not wish the results to be affected (and

confounded) by differences in the simulated paths of returns.

As mentioned above, in our simulations we have imposed the constraint that short selling is not

allowed; therefore we have constrained the true value of yt
*
 and set it equal to 0 when we had a

negative value, and set it equal to 1 when we had a value greater than 1. We have then used the

truncated value as the adopted investment strategy in the growth of the fund. We are aware of the

fact that the simulations do not correspond exactly to the underlying model, due to this additional

constraint, and the investment strategies adopted could be called “sub-optimal”. The rationale for

this choice is on the one hand to give results which can be easily compared with each other, the

range being [0, 1] in all cases; on the other hand, to have a mathematical model which is tractable:

adding the constraint 0 ≤ yt* ≤ 1 would complicate further the model; however, we think that this

could be a useful improvement of the model and defer this to further research.

At the time of retirement, N, we have followed Vigna and Haberman (2001) and analysed the

behaviour of the optimal investment strategy and studied how it changes if we change the targets,

the disutility function, and the correlation factor ρ. Furthermore, we have calculated the fund

accumulated, and also the net replacement ratio achieved by the member using two different

methods, in order to measure the effect of the annuity risk on the retiree income. For the first
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method, we have converted the accumulated fund into an annuity using an actuarial value, ax, based

on discounting at the expected return of the low risk asset (i.e. a fixed rate
3
). For the second method,

we have used a variable annuity value, xa~ , with discounting based on the average of the realised

returns by the low risk asset in the last 5 years before retirement (setting a minimum of 2% in order

to avoid unreasonable values in the case of a very poor performance of the low risk asset prior to

retirement) and the variance of the low risk asset experienced during the N years of membership
4
.

In both cases, the annuity values depend on the returns on the low risk asset in order to represent the

pricing behaviour of an insurance company, which would utilise the returns on matching fixed

interest bonds in its calculations. For both methods, the mortality table used to calculate the

actuarial value is the Italian projected mortality table (RGS48) and the retirement age has been

chosen throughout to be x = 62.

Considering that the salary is 1 at any time, the net replacement ratio achieved using the first

method of calculation is:

x

N
N

a

f
b = ,

whereas  the net replacement ratio achieved using the second method of calculation is:

x

N
N

a~
f

b
~ = .

The net replacement ratio achieved using the first method, bN, takes into account only the

investment risk faced by the member
5
, as the conversion rate used is fixed. The net replacement

ratio achieved using the second method, Nb
~

 (“bNt” or “bNtilde” in the Figures that follow), takes

into account also the annuity risk faced by the member
6
, as the conversion rate is linked to the

simulated returns on the low risk asset in the years before retirement, and therefore it is variable,

reflecting the simulated behaviour of the low risk asset.

We illustrate only the results for the 30 years’ case (we note that the other durations, N=10, 20, 40,

give similar results). Similarly, we illustrate only the results for the VaR at 5% confidence level (we

note that the VaR measures at 1% and 10% confidence levels give similar results).

4.2 TARGETS
Since the fund and contributions are invested in a 2-asset portfolio, we have chosen the yearly

targets as the accumulated fund using a particular average of the rates of return of the 2 assets. We

have considered three different cases: (a) the rate of return equal to µ, as though the fund were fully

                                                       

3 The discount factor used to calculate the annuity value ax is v=
2
2t 5.0

e]e[E
σ+µ−µ− = , with µ = 4% and σ2 = 5%.

4 The discount factor used to calculate the annuity value xa~  is 
2
2

~5.0~

ev~
σ+µ−= , with

)},...,(average%,2max{~
5N1N −− µµ=µ , and },...,{iancevar~

1N1

2

2 −µµ=σ
5 By “investment risk” we mean the risk that the returns experienced during the membership have been too low leading

to a low final fund. This risk is borne during the accumulation period.
6 By “annuity risk” we mean the risk that the rate used in the conversion of the capital into annuity is too low, leading to

a low pension rate (the actual conversion rate used to calculate the annuity is directly linked to the current market

yields, and so the perceived pension will strongly depend on the level of the markets rates at retirement). This risk is

borne at retirement, when the annuity is purchased.
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invested in the low risk asset; (b) the rate of return equal to the Chisini average of µt and λt relative

to the expected return over one year of a portfolio invested equally in the 2 assets, as though the

fund were invested half in the low risk and half in the high risk asset; (c) the rate of return equal to

λ, as though the fund were fully invested in the high risk asset.

Therefore, the yearly target at time t is:

(4.1)
jt

tj

0t scefF &&+= t=1,…,N

with i such that:

(a) j = µ; (b) j = r*; (c) j = λ,

with
7
 

(4.2) r* = )2(
8

1
)(

2

1 2

221

2

1 σ+σρσ+σ+λ+µ

Therefore, the value of j for determining the target values takes the three different values: 4%, r* as

defined by (4.2) above (we observe that this value depends on the value of ρ, so it varies with the

different values of the correlation factor) and 10%.

We set F0 = f0 , where f0 is the fund held by the member when he/she joins the scheme (i.e. the

transfer value, which in our model is zero).

4.3 MEASURES OF RISK
The downside risk faced by the member of the pension scheme is analysed by comparing the net

replacement ratios achieved, bN and Nb
~

, with the target ratio BN, which is defined to be the fund

target FN divided by an actuarial annuity value ax. In other words:

x

N
N

a

F
B = .

The idea of comparing the net replacement ratio achieved with the target pursued is consistent with

the analysis of Kahneman and Tversky (1979), who observe that individuals perceive the outcomes

as gains and losses relative to some neutral “reference point” (which, in our case, is the target).

The risk has been measured in the three different ways:

a) Probability of failing the target.

This is defined as the proportion of outcomes where bN (or Nb
~

) is less than the target BN. Thus

1000

k
)BbPr( NN =< , where k represents the number of failures out of 1000 simulations. We note

that the amount by which bN (or Nb
~

) falls below BN is not taken into account by this risk measure.

                                                       

7
 We found r* by solving ]e[E]e[E 2*r

tt λ+µ

= , following the definition given above.
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In the same way we define )Bb
~

Pr( NN < .

b) Mean shortfall.

The mean shortfall is the conditional mean of shortfall below the target, conditional on (bN − BN)<0

(or ( Nb
~

 − BN) < 0). Thus, using the upper suffix j to refer to a simulation, we have:

mean shortfall (bN) = ∑
=

−
k

1j

N
j
N )Bb(

k

1
 where )Bb( N

j

N −  < 0 for j = 1, 2, …,k.

In the same way we define the mean shortfall ( Nb
~

).

As demonstrated by Artzner et al (1999) and Artzner (2000), risk measures based on the mean

shortfall have more desirable properties than the commonly used Value-at-Risk (VaR) measures. In

particular, these are coherent risk measures (as introduced by Artzner et al (1998)), whereas a VaR

measure is not, as it fails to satisfy the sub-additive property (as many examples can show), which

is required of any coherent risk measure. As a result, mean shortfall risk measures have become

widely used in the recent actuarial literature: for example, see Albrecht et al (2001) for a discussion

of equity risk and Hardy (2001) for an application to segregated funds.

c) Value at Risk (VaR).

The VaR measure at confidence level ε is defined to be the 100εth lowest percentile of the

simulated distribution of bN (or Nb
~

).
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5. RESULTS: THE OPTIMAL INVESTMENT STRATEGY

5.1 OPTIMAL INVESTMENT STRATEGY

We observe, as in Vigna and Haberman (2001), that the optimal investment allocation yt
*
 decreases

on average with the time, which indicates the suitability of the lifestyle policy
8
 for defined

contribution pension schemes. This is illustrated by the results in Figures 1-3 (and by other detailed

results not shown here but available on request from the authors).

The only exception to the suitability of the lifestyle strategy is when the individual is risk neutral, as

mentioned above. In this case, the scheme member will invest the whole fund in the high risk asset

at any time between joining the scheme and retirement.

5.2 EFFECT OF CHANGING THE TARGETS

We have studied the behaviour of the optimal investment strategy when the targets change. The

three graphs of Figure 1 report some percentiles (5
th
, 25

th
, 50

th
, 75

th
 and 95

th
), the minimum and

maximum of the distribution of yt
*
 in the cases of µ-based targets, r*-based targets and λ-based

targets, when α=1.

We observe that moving from µ-based targets to λ–based targets, the optimal proportion of the

portfolio to be invested in the high risk asset increases. This is evident if we look at formula (3.22)

for yt
*
: it can be easily seen that the value of yt

*
 increases as the target Ft increases, everything else

being equal. This is also an intuitive result, since one must increase the aggressiveness of the

strategy if the target to be attained increases.

                                                       
8 We recall that by “lifestyle strategy” we mean the investment strategy largely adopted in defined contribution pension

schemes in UK, which consists in investing at the beginning the whole fund in equities, switching it into bonds and cash

as retirement approaches (usually 3-5 years before retirement).
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FIGURE 1: CHANGING THE TARGETS (THE VALUE OF j))
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5.3 EFFECT OF CHANGING THE DISUTILITY FUNCTION
We have studied the effect of changing the disutility function by observing the behaviour of yt

*

when we change the value of α and leave unchanged the value of ρ.

In all cases (i.e. for any N and any ρ) we have found that yt
*
 increases on average as α increases.

This is consistent with the fact that, the higher is α, the lower is the risk aversion of the individual,

hence the riskier the investment strategy adopted.

The graphs reported in Figure 2 show how the level of the optimal investment strategy increases

with α in the 2 cases ρ  = -½ (on the left) and ρ = ½ (on the right) with the r*-based targets. The

graphs report the mean of yt
*
 (for t = 0, 1,…, 29) over the 1000 simulations that have been carried

out.
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5.4 5.4 EFFECT OF CHANGING THE CORRELATION BETWEEN THE ASSET RETURNS

We have studied the effect of changing the correlation factor ρ on the optimal investment strategy

by comparing the behaviour of yt
*
 when N and α are fixed and ρ changes.

We have discovered two interesting trends:

1 – in the early years of membership, the optimal allocation yt
*
 increases as ρ increases from

negative to positive values, while in the last years of membership, towards retirement, it decreases

as ρ increases;

2 –apart from the early years of membership, the standard deviation of yt
*
 increases as ρ increases.

The graphs in Figure 3 show the optimal investment strategy for the different values of ρ (-1, -½, 0,

½, 1) when α = 0 (on the left) and when α = 10 (on the right).  The graphs report certain percentiles

(5
th
, 25

th
, 50

th
, 75

th
 and 95

th
), the minimum and the maximum of the distribution of yt

*
 over the 1000

simulations carried out. We can see that, when ρ increases from –1 to +1, the curves reporting the

percentiles become steeper in their descent from 1 to 0, confirming the first trend above explained

(higher values of yt
*
 at the beginning and lower at the end when ρ increases).

An economic explanation of this feature is as follows. We observe that a strategy is well diversified

if the curve yt
* 

decreases gradually towards zero, less diversified if the curve decreases steeply

towards zero. When ρ is low, in the range (-1, -½), there is negative correlation between the asset

returns and it is convenient to diversify the portfolio between the assets and, therefore, the optimal

investment allocation leads to a fraction to be invested in the riskier asset which decreases very

gradually towards zero. When ρ is high, in the range (½, 1), there is positive correlation between the

asset returns and the diversification effect is not so rewarding, so the portfolio can be invested more

heavily either in the riskier or in the less risky asset, leading the optimal investment allocation to

decrease steeply towards zero.

The graphs in Figure 4 show how the standard deviation of yt
*
 changes in value when ρ increases.

When α = 0, the standard deviation increases as ρ increases. This feature is also observed in Figure

3: with negative values of ρ, the percentiles tend to stabilise around a certain percentage (30-40%),

while with positive values of ρ the percentiles are more spread between 0 and 1.

An economic explanation of this feature is the following. When ρ increases from –1 to +1, the

benefits of diversification decrease, pushing yt
*
 upwards. On the other hand, with high positive

values of ρ, the investor needs more hedging in order to achieve the target at time N and this factor

pushes yt
*
 downwards. The value of the optimal investment allocation will be high or low

depending on which of these two effects is dominating (and this depends only on the returns

experienced in the past), leading the values to be more spread and the standard deviation to be

higher. For higher values of α , for example α =10, the optimal asset allocation yt
*
 increases and the

balance between these two effects is different.

This phenomenon seems to indicate that, with negative correlation between the asset returns, the

investment strategy is more stable on average than for the case of positive correlation, where it

remains on almost the same level regardless of the past experience of asset returns. This feature

may be interesting from the pension scheme investment manager’s point of view in two respects:

firstly, when he/she considers projections and plans regarding the investment strategy to be adopted

over a long period in the future, and, secondly, considering the fact that, in the real world, portfolios

tend to be invested in assets with returns that are negatively correlated.
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The detailed results for yt
*
 indicate that they are relatively insensitive to small changes in ρ . This

corresponds to the results of Chopra and Ziemba (1993), who find that optimal asset allocation

results are much more sensitive to errors in means than to errors in variances and much more

sensitive to errors in variances than to errors in covariances. This finding is particularly apparent as

the risk aversion of the investor reduces – this corresponds here to increases in the value of α .
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FIGURE 3: CHANGING CORRELATION BETWEEN ASSETS (VALUE OF ρρ)
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FIGURE 4: STANDARD DEVIATION OF Yt
*
 WHEN ρρ CHANGES
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6. RESULTS: THE DOWNSIDE RISK

6.1 THE MEANING OF αα
Before consideration of the results, it is worth recalling that α can be given two meanings in our

model. On the one hand, as we have already seen, it is a measure of the risk profile of the individual

with the disutility function Ct: the higher is its value, the less risk averse is the individual. On the

other hand, it is a measure of the aggressiveness of the optimal investment strategy. In fact, if we

look at the formula that determines y*t above, (3.22), we can easily observe that it depends directly

on α, so that we have an increasing y*t with α increasing. Therefore, a low value of α indicates a

cautious investment strategy, while a higher value of α indicates a riskier investment strategy. It is

clear that these two viewpoints are consistent with each other.

6.2 THE DIFFERENT RISK MEASURES

In Figure 5, we have plotted the three different risk measures considered against the different values

of α in the case of 30 years, r*-targets and ρ = 0.

We observe the following results:

a) the probability of failing the target decreases as α increases;

b) the mean shortfall increases slightly as α increases;

c) the VaR at 5% level is relatively stable as α increases.

The explanation for a) and b) is the following. Lower values of α lead to more cautious strategies,

which lead to a greater number of failures but to more limited “losses” when a failure occurs. In

contrast, higher values of α lead to riskier strategies and to a higher mean and a higher standard

deviation of the distribution of both bN and Nb
~

, and this leads to a smaller number of failures (due

to a higher mean) but slightly greater deviations from target when a failure occurs. This arises

because the higher mean and standard deviation lead to a much longer right tail of the distribution

of the net replacement ratio and to a slightly longer left tail of the distribution, with the lowest

percentiles being smaller, so that a slightly greater mean shortfall results (as α increases).

The explanation for c) is the following: the VaR at 5% level remains stable because of the

combined and opposing effects of the higher mean and standard deviation of the distribution of bN

and Nb
~

, as α increases, and the net effect is to lead to the lower percentiles remaining fairly stable.
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FIGURE 5: RISK MEASURES AGAINST αα
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6.3 THE DIFFERENT TARGETS AND THE RISK MEASURES

In Figures 6, 7 and 8, we show the results for b30t and b30 as α varies, for the three different risk

measures with each of the different targets chosen, and for the case of ρ=0. We consider the effect

of changes in ρ  in a later section.

A general result that comes out of the graphs is that, by increasing the targets (ie moving down the

page from µ-based targets to λ-based targets), the levels of all of the risk measures increase. This is

an intuitive result, as it is more difficult to reach higher targets than lower ones. Furthermore, as we

move down the page, the optimal investment strategy becomes riskier, since y*t increases as the

target values of Ft increase (see section 5.2).

Another general result is that, for very high values of α, in all of the graphs, the risk measures tend

to stabilise themselves, leading to the curves becoming approximately horizontal. As mentioned

before, this is a feature of the model: since short selling is not allowed and since increasing the

value of α will increase the riskiness of the strategy, after a certain value of α the value of y*t will

be always 1. This leads to the same strategy regardless of the rates of return that have been

simulated (in which all the fund is invested in the high risk asset at any time), and hence to very

small differences in the results, and therefore to the flat curves displayed in Figures 6-8 for the risk

measures at extreme values of α.

We also find (in results not shown here) that the value of α after which y*t reaches 1 increases with

the time to retirement N, and this suggests that the choice of α for different durations should be

different. This also reflects the intuitive fact that, with a short time to retirement, an individual is

more risk averse so that α takes low values, while, with a long time to retirement, an individual is

less risk averse so that α takes high values.

We now analyse the different figures separately.

Probability of failing the target.

The three graphs of Figure 6 report the probability of failing the target with the three different

targets. We observe the following points:

1 – when we consider the initial values of the probability of failing the target in the two cases of b30

and b30t, when α=0, we see that this probability is higher for b30t than for b30 in the case of µ-based

targets (with an approximate 10% gap), whereas it is lower for b30t than for b30 in the case of the r*-

based (with an approximate 10% gap) and λ-based targets (with an approximate 20% gap). The fact

that the probability of failing the target is higher for b30t than for b30 may not be a surprise, as it

arises from the fact that the magnitude of b30 is affected by the investment risk only, whereas the

magnitude of b30t is affected by both the investment and annuity risk. What may seem strange is the

fact that the probability of failing the target is lower for b30t than for b30 with the r*- and λ-based

targets. A possible explanation for this is given by looking at the aggressiveness of the strategy in

the considered cases. In the case of the µ-based targets, the α=0 strategies are very cautious, so the

fund is likely to be invested more in the low risk asset during membership and entirely in the low

risk asset just before retirement (because of the lifestyle profile shown by the optimal values of y*t),

so that the reason for failing the target is likely to be mainly due to poor performance of the low risk

asset, either during the period of membership and/or just before retirement. On the other hand, in

the case of the r*- and λ-based targets, the strategies are riskier and the reason for failure may

depend also on the adverse performance of the high risk asset. When this happens, there are cases in

which the poor performance of the high risk asset leads to a failure regarding the achievement of

b30, but not to a failure regarding the achievement of b30t due to the good performance of the low
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risk asset prior to retirement (leading to a more favourable annuity conversion rate than the one

used in the b30 case). The gap between the probabilities values becomes larger when moving from

the r*- to λ-based targets as the strategies become riskier and the weight attaching to the adverse

performance of the high risk asset increases;

2 – the descent of the probability curve is steeper for the b30 case than for the b30t one. This is

probably to be explained by referring to the annuity risk and the aggressiveness of the strategies.

Moving from the left to the right in each of the graphs, the value of α increases and the strategy

becomes more aggressive. The increased aggressiveness of the strategy affects the general level of

the final fund fN which increases, but does not affect the values of the simulated µt in the final years

before retirement, which are used (by the insurance company) to price the annuity in the case of

b30t. We observe that, in the case of b30 , failures are only due to the low value of fN in relation to

the target FN, whereas in the case of b30t, failures are due also to the low value of the simulated µt in

the final years before retirement. Therefore, acting on the general level of the final fund fN will have

a greater effect on the probability of failing the target in the b30 case, because we are reducing the

impact of the only cause of failures in the b30 case (but only one of the 2 causes in the b30t case),

and this leads to a steeper decrease in the probability curve.

These two features explain the shape of the curves in Figure 6 and the fact that in the last 2 graphs

(r*- and λ-based targets) the b30 and the b30t curves exhibit a cross-over.

Mean shortfall.
The three graphs of Figure 7 report the mean shortfall with the three different targets. We observe

the following points:

1 – when we consider the initial values of the mean shortfall, when α=0, in the two cases of b30 and

b30t we see that this is always higher for b30t than for b30. A failure in the case of b30 occurs when f30

< F30, and the size of the failure is proportional to the difference f30 − F30. But, in the case of b30t,

the size of the failure is also determined by the behaviour of the low-risk asset prior to retirement,

with a poor performance leading to a bigger deviation in the case of b30t than in the case of b30. We

see that, in most cases of failure for both b30 and b30t, the low risk asset has a return lower than 4%

in the last 5 years before retirement (also noting that failure depends heavily on the return of the low

risk asset, due to the lifestyle strategy adopted and cautiousness of the strategy), and this leads to

bigger deviations for b30t and therefore a bigger mean shortfall;

2 – as before, the mean shortfall curve increases more smoothly for b30t than for b30 (Note that, in

some places, the curve appears to be decreasing, but this is a small effect and may be due to the

relatively small number of cases considered – recalling that the mean shortfall does not consider the

deviations from the target of the 1000 simulations, but only the simulations in which the target is

missed). This difference in smoothness can be explained in the following way. When we move from

the left to the right of the graph, the strategy becomes more aggressive and this leads to results that

are more spread out in terms of final fund achieved, affecting directly the net replacement achieved

in the b30 case. In the b30t case, this effect is not so direct, as the final fund has still to be

transformed into a net replacement ratio by applying the variable conversion rate; therefore, it may

happen that, in some of the cases of failure, the effect of a very low final fund may be reduced by a

lower than usual conversion rate (i.e. a lower xa~ ). Again, increasing the aggressiveness of the

strategy will affect only the final fund achieved, not the distribution of the simulated rates of return

of the low risk asset, and this has a more adverse effect on the b30 case than the b30t case.

These 2 features explain the shape of the curves and the fact that, in all of the figures, the b30 and

the b30t curves cross over.
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VaR at 5% confidence.

The three graphs of Figure 8 report the VaR at 5% confidence with the three different targets. We

observe the following points:

1 – the VaR curves are fairly stable when α changes and they slightly increase with low – medium

values of α in the case of µ-based targets;

2 – the VaR curve lies always at a higher level for the b30 case than for the b30t one and the two

curves do not cross over. This underlines the annuity risk that the member has to face, as the VaR at

5% confidence is the 5
th
 percentile of the distribution of the net replacement ratio and the fact that

the VaR of the b30t is lower than the VaR of the b30 indicates that the poor outcomes are more

adverse in the case of a variable annuity rate;

3 – for high values of α the VaR curves stay in the same range (60% - 65%), regardless of the target

chosen.

The relative stability of the VaR values shown in Figure 8 is explained by the effect of increasing α
on the underlying simulated distributions of b30 and b30t. These are not shown here but examination

of these distributions and the associated sample moments and quantiles shows that, as α increases,

the means, medians and standard deviations all increase, as do the higher quantiles eg the 75
th
.

However, the lower quantiles are relatively stable (and these, of course, directly affect the VaR

estimates), representing the net effect of 2 conflicting influences – distributions with increasing

means and increasing spreads about the means.
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FIGURE 6: PROBABILITY OF FAILING THE TARGET
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FIGURE 7: MEAN SHORTFALL
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FIGURE 8: VaR AT 5% CONFIDENCE

VaR at 5% confidence (mu)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

b30 b30tilde

VaR at 5% confidence (r*)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

b30 b30tilde

VaR at 5% confidence (lambda)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

b30 b30tilde



30

6.4 EFFECT OF CHANGING CORRELATION BETWEEN THE ASSET RETURNS
Up to now (in Figures 5-8) the downside risk borne by the member has been analysed in the case of

uncorrelated assets, i.e. ρ=0. Tables 1, 2 and 3 and Figures 9 and 10 report the different results

relative to the three risk measures when we let the correlation factor vary from ρ = −1 to ρ = 1 (for a

term of 30 years and r*-based targets).

We observe that, when ρ changes, there are very small changes in the behaviour of the three risk

measures. This phenomenon is to be explained by considering the behaviour of the optimal

investment strategies: the optimal investment strategy changes very little when the correlation factor

ρ varies, and this is due to the small influence of the coefficient ρ on yt
*
 (consider formula (3.22)

above), compared to the much larger influence of other factors like α and the targets Ft. As noted

earlier, a similar result has been found by Chopra and Ziemba (1993) in respect of covariances.
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TABLE 1: PROBABILITY OF FAILING THE TARGET WHEN ρρ CHANGES

TABLE 2: MEAN SHORTFALL WHEN ρρ CHANGES

TABLE 3: VaR AT 5% CONFIDENCE WHEN ρρ CHANGES

b30 b30t b30 b30t b30 b30t b30 b30t b30 b30t

α=0α=0 60.00% 57.90% 65.80% 59.30% 71.20% 60.00% 75.50% 61.40% 73.30% 62.00%

α=1α=1 44.00% 51.60% 47.90% 53.10% 52.20% 54.30% 57.40% 54.90% 57.50% 54.60%

α=2α=2 31.60% 47.30% 34.00% 48.10% 36.90% 48.80% 39.00% 50.20% 40.00% 49.30%

α=3α=3 22.90% 41.80% 23.30% 43.20% 24.40% 45.00% 25.10% 45.00% 23.90% 43.90%

α=4α=4 17.60% 37.00% 18.10% 38.60% 18.00% 40.00% 17.90% 40.90% 16.40% 40.90%

α=5α=5 15.00% 33.10% 14.90% 34.30% 14.10% 36.10% 14.20% 36.90% 13.60% 36.40%

α=7.5α=7.5 10.80% 23.20% 11.00% 24.90% 11.30% 26.70% 11.70% 28.90% 11.90% 28.80%

α=10α=10 10.70% 17.50% 11.10% 18.70% 11.20% 19.50% 11.80% 20.10% 12.70% 20.70%

α=12.5α=12.5 11.30% 14.00% 11.90% 14.70% 12.30% 15.00% 12.60% 15.10% 13.40% 15.40%

α=15α=15 12.30% 13.50% 12.60% 13.40% 12.90% 13.10% 13.20% 13.90% 13.50% 14.20%

α=20α=20 13.00% 13.30% 13.00% 13.70% 13.40% 13.90% 13.50% 14.00% 13.60% 14.50%

α=25α=25 13.30% 13.80% 13.30% 13.90% 13.40% 14.10% 13.50% 14.40% 13.70% 14.70%

α=30α=30 13.30% 13.80% 13.30% 14.20% 13.50% 14.40% 13.70% 14.80% 13.80% 14.90%

α=40α=40 13.50% 14.40% 13.50% 14.80% 13.60% 14.90% 13.80% 15.10% 13.90% 15.40%

α=50α=50 13.60% 14.70% 13.60% 14.90% 13.70% 15.10% 13.80% 15.20% 13.90% 15.40%

α=60α=60 13.60% 14.80% 13.60% 15.00% 13.70% 15.10% 13.80% 15.20% 13.90% 15.40%

ρ=0ρ=0 ρ=1/2ρ=1/2 ρ=1ρ=1
PROBABILITY OF FAILING THE TARGET

ρ=−1ρ=−1 ρ=−1/2ρ=−1/2

b30 b30t b30 b30t b30 b30t b30 b30t b30 b30t

α=0α=0 10.93% 18.20% 10.57% 18.51% 10.39% 18.97% 10.35% 19.09% 10.95% 19.28%

α=1α=1 10.55% 16.91% 10.16% 17.18% 9.77% 17.54% 9.26% 17.87% 9.57% 18.20%

α=2α=2 10.89% 15.38% 10.42% 15.93% 9.87% 16.45% 9.51% 16.58% 9.43% 17.08%

α=3α=3 12.04% 14.62% 11.98% 14.98% 11.52% 15.16% 11.27% 15.74% 11.82% 16.14%

α=4α=4 13.38% 14.10% 13.03% 14.26% 13.09% 14.52% 13.49% 14.88% 15.16% 15.08%

α=5α=5 14.20% 13.55% 14.29% 13.80% 15.48% 13.93% 16.15% 14.37% 17.90% 15.06%

α=7.5α=7.5 18.71% 14.41% 19.17% 14.00% 19.72% 13.89% 20.69% 13.79% 22.41% 14.59%

α=10α=10 20.32% 16.52% 20.69% 16.14% 21.79% 16.26% 22.26% 16.59% 22.14% 16.78%

α=12.5α=12.5 20.94% 20.09% 20.86% 19.82% 21.32% 20.13% 21.89% 20.92% 21.65% 21.05%

α=15α=15 20.52% 21.12% 20.83% 21.99% 21.23% 23.30% 21.60% 22.58% 22.02% 23.05%

α=20α=20 20.83% 22.36% 21.44% 22.32% 21.41% 22.63% 21.84% 23.09% 22.10% 22.75%

α=25α=25 20.88% 22.11% 21.37% 22.45% 21.62% 22.56% 21.86% 22.51% 21.95% 22.56%

α=30α=30 21.00% 22.27% 21.40% 22.05% 21.48% 22.16% 21.67% 22.14% 22.00% 22.49%

α=40α=40 20.84% 21.67% 21.26% 21.51% 21.52% 21.85% 21.62% 22.07% 21.87% 22.09%

α=50α=50 20.76% 21.48% 21.15% 21.61% 21.39% 21.73% 21.63% 21.99% 21.87% 22.09%

α=60α=60 20.76% 21.38% 21.15% 21.49% 21.39% 21.74% 21.63% 21.99% 21.87% 22.09%

MEAN SHORTFALL
ρ=−1ρ=−1 ρ=−1/2ρ=−1/2 ρ=0ρ=0 ρ=1/2ρ=1/2 ρ=1ρ=1

b30 b30t b30 b30t b30 b30t b30 b30t b30 b30t

α=0α=0 61.80% 54.57% 62.40% 54.34% 62.04% 54.74% 59.81% 54.40% 58.32% 54.83%

α=1α=1 65.65% 56.54% 65.12% 57.08% 65.67% 57.24% 66.06% 56.90% 63.32% 57.24%

α=2α=2 67.88% 59.23% 68.21% 58.74% 68.83% 59.77% 67.87% 59.54% 66.85% 59.28%

α=3α=3 70.15% 60.49% 70.69% 60.98% 71.14% 61.49% 71.47% 61.66% 70.79% 61.78%

α=4α=4 71.98% 62.55% 72.85% 62.74% 72.62% 63.31% 72.69% 62.71% 71.71% 63.80%

α=5α=5 73.63% 64.56% 73.67% 65.33% 73.15% 65.33% 71.76% 64.74% 70.52% 64.92%

α=7.5α=7.5 73.76% 65.57% 71.98% 65.02% 71.03% 64.04% 68.10% 64.65% 64.71% 62.52%

α=10α=10 70.60% 65.57% 70.49% 64.75% 69.68% 64.83% 65.22% 63.48% 64.71% 61.76%

α=12.5α=12.5 69.65% 64.72% 67.05% 63.50% 65.22% 62.57% 64.71% 61.76% 63.76% 61.76%

α=15α=15 65.22% 63.80% 65.22% 62.93% 64.71% 61.78% 63.76% 61.76% 63.60% 61.76%

α=20α=20 63.80% 61.78% 63.76% 61.76% 63.60% 61.76% 63.60% 61.65% 63.60% 61.65%

α=25α=25 63.60% 61.76% 63.60% 61.65% 63.60% 61.65% 63.60% 61.65% 63.60% 61.65%

α=30α=30 63.60% 61.65% 63.60% 61.65% 63.60% 61.65% 63.60% 61.65% 63.36% 61.65%

α=40α=40 63.60% 61.65% 63.60% 61.65% 63.36% 61.65% 63.36% 61.65% 63.36% 61.65%

α=50α=50 63.36% 61.65% 63.36% 61.65% 63.36% 61.65% 63.36% 61.65% 63.36% 61.65%

α=60α=60 63.36% 61.65% 63.36% 61.65% 63.36% 61.65% 63.36% 61.65% 63.36% 61.65%

VAR AT 5% CONFIDENCE
ρ=−1ρ=−1 ρ=−1/2ρ=−1/2 ρ=0ρ=0 ρ=1/2ρ=1/2 ρ=1ρ=1
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FIGURE 9: RISK MEASURES WHEN ρρ CHANGES (b30)

Probability of failing target when ρρ changes (b30)
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FIGURE 10: RISK MEASURES WHEN ρρ CHANGES (b30t)

Probability of failing target when ρρ changes (b30t)
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6.5 DISTRIBUTIONS OF b30 AND b30t WITH THE DIFFERENT TARGETS
Figures 11 and 12 report the observed distributions of b30 and b30t over the 1000 simulations, with

the different targets (for the case where α = 0 and ρ = 0)
9
. The final target in terms of net

replacement ratio (B30) is also indicated, in order to facilitate comparisons.

First, we notice that a simple comparison of the distributions of the net replacement ratio with

different targets is not feasible, the ranges of the distributions being different (we recall that the

targets affect considerably the optimal investment strategy, and therefore the outcomes). However,

we notice that the different targets affect the distributions of the net replacement ratio achieved in a

similar way in the cases b30 and b30t: moving down the page, from λ-based targets to µ-based

targets, we see that the mode moves towards the left tail of the distribution and, furthermore, the

right tail becomes longer, and the left tail shorter.

The comparison between b30 and b30t is even more striking. Whereas in the b30 case we notice

that the final target B30 lies next to the mode (sometimes it is located to the right of the mode, but

with a small gap between them), in the b30t case B30 is located to the right of the mode, with a

considerable gap between the two values. This underlines again the annuity risk borne by the

member of a DC scheme: when the annuity risk is added to the investment risk, there are fewer

chances for the target to be achieved.

On the other hand, we notice also that the results, as we expected from our previous discussion, are

much more spread out in the b30t case (for example, they range between 0.27 and 2.04 in the r*-

target case, against the range [0.33, 1.1] for the b30 case). This means that, in the case of higher

than expected investment returns, the variable annuity factor turns to be advantageous to the

member, leading to a higher net replacement ratio than with a fixed annuity factor.

                                                       
9 Note the different scales used for the horizontal axes in Figures 11 and 12.
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FIGURE 11: DISTRIBUTIONS OF b30

Frequency of b30,� � � �� � � � �� -targets (B30=1.49) 
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FIGURE 12: DISTRIBUTIONS OF b30t

Frequency of b30t,�� =0, �� -targets (B30=1.49) 
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7. CONCLUDING COMMENTS
In our paper we have derived a formula for the optimal investment allocation (using a dynamic

programming approach as in Vigna and Haberman (2001)) in a defined contribution pension

scheme whose fund is invested in n assets.

Then, considering the particular case of a 2-asset portfolio, we have investigated the financial risks

of a DC scheme, considering the investment risk borne by the member during the accumulation

period up to retirement and the annuity risk arising when the fund is converted into an annuity at

retirement.

We have analysed numerically the investment allocation and the downside risk faced by the retiring

member, where approximately optimal investment strategies have been adopted (or “sub-optimal”

investment strategies, due to the fact that we have added the constraint that short selling is not

allowed). The behaviour of the optimal investment strategy has been analysed allowing for changes

in the disutility function (via the parameter α ). Three different risk measures have been considered

in analysing the final net replacement ratios achieved by the member: the probability of failing the

target, the mean shortfall and a Value at Risk measure. We have considered the relationship

between the risk aversion of the member and these different risk measures in order to understand

better the choices confronting different categories of scheme member. We have also considered the

sensitivity of the results to the level of the correlation coefficient ρ  between the two asset returns.

The main results of our investigation are the following:

• The optimal investment strategy to be adopted by a risk averse member of a defined

contribution pension scheme is the so-called lifestyle strategy, which consists in investing the

whole fund in high risk assets at the beginning of the membership, and then switching into low

risk assets some years prior to retirement. The point in time when the switch occurs depends on

both the risk aversion of the individual (the more risk averse, the sooner the switch) and the time

to retirement (the longer the accumulation period, the later the switch).

• The optimal investment strategy for a risk neutral member of a defined contribution pension

scheme is to invest the whole fund in high risk assets for the whole period of membership, and

never switch into low risk assets.

• The different risk measures of the downside risk faced by the member of a defined contribution

pension scheme give different and contradictory indications.

•  Looking at the results for the probability of failing the target, the conclusion seems to be that

increasing the risk aversion of the individual or (which is the same) adopting more cautious

strategies leads to a greater number of failures relative to a target, chosen a priori.

• Looking at the results for the mean shortfall, the conclusion seems to be that increasing the risk

aversion of the individual or (which is the same) adopting more cautious strategies leads to

slightly lower mean shortfall, which means more limited reductions in pensioner income when a

failure occurs.

• Looking at the VaR results, we note that the VaR at 1%, 5% and 10% level does not change

very much when changing the risk aversion of the individual.

• The effect of changing the correlation factor ρ between the assets is very small both on the

optimal investment strategy and on the downside risk borne by the member of the scheme.

• The annuity risk borne by the member is underlined both by the behaviour of the VaR (with

VaR values of bn being always higher than VaR values of bnt), which shows that poor

outcomes are more adverse when a variable conversion factor is used to buy the annuity, and by

the observed distributions of bn and bnt (for example, the mode of the distribution being higher

in the bn case than in the bnt case).
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We suggest that the risk profile of the individual and the trade-off between different risk measures

of the downside risk borne by the member (for example, the number of failures and size of failures

in respect of a certain target), are important factors to be taken into consideration when determining

the choice of investment strategies in defined contribution pension schemes.
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APPENDIX

SKETCH OF THE PROOF

We want to prove that there are some sequences of coefficients {Pt}t, {Qt}t and {Rt}t such that:

(A1) ttt

2

ttt RfQ2fP)t,f(J +−=

for t = 0, 1 , 2,…N.

We show this by induction.

INDUCTION BASIS

For t=N (A1) is true. In fact,

(A2) J(fN, N) = CN = θ )]fF()fF[( NN

2

NN −α+−

And therefore:

PN = θ
QN = θ FN - α/2

RN = θ FN
2
 + α FN

INDUCTION STEP

Let us assume that (A1) is true for t+1, i.e.:

(A3) 1t1t1t

2

1t1t1t RfQ2fP)1t,f(J ++++++ +−=+

for some coefficients Pt+1, Qt+1 and Rt+1.

We will now show that (A1) is then true also for t.

By application of Bellmann’s principle (see 3.10 above), we obtain:

(A4) ]]f|)1t,f(J[E)fF()fF[(min)t,f(J t1ttt

2

tt}y{t
1n,...,1it

i +β+−α+−= +
−=

i.e.:

(A5) ]f|)1t,f(J[Emin)fF()fF()t,f(J t1t}y{tt

2

ttt
1n,...,1it

i +β+−α+−= +
−=

Applying the induction step, we have:

(A6) 1tt1t1tt

2

1t1tt1t R]ff[EQ2]ff[EP]f)1t,f(J[E ++++++ +−=+

Considering now the expression for ft (see 2.1 above), we have:
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(A7) E[ft+1 ]f t  = (ft + c) 



 +−∑

−

=

1n

1i

nini )W(Ey)WW(E

(A8) E[ 2

1tf + ]f t  = (ft + c)
2
 × 



 +−∑

−

=

1n

1i

2
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2

ni y)WW(E





+−+−−+ ∑∑ ∑
<

−

=

−

=ij

1n

1i

2

n

1n

1i

i

2

nnijinjni )W(E2y)]W(E)WW(E[2yy)]WW)(WW[(E2 .

By replacing terms in (A6), we get:

(A9) ]f)1t,f(J[E t1t ++ = Ψ (y1, y2, ..., yn-1)

(we omit the index t for convenience of notation).

We now solve the optimisation problem:

(A10)
1n1 y,...,y

min
−

Ψ (y1, y2, ..., yn-1)

and we find the gradient of Ψ, ∇∇Ψ, and set it equal to 0:

−






 −+−−+−+=

∂
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+

ki
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nnkinknik
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t1t
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)]W(E)WW(E[2y)]WW)(WW[(E2y])WW[(E2)cf(P
y

−2Qt+1(ft + c) )]WW(E[ nk − , for k = 1, 2, ..., n-1. (A11)

Setting =
∂

Ψ∂

ky
0, for k = 1, 2, ..., n-1 yields:

∑
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ki
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nnknk

t1t

1t

inknik
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nk )]W(E)WW(E[)]WW(E[
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y)]WW)(WW[(Ey])WW[(E

for k = 1, 2, ..., n-1. (A12)

We have now to solve the linear system with n-1 unknowns and n-1 equations:

(A13) A y = h

with:

(A14) A = ( aij )i,j=1,…,n-1

(A15) aij = E[(Wi − Wn) (Wj − Wn)]

(A16) y = (y1, y2, …, yn-1)
T
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(A17) h = (h1, h2, …, hn-1)
T

(A18) hi = ii

t1t

1t db
)cf(P

Q
−

++

+

(A19) bi = E[(Wi − Wn)] and b = (b1, b2, …, bn-1)
T

(A20) di = E(Wi Wn) − E(Wn
2
) and d = (d1, d2, …, dn-1)

T

We note that the Hessian matrix of Ψ is the matrix A, so we have now to prove the following

lemma:

LEMMA

The matrix A, as defined by (A14) and (A15), is positive definite.

Proof.

A is positive definite if and only if:

v
T
 A v > 0  for any vector v = (v1, v2, …vn-1)

T
.

Let us define:

Zi := Wi − Wn  for i = 1,…,n-1, then:

(A21) v
T
 A v =

0vZEvZvZEvvZZEvv)ZZ(Evva
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v
T
 A v = 0 if and only if the random variable ∑

−

=

1n

1i

ii vZ  is identically zero, i.e. if and only if:

(A22) ∑
−

=

1n

1i

ii vZ ≡ 0.

The proof proceeds by contradiction.

If (A22) is true, then:

(A23) 




≡ ∑∑
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=

−

=

1n

1i

i

1n

1i

nii vWvW
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which means:

(A24)








≡

∑

∑
−

=

−

=
1n

1i

i

1n

1i

ii

n

v

Wv

W

so, Wn would be the weighted average of n-1 lognormal random variable, which is impossible, as

Wn itself is a lognormal random variable. Hence, we have a contradiction.

Therefore, A is definite positive.

The system (A13) has a unique solution given by:

(A25)
A

A
y i*

i = i = 1, 2, …, n-1

where Ai is the determinant of the matrix obtained by A, replacing the i
th

 column with the vector h.

Then, the following holds:

(A26) yt
i*

 = 
A

DBk iit −−
i = 1, 2, …, n-1

with 
)cf(P

Q
k

t1t

1t

t +
=

+

+ , Bi is the determinant of the matrix obtained by A, replacing the i
th

 column

with the vector b, and Di is the determinant of the matrix obtained by A, replacing the i
th

 column

with the vector d.

Since A is definite positive, )y,...y,y(y
*** 1n

t

2

t

1

t

*

t

−−==  is the minimum of ψ:

(A27)
1n1 y,...,y

min
−

Ψ (y1, y2, ..., yn-1) = ψ (y1
*
, y2

*
, ..., yn-1

*
)

(where we omit the index t for convenience of notation).

By replacing the values of y1
*
, y2

*
, ..., yn-1

*
 obtained, we get:

(A28) ψ (y1
*
, y2

*
, ..., yn-1

*
) = Lt ft

2
 + Mt ft + Nt

where:
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(A29) Lt = Pt+1 
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Therefore:

(A32) ]f|)1t,f(J[Emin)fF()fF()t,f(J t1t}y{tt

2

ttt
1n,...,1it

i +β+−α+−= +
−=

 =

= )fF()fF( tt

2

tt −α+− +β )y,...y,y(
*** 1n
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1

t

−Ψ = )fF()fF( tt
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 + Mt ft + Nt) =

= ttt
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with:
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which is (A1).


