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Abstract

Formal models of argumentation have been investigated in several areas, from

multi-agent systems and artificial intelligence (AI) to decision making, philosophy

and law. In artificial intelligence, logic-based models have been the standard for

the representation of argumentative reasoning. More recently, the standard logic-

based models have been shown equivalent to standard connectionist models. This

has created a new line of research where (i) neural networks can be used as a par-

allel computational model for argumentation and (ii) neural networks can be used

to combine argumentation, quantitative reasoning and statistical learning. At the

same time, non-standard logic models of argumentation started to emerge. In this

paper, we propose a connectionist cognitive model of argumentation that accounts

for both standard and non-standard forms of argumentation. The model is shown

to be an adequate framework for dealing with standard and non-standard argu-

mentation, including joint-attacks, argument support, ordered attacks, disjunctive

attacks, metalevel attacks, self-defeating attacks, argument accrual and uncertainty.

We show that the neural cognitive approach offers an adequate way of modelling

all of these different aspects of argumentation. We have applied the framework to

the modelling of a public prosecution charging decision as part of a real legal de-

cision making case study containing many of the above aspects of argumentation.

The results show that the model can be a useful tool in the analysis of legal decision

making, including the analysis of what-if questions and the analysis of alternative

conclusions. The approach opens up two new perspectives in the short-term: the
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use of neural networks for computing prevailing arguments efficiently through the

propagation in parallel of neuronal activations, and the use of the same networks

to evolve the structure of the argumentation network through learning (e.g. to learn

the strength of arguments from data).

Keywords: Argumentation, Neural-Symbolic Reasoning, Legal Decision Mak-

ing, Cognitive Modeling.

1 Introduction

Formal models of argumentation have been investigated in several areas, from multi-

agent systems and artificial intelligence (AI) to decision making, philosophy and law

[4, 8, 13, 17, 30, 33]. In artificial intelligence, models of argumentation have been

used for commonsense reasoning, modelling chains of defeasible arguments to reach

a conclusion. Such models are mainly founded on logic-based approaches, which have

been the standard for the representation of argumentative reasoning in AI [3].

Recent efforts to bridge the gap between logic-based models of argumentation and

cognitive models of computation include [10, 11, 34]. In [10, 11], an equivalence is

shown between value-based argumentation [2] and standard connectionist networks

[22]. This has created a new line of research in argumentation where (i) neural net-

works can be used as a cognitive computational model for argumentation and (ii) neural

networks can be used to combine argumentation, quantitative reasoning and statistical

learning. In [34], behavioural data is used to conclude that in human reasoning, rein-

statement does not yield a full recovery of the attacked argument; [1] implements the

same idea mathematically through equations that resemble the predator-prey dynam-

ics of species populations. Further work integrating logic and neural networks include

[20] where clustering in fuzzy ART networks is used to compute prevailing arguments,

and [25] which extends the work in [10] to deal with self-defeating arguments and pro-

vides a number of interesting examples. At the same time, some non-standard models

of argumentation start to emerge, enriching current models with cognitive abilities; e.g.

[15] discusses metalevel attacks, coalitions, disjunctive attacks and argument support,

[37] provides an adequate semantics for joint attacks, among much else, [29] seeks to

unravel the role of emotions in argumentation, [14, 23] propose to handle uncertainty

in argumentation through the assignment of probabilities and weights to arguments,

and [12, 26] offer a qualitative method for reasoning about uncertainty and preferences

between arguments.

We argue that the adoption of a cognitive approach to argumentation can offer an

adequate framework for dealing with both standard and non-standard argumentation

models. In this paper, we show that a cognitive approach can model many different

aspects of argumentation in a uniform way, in particular, modelling uncertainty in ar-

gumentative reasoning and the accrual of arguments. The approach opens up, through

the use of a connectionist system, two new short-term perspectives: (i) the use of neu-

ral networks to compute prevailing arguments efficiently through the propagation in

parallel of neuronal activation signals and (ii) the use of the same networks to evolve

the structure of an argumentation network through learning (e.g. to learn the strength

of arguments from data). We believe that this approach also opens a more long-term
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perspective for the research on argumentation: the use of connectionist models of com-

putation to help investigate and evaluate cognitive models of argumentation. For exam-

ple, ideas from connectionism about the modeling of attention and emotion could be

investigated in the context of argumentation [29, 36].

Argumentation has also been proposed as a method for helping machine learning

systems [27] where an expert’s arguments, or the reasons for some of the learning ex-

amples, are used to guide the search for hypotheses. This is related to the body of work

on abductive reasoning and combinations of abduction and inductive logic program-

ming [24, 28]. It is said that the arguments constrain the combinatorial search among

possible hypotheses, directing the search towards hypotheses that are more comprehen-

sible in the light of an expert’s background knowledge [27]. We subscribe to this idea. In

fact, experimental results on the integration of learning with background knowledge us-

ing neural networks have been shown to outperform symbolic and purely-connectionist

systems, especially in the presence of noisy data [9]. In this paper, differently from [27],

however, learning from data can be used to inform a process of numerical argumenta-

tion, allowing different perspectives of human argumentation, including joint attacks,

argument support, meta-argumentation and disjunctive attacks, to be modelled in the

same framework, as detailed in what follows.

The remainder of the paper is organised as follows. First, we define the con-

cepts of argumentation and neural cognitive models used throughout the paper. Then,

we present an algorithm, generalised from [10], which translates standard and non-

standard argumentation frameworks into standard connectionist networks. We show

that the resulting neural model executes a sound parallel computation of the prevail-

ing arguments according to a number of standard argumentation semantics, and also

according to value-based argumentation models [2], abstract dialectical frameworks

[5], and other forms of human argumentation. We illustrate the network computation

through examples that include joint attacks, support, meta-argumentation and disjunc-

tive attacks. Finally, we apply the framework to a real decision making situation in

legal reasoning, which indicates that the network model can be a useful tool in the

modelling of non-standard and numerical argumentation, and in the analysis of what-if

questions that emerge in real situations. The paper concludes with a brief discussion

and directions for future work.

2 Background

In this section, we present the concepts of argumentation and neural networks used

throughout the paper.

Definition 1 An argumentation framework has the form A = < α, attack >, where α
is a set of arguments, and attack ⊆ α2 is a relation indicating which arguments attack

which other arguments.

In order to record the values associated with arguments, in [2] Bench-Capon has

extended Dung’s argumentation framework [13] by adding to it a set of values and a

function mapping arguments to values. This brings argumentation closer to a numeri-

cal, connectionist approach.
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Definition 2 A value-based argumentation framework is a 5-tuple V AF = <
α, attacks, V, val, P >, where α is a finite set of arguments, attacks is an irreflexive

binary relation on α, V is a non-empty set of values, val is a function mapping ele-

ments in α to elements in V , and P is a set of possible audiences, where we may have

as many audiences as there are orderings on V . For every A ∈ α, val(A) ∈ V.

Bench-Capon also defines the notions of objective and subjective acceptability of

arguments. The first are arguments acceptable no matter the choice of preferred val-

ues for every audience, whereas the second are acceptable to some audiences. Argu-

ments which are neither objectively nor subjectively acceptable are called indefensible.

A function v from attack to {0, 1} gives the relative strength of an argument. Given

αi, αj ∈ α, if v(αi, αj) = 1 then αi is said to be stronger than αj . Otherwise, if

v(αi, αj) = 0 then αi is weaker than αj .

We shall also relate the neural approach with abstract dialectical frameworks [5].

Definition 3 An abstract dialectical framework (ADF) is a tuple D = (S,L,C) where

S is a set of nodes, L ⊆ S×S is a set of links, C = {Cs}s∈S is a set of total functions

Cs : 2
s → {in, out}, one for each node s.

Consider an example. A person is innocent (i), unless she is a murderer (m). A killer

(k) is a murderer (m), unless she acted in self-defence (s). There must be evidence for

self-defence, e.g. a witness (w) who is not known to be a liar (l). An ADF can model the

above example by stating that s is in if w is in and l is out. Similarly, m is in if k is in
and s is out. In other words, like neural networks, ADFs include the concept of support.

If k and w are in and l is out then s will be in; s then defeats m regardless of k so that

i prevails. Every argumentation framework has an associated ADF. Also, normal logic

programs have associated ADFs [5]. Since every logic program also has an associated

neural network [9], this fact will be used later to show the required correspondences.

Other established definitions of argumentation semantics will be considered as well

[6, 7, 13]. In all the definitions that follow, an argumentation framework is a pair A =
< α, attack >, as above. First, let us define a function F : 2α → 2α, such that

F (Args) = {A | A is defended by α}, where Args ⊆ α. The function F computes the

arguments accepted in the sense of [13] or defended by a set of arguments, in the sense

of [7]. In this way, we can define conflict-free sets of arguments. A set of arguments

is conflict-free if and only if (iff, for short) it does not contain any arguments A and B
such that A defeats B. Let Args be a conflict-free set of arguments. Args is said to be

a complete extension iff Args = F (Args).
In another useful argumentation semantics, the grounded semantics, only one ex-

tension is yielded by making use of the function F and defining the grounded extension

as the minimal fixed point of F [31]. A grounded extension is conflict-free [7]. In the

preferred semantics [13], a more credulous approach is used, which maximizes the

number of accepted arguments. In order to define preferred semantics, Dung intro-

duces the notion of admissible sets of arguments. A set of arguments is admissible iff it

is conflict-free and Args ⊆ F (Args). The set Args is a preferred extension iff Args
is maximal w.r.t. set inclusion. In the stable semantics of argumentation [18], a set of

arguments is called stable iff it defeats each argument that does not belong to this set.
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In semi-stable semantics, a set of arguments Args is semi-stable iff Args is a com-

plete extension of which Args+ = α\Args is maximal and defines a set of arguments

which are defeated by an argument in Args.

In order to illustrate the different argumentation semantics, we borrow an example

from [7]. Consider the abstract argumentation framework depicted as a directed graph

in Fig. 1, where each node is an argument and an arrow from argument X to argument

Y denotes an attack from X on Y . This framework has grounded extension {E,F};

complete extensions {E,F},{B,C,E,F} and {A,E,F}; preferred extensions {B,C,E,F}
and {A,E,F}; stable extension {B,C,E,F}; and semi-stable extension {B,C,E,F}. As

pointed out in [7], semi-stable and stable extensions will coincide whenever the frame-

work has at least one stable extension.

B E

A F

C           D

Figure 1: An abstract argumentation framework with arguments A, B, C, D, E, and F;

D is a self-defeating argument

Finally, we shall also consider meta-argumentation [15]. In a meta-argumentation

network, let argument a attack b in the usual way. It is possible to define an argument

c as an attack on a’s attack. This makes the framework more fine-grained in that c’s
attack does not propagate throughout the network, but is targeted at one specific attack

in the network. Meta-argumentation can be reduced to argumentation frameworks with

the addition of a node denoting (c, a) and a careful re-organization of the network [15].

We shall use a standard definition of neural networks, as follows. A neural network

is a directed graph with the following structure: a unit (or neuron) in the graph is char-

acterized, at time t, by its input vector Ii(t), its input potential Ui(t), its activation

state Ai(t), and its output Oi(t). The units of the network are interconnected via a

set of directed and weighted connections such that if there is a connection from unit

i to unit j then Wji ∈ R denotes the weight of this connection. The input potential

of neuron i at time t (Ui(t)) is obtained by computing a weighted sum for neuron i
such that Ui(t) =

∑
j WijIi(t). The activation state Ai(t) of neuron i at time t is then

given by the neuron’s activation function hi such that Ai(t) = hi(Ui(t)). Typically,

hi is either a linear function, a non-linear step function, or a sigmoid function such as

tanh(x). In this paper, we use tanh(x) as activation function and inputs values in the

range [−1, 1]. In addition, θi (an extra weight with input always fixed at 1) is known

as the bias of neuron i. We say that neuron i is active at time t if Ai(t) > −θi. Finally,

the neuron’s output value Oi(t) is given by its output function fi(Ai(t)). Usually, fi is

the identity function so that Oi(t) = Ai(t).
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3 Neural Cognitive Argumentation Frameworks

We start by considering the relationship between argumentation and neural networks

informally. If we represent an argument by a neuron then a connection from neuron

i to neuron j can indicate that argument i either attacks or supports argument j, the

weight of the connection corresponding to the strength of the attack or support. Since

real numbers are used as weights in a neural network, we associate negative weights

with attacks, positive weights with support, and zero weight with the lack of an attack

or support.

Definition 4 We say that an argument prevails at time t when the activation state of its

associated neuron is greater than a predefined value Amin at time t, 0 < Amin < 1.

We say that an argument is defeated at time t when the neuron’s activation is smaller

than −Amin. Otherwise, i.e. for activations in the interval [−Amin, Amin], we say

that it is unknown whether an argument prevails or not.

There are different ways in which an argument may support other arguments. For

example, an argument i may support argument j by attacking an argument k that attacks

j, or argument i may support j directly, e.g. by strengthening the value of j, or even

i and j may get together to attack k. Generally, an argument i supports an argument

j if the coordination of i and j reduces the likelihood of j being defeated [39]. A

general neural network structure capable of accounting for the above combinations of

attack and support and the necessary computations of prevailing arguments would be a

recurrent network having an input layer, a single hidden layer, and an output layer with

feedback from the output to the input layer [9]. At time t0, input values are provided

to the network. Neuronal activation is then propagated in parallel from the input to

the hidden layer at time t1, and to the output of the network at time t2. At time t3,

the output values can be fed back to the input of the network, and this process can be

repeated until a stable state is obtained, when input and output values will be the same

for each pair of neurons with feedback. Arguments for which the associated neuron is

activated at the stable state are said to prevail.

Consider the neural network of Fig. 2(b), which implements the argumentation

network of Fig. 2(a). Arguments A, B and C are encoded in the network’s input and

output layers. In this example, arguments do not get together to attack another argument

so that each input neuron is connected directly to a hidden neuron and the weights

from the input to the hidden layer simply serve to send the input information forward.

Support and attack information is encoded by the weights leading from the hidden to

the output layer of the network. Support for A is encoded by the positive weight going

from neuron h1 to output neuron A. Similarly, support for B (resp. C) is encoded by

the weight going from h2 (resp. h3) to B (resp. C). A’s attack on B is represented by

the dashed arrow going from h1 to B, which should have negative weight, as specified

in the algorithm below. Similarly, B’s attack on C is represented by the dashed arrow

going from h2 to C, with a negative weight.

If the absolute value of the weight going from h1 to B (call it W1) is larger than the

value of the weight from h2 to B (call it W2) then A defeats B. This produces {A,C}
as prevailing arguments and is identical to the usual (non-value based) interpretation
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of argumentation frameworks [13]. The prevailing arguments are computed by the net-

work as follows: suppose that A, B and C are all present at time t0, denoted by input

vector [1, 1, 1]. Hidden neurons h1, h2 and h3 all become activated; h1 activates A,

and blocks the activation of B from h2 (because W1.h1 + W2.h2 < 0). At the same

time, C is blocked by h2 (by default, we assume that attacks are stronger than support,

i.e. the weight from h2 to C is greater in absolute value than the weight from h3 to

C, unless stated otherwise). Thus, at time t2, only output neuron A is activated (i.e.

only the output of neuron A is greater than Amin). This is then represented as a new

input vector [1,−1,−1] at time t3. Given this new input, A continues to prevail, B is

defeated as before, but C is reinstated because B now fails to defeat it, since B is not

present in the input anymore. Thus, at time t5, output neurons A and C become acti-

vated. At time t6, a new input [1,−1, 1] is produced. Finally, with [1,−1, 1] given as

input, output neurons A and C become activated again, producing a stable state in the

network. Recall that network outputs are real values in the range (−1, 1). To compute

a stable state, each output value in the range (Amin, 1) is mapped to 1, output values

in the range (−1,−Amin) are mapped to −1, and values in the range [−Amin, Amin]

are mapped to 0. After this is done, the network’s new input vector can be compared

with its previous input. In this example, the input vector at time t9 will be identical to

the input vector at time t6, that is [1,−1, 1] is a stable state. The network’s stable ac-

tivations indicate the prevailing arguments {A,C}. This result also coincides with the

standard ADF interpretation of support (Definition 3). In the case of VAF (Definition

2), if B is preferred over A, all that needs changing in the network is the value of W1

or W2 so that |W1| < W2, denoting that the attack from A on B should not be strong

sufficiently to defeat B [10]. In this case, input [1, 1, 1] produces new input [1, 1,−1],

which is a stable state, given the neural network’s new set of weights. This new net-

work, therefore, computes prevailing arguments {A,B}, as expected in the case of the

VAF under consideration.

As another example, consider the network of Fig. 3(b). Here, a cycle exists in the

argumentation network. This may create an infinite loop in the computation of the

stable state of the associated neural network; e.g. if the network were to be started

on input vector [1, 1, 1], it would oscillate between that state and state [−1,−1,−1]

indefinitely, with the arguments all being attacked in parallel and defeated in a single

pass through the network, and then reinstated in the next pass through the network. In

order to handle this as intended by the usual argumentation semantics, whenever the

neural network reaches a state [−1,−1, ...,−1], the computation stops. In this case,

the neural network computes the grounded extension of the argumentation network, as

discussed in more detail later. Summarising, our policy is that the network computation

stops when either a stable state is obtained or when [−1,−1, ...,−1] is reached. We call

[−1,−1, ...,−1] a terminal state. Notice that by following a value-based approach, and

changing the weights according to some preference relation, one might eliminate the

loop [10]. For example, if as before, B is preferred over A then the attack from A on

B will not be successful, with input [1, 1, 1] producing stable state [1, 1,−1]. When

the weights are different, the neural network is less likely to enter into an infinite loop

(see [10] for a discussion on how weight learning given new information following a

value-based approach can be useful at resolving loops).
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A CB

A CB

h1 h2

A

h3

(b)

A               B              C

(a)

Figure 2: (a) Illustration of an argumentation network in which argument A attacks ar-

gument B, which in turn attacks argument C, and (b) its neural implementation, where

solid lines receive positive weights and dashed lines, which represent the attacks, re-

ceive negative weights

The algorithm below generalises the algorithm first introduced in [10], which was

made for VAF only. It translates argumentation frameworks into single-hidden layer

neural networks that behave as exemplified, and can be used to compute prevailing

arguments in parallel. It does so by defining the structure and set of weights of a neu-

ral network as a function of Amin, using activation function tanh(x) and inputs in

{−1, 1}. Each argument has a strength given by positive weight Wl. Certain arguments

may attack other arguments with negative weight W ′, and certain arguments may sup-

port other arguments with positive weight Ws. The weights are such that activations

in the interval [−Amin, Amin] are guaranteed not to occur for now (we shall consider

uncertainty in the next section). The neural network produces outputs in the intervals

(−1,−Amin), which is mapped to false and denotes that an argument is defeated, and

(Amin, 1), which is mapped to true, denoting that an argument prevails.

By default, Algorithm 1 implements Dung’s argumentation frameworks. If an ar-

gument αi attacks an argument αj , and αi is itself not attacked, then neuron αi should

block neuron αj . However, if αi is deemed weaker than αj , and no other argument

attacks αj , then neuron αi should not block neuron αj . To achieve this, and account

for a number of other, alternative semantics and modes of argumentation in a neural

network [16], the constraints on Wl and W ′ can be modified, as will become clearer

in Section 4. Also, in Algorithm 1, a single supporting argument is deemed sufficient

to defeat any attack; the other alternatives, leading to different constraints on Ws and
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h2
h3

B

h1

AA CB

A              B

        C

(b)

(a)

Figure 3: (a) An example of a cyclic argumentation network and (b) its neural imple-

mentation whose parallel computation produces, in a single pass through the network,

a terminal state [-1,-1,-1] with no prevailing argument, following a grounded argumen-

tation semantics

θj , will be considered in Section 4. A novelty of the algorithm is that arguments may

have strengths Wl, which may vary from one attack to another. Before we consider

the extensions of Algorithm 1, however, let us make the ideas developed so far more

precise.

Definition 5 (N computes A) Let (αi, αj) ∈ attacks. Let Aα(t) denote the activation

of neuron α at time t. We say that a neural network N computes an argumentation

framework A if whenever Aαi
(t) > Amin and Aαj

(t) > Amin then Aαj
(t + 1) <

−Amin, and whenever Aαi
(t) < −Amin for every αi such that (αi, αj) ∈ attacks

then Aαj
(t+ 1) > Amin (reinstatement).

Proposition 6 For each argumentation framework Av there exists a single-hidden

layer neural network N such that N computes Av .

Proof: First, we show that if Aαi(t) > Amin in the input layer of N then Aαi(t +
1) > Amin in the output layer of N whenever there are no attacks on αi. In the

worst case, the input potential of hidden neuron Ni is AminWl, and the output of Ni is

tanh(AminWl). We want tanh(AminWl) > Amin. Again in the worst case, the input

9



Algorithm 1: General Neural Argumentation Algorithm

Given an argumentation framework A with arguments α1, α2, ..., αn:
1. Create an input and output layer of a neural network N with n neurons each such that
the i-th neuron corresponds to argument αi;
2. Given 0 < Amin < 1, calculate W = 1

Amin
tanh−1(Amin);

3. For each argument αl in A (1 ≤ l ≤ n) do:
(a) Add a neuron Nl to the hidden layer of N ;

(b) Connect input neuron αl to neuron Nl and set the connection weight to:
Wl > W ;

(c) Connect neuron Nl to output neuron αl and set the connection weight to Wl;
4. For each (αi, αj) ∈ attack, do:

(a) Connect neuron Ni to output neuron αj ;

(b) Set the connection weight to W ′ <
2(tanh−1(−Amin))+(Amin−1)Wl

(n+1)Amin−n+1
;

(c) Set the bias θj of output neuron αj such that

(tanh−1(Amin)−AminWl + nAminW
′) < θj <

(tanh−1(−Amin)−Wl + (n− 1−Amin)W
′),

where n is the number of attacks on αj .
5. If an argument αi supports argument αj , do:

(a) Connect neuron Ni to output neuron αj ;

(b) Set the connection weight to Ws >
2(tanh−1(−Amin))+(Amin−1)Wl

(n+1)Amin−n+1
;

(c) Set the bias θj of output neuron αj such that

(tanh−1(Amin)− nW ′ +Wl −AminWs) < θj <

(tanh−1(−Amin)−AminW
′ + (n− 1)W ′ +AminWl +AminWs),

where n is the number of attacks on αj ;
6. Set the bias of any other neuron to zero.

potential of output neuron αi will be AminWl, and we need tanh(AminWl) > Amin.

As a result, Wl > tanh−1(Amin)/Amin needs to be satisfied. When there is an attack

on αi, the activation of output neuron αj needs to be smaller than −Amin if hidden

neuron Ni is active. In the worst case, Ni has activation Amin, Nj has activation 1,

and any other attacking neuron has activation −1. Hence, tanh(AminW
′+Wl−(n−

1)W ′+θ) < −Amin has to be satisfied, where n is the number of attacks. Dually, when

there are no attacks on αi, the following inequality has to be satisfied: tanh(AminWl−

nAminW
′ + θ) > Amin, which gives W ′ < 2(tanh−1(−Amin))+(Amin−1)Wl

(n+1)Amin−n+1 and the

constraint on θj , as shown in Algorithm 1, step 4. When at least one argument αi

supports argument αj , the following inequality has to be satified (again, in the worst

case analysis): tanh(nW ′ −Wl + AminWs + θ) > Amin. Dually, in the worst case,

tanh(AminW
′− (n−1)W ′−AminWl−AminWs+θ) < −Amin has to be satisfied,

which gives Ws > 2(tanh−1(−Amin))+(Amin−1)Wl

(n+1)Amin−n+1 and the constraint on θj , as shown

in Algorithm 1, step 5. This completes the proof.

Proposition 7 For each ADF Aa there exists a single-hidden layer neural network N
such that N computes Aa.

Proof: The standard ADF interpretation is that v(αi, αj) = 1 when αi attacks αj . This

interpretation has been covered in the proof of Proposition 6. In weighted ADFs, how-

ever, one can distinguish different combinations of attack and support [5], in particular,

a supporting link can be stronger than an attacking link so that the attacked argument
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prevails. Since neural networks with as few as a single hidden layer are universal ap-

proximators, it follows that in the neural argumentation approach, any Boolean com-

bination of attacks and support can be computed. In the specific case of support, we

need to show that if αi supports αj then if Cαi
(t) = in then Aαj

(t + 1) > Amin. As

before, we associate inputs in the interval (Amin, 1) to in and inputs in the interval

(−1,−Amin) to out. In the worst case, we need tanh(nW ′ −Wl +AminWs + θ) >

Amin. Thus, Ws > 2(tanh−1(−Amin))+(Amin−1)Wl

(n+1)Amin−n+1 , as guaranteed by the algorithm.

This completes the proof. Notice that, in practice, we convert inputs in the interval

(Amin, 1) to 1, and inputs in the interval (−1,−Amin) to −1, which relaxes further

the above constraint on Ws.

We can also show that the neural-network approach is very general by proving

that it computes the many different argumentation semantics, as defined earlier [6, 13].

Before that is done, however, we should note that an argument that is not attacked by

any other argument cannot be reinstated in the neural network (an argument that is

attacked but not defeated will be reinstated as usual). For example, argument E in Fig.

1 will be in if its input value is 1, and will be out if its input value is −1. It will continue

to be out over time if it is out initially, and will be in otherwise. Argument B, on the

other hand, will be reinstated whenever argument A is not present, and vice-versa.

Lemma 8 For each argumentation framework A there exists a single-hidden-layer

recurrent neural network N such that the complete extensions of A are stable states of

N .

Proof: Recall that a set of arguments Args is said to be a complete extension of A
iff Args = F (Args). From Proposition 6, one pass through N computes F (Args).
Recurrently connected, N iterates F (Args) until a stable state is reached, which is a

fixed point of F , that is Args = F (Args).

Corollary 9 For each argumentation framework A there exists a recurrent neural net-

work N such that the grounded, preferred, stable and semi-stable extensions of A are

stable states of N .

As an example, consider again the argumentation framework of Fig. 1. Starting

from {E,F} ∈ in, without a terminal state, the associated neural network can converge

to the following stable states: {B,C,E,F} and {A,E,F}, corresponding to its preferred

extensions. With a terminal state, the network will converge to either {E,F},{B,C,E,F}
or {A,E,F}, corresponding to its complete extensions.

Finally, consider the argumentation network of Fig. 4, for which no stable state

exists. With the use of a terminal state, the corresponding neural network will imple-

ment a semi-stable semantics, providing the empty set as the only extension. Without

a terminal state, the neural network will loop (until it is either halted or its weights are

changed), implementing a stable semantics.

The neural networks of Figs. 2 and 3 should be seen as computational models rather

than abstract argumentation frameworks. As discussed, the networks can be used in

the parallel computation of prevailing arguments: given input vector [1, 1, ..., 1] at the

start, the networks should always converge to a stable state corresponding to a set
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Figure 4: Semantic circularity for which no stable state exists

of prevailing arguments, according to a (value-based, preferred, etc.) argumentation

semantics.

Definition 10 We say that neural network N computes an (extension-based semantics

of) argumentation framework A if every stable state of N is an extension of A.

Proposition 11 If N computes A and A admits a single extension then starting from

input vector [1, 1, ..., 1], N always finds a stable state corresponding to the prevailing

arguments of A.
Proof: The arguments in N can be viewed as logic programming clauses of the form

αi → αi. Starting from [1, 1, ..., 1], N will treat each αi as a fact unless αi is attacked

and defeated by another argument αj , which corresponds to adding a clause ¬αj → αi

to the program (where ¬ stands for negation by failure). If A admits a single extension

then the corresponding program will have a single model. The stable models of any

logic program can be computed by a single-hidden layer neural network; with a single

model, the network is known to always settle down in a stable state corresponding to

this model, as proved in [9]. Such a result can be applied directly here to complete the

proof.

As exemplified earlier, it should be possible to extend Proposition 11 to certain

very general classes of argumentation networks that admit multiple extensions. Due

to the numerical nature of the networks, they are unlikely to oscillate unless integer

weights with the same absolute values are used. For example, we have seen that, start-

ing from [1, 1, ..., 1], the network of Fig. 3 converges to a terminal state. Otherwise,

it loops. As argued in [10], a network that loops should be seen as an opportunity for

learning, whereby what-if questions can be considered and the network’s weights can

be changed slightly. Similarly, when a network reaches a terminal state, this should

trigger a search for new evidence about the relative strength of the arguments. For ex-

ample, consider the case where arguments A and B attack each other in a cycle. The

corresponding neural network has two stable states, namely [1,−1] and [−1, 1], cor-

responding to the two stable extensions of the argumentation network. Starting from

[1, 1], the neural network produces output [−1,−1], which is a terminal state. At this

point, the computation stops. However, a loop exists in the network computation, since

input [−1,−1] would produce output [1, 1]. A terminal state does not provide much in-

formation by itself (a terminal state could be seen as producing maximum uncertainty).

However, if the reaching of a terminal state is seen as a trigger for a search for more ev-

idence, perhaps this search could shed new light on the relative strengths of arguments
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A and B, defining a preference for either argument by changing the weights of the net-

work. If a neural network is such that the weights do not have the same absolute values

then it is unlikely that arguments will cancel each other, as seen above, so that the net-

work loops. Breaking such a symmetry in the set of weights by changing their values

slightly is the norm of network learning, and could be seen as an alternative to the use

of terminal states and a solution to the problem of having loops in the computation of

such neural networks [10].

4 Neural Cognitive Nonclassical Argumentation

It is natural for a neural network to combine the weights representing multiple support

or multiple attacks in order to compute the activation state of a neuron/argument. This

is interesting in relation to the question of the accrual of arguments [38]. So far, our

standard interpretation has been that any attack suffices to defeat an argument, unless a

value-based function says otherwise. Another interpretation, however, is that arguments

may get together to attack an argument (that is, only the conjunction of the arguments

enables the attack; this is called a joint-attack [1]). Fig. 5(a) shows two arguments A and

C attacking argument B. When either v(A,B) = 1 or v(C,B) = 1 for the standard

interpretation, the attacks can be implemented by Algorithm 1 above. However, when

arguments are allowed to accrue and either v(A,B) = 0 or v(C,B) = 0, a decision

has to be made as to whether or not A and C together can defeat B [10]. The same

is true for support. Fig. 5(b) shows an argument A supporting argument B as done

in ADFs. It may be that without A’s support, B would be defeated, say, by an attack

from another argument C, but B is not defeated with A’s support. Finally, Fig. 5(c)

shows a situation where, only if A and B prevail, can they attack C. Hidden neuron h1

implements, in the usual way, a logical-AND. This is the situation where arguments A
and B “get together” to attack C.

A CB

B

h1 h2

A

h3

(a)

A B

B

h1 h2

A CB

C

h1

A

h2

(b) (c)

Figure 5: Alternative modes of attack and support: (a) multiple attacks, (b) support, and

(c) joint-attacks

Let us consider Fig. 5(a) in more detail. Let WBi
denote the weight from hidden
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neuron hi to output neuron B. As said, the natural computation of a neural network

will combine the weights into the input potential of B. Suppose that WB2
= 3 and

WB1
= WB3

= −2. In this situation, neither A nor C defeat B, but, together, A and

C may defeat B as an unintended consequence of the combination of the weights.

To avoid this problem, we use the following convention: when arguments create a

joint attack on another argument, the set-up of Fig. 5(c) is used. If n arguments are

joined through hidden neuron hj , then the bias θhj
of hj should satisfy the following

inequality, which implements the intended logical-AND.

−nWAmin < θhj
< W − (n− 1)WAmin

Let us now consider in more detail the situation where an argument receives mul-

tiple support (Fig. 5(b)). This situation is similar to that considered earlier, that is,

whether some attack is strong enough to defeat all of the support received by B or

whether the support for A overrides the attack, making it unsuccessful. The first case

is straightforward and can be implemented by making:

W ′ <
1

Amin

(tanh−1(−Amin)− θj −
k∑

i=1

Ws),

where k is the number of supporting arguments, each with weight Ws > 0.

The second case, in a more general set-up, takes a linearly ordered set αn ≻ ... ≻
α2 ≻ α1 such that argument α1 prevails if it is not attacked, but α1 is defeated when

attacked by α2. However, α1 prevails again if it is supported by another argument α3,

but is defeated again if attacked by α4, and so on. We need to assign values to weights

Wα1
,Wα2

, ...,Wαn
, as follows:

Wα1
= W,

Wα2
= −W + ε,

Wαj
= Wαj−2

−Wαj−1
+ ε, j ∈ {3, 5, 7, ...}, j ≤ n,

Wαj
= Wαj−2

−Wαj−1
− ε, j ∈ {4, 6, 8, ...}, j ≤ n.

where W > 0 and ε is a small positive number such that W >> ε (typically ε = 0.1).

A further possibility would be to allow certain combinations of support to prevail

and certain others to be defeated. This is, in fact, a likely outcome if a learning algo-

rithm is to be applied, with the network’s weights changing as a result of learning from

data. Any combination of attack and support can be encoded in a neural network, as

follows. The linear ordering above can be extended to multisets in the usual way, so

that each αj , 2 ≤ j ≤ n, denotes a set of arguments. The value of Wαj
will then cor-

respond to the sum of the weights either attacking or supporting α1, each weight being

equal to Wαj
/k, where k is the cardinality of the set of arguments in question. Since

we would like the combination of k arguments, and not of k − 1 or fewer arguments,

to have the above effect, the following inequality should be satisfied:

| Wαj−1
| > | Wαj

/(k − 1) |

The dual of the conjunctive attacks exemplified above are the disjunctive attacks

shown in Fig. 6(a). In the figure, the activation of hidden neuron ∨ should attack either
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argument B or C according to some probability distribution. We say that neuron ∨
behaves stochastically. Having a standard hidden neuron in Fig. 6(a) would denote that

A attacks both B and C. With a stochastic hidden neuron, either B or C is attacked

with a probability. This offers a way of implementing the idea of a disjunctive attack,

i.e. one that attacks either argument, but it does not matter which argument. If, for

example, the probability of attacking argument B should be 50%, a random number is

generated in the interval [0,1] and, if this number is greater than 0.5 then argument B
is attacked; otherwise, argument C is attacked.

Let
∨

i α1, ..., αn denote the arguments (neurons) attacked stochastically through

hidden neuron ∨i. From the point of view of the network computation, for each ∨i, we

select a neuron αj , 1 ≤ j ≤ n, at a time (at each round, a single αj is chosen to receive

activation from ∨i. A stable state denoting a set Sij of potential prevailing arguments

is then obtained in the usual way (with the same αj being selected if the network recurs

through ∨i). We take
⋂

i×j Sij as our final set of prevailing arguments (i.e. following a

skeptical semantics).

In addition to disjunctive attacks, the recent literature on argumentation has dis-

cussed extensively the modelling of self-defeating arguments as well as the concept of

meta-argumentation [15, 25, 26]. Fig. 6(b) exemplifies the implementation of a self-

defeating argument in a neural network. In the figure, argument A attacks argument

B, but A is self-defeating, that is, the weight of the connection to output neuron A
is negative. Hence, B prevails, as expected. Fig. 6(c) exemplifies a metalevel attack,

i.e. an attack not on an argument, but on another attack. In Fig. 6(c), argument A does

not attack argument B, but it attacks B’s attack on C. As a result, C prevails. In this

setting, it is possible for B to succeed in attacking another argument, say D, through

a different hidden neuron. Notice the similarity between Fig. 6(c) and Fig. 5(c). Not

surprisingly, the semantics of metalevel attacks can be characterised in terms of joint-

attacks, by adding the metalevel attack itself as a node in the argumentation network

[15].

A

B

V

(a)

A B

B

A CB

C

A

(b) (c)

C A

Figure 6: Disjunctive attacks (a), self-defeating attacks (b), and attacks on attacks (c)

Definition 12 Let a 7→ b denote an attack from argument a on argument b. Suppose
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that argument c attacks this attack; we write it as c 7→ (a 7→ b). A meta-argumentation

network is an argumentation network extended with such attacks on attacks.

Lemma 13 ([15]) Let Am be a meta-argumentation network where αi 7→ (αj 7→ αk).
Am can be reduced to an argumentation network containing an extra node (αj 7→ αk)
such that αj and (αj 7→ αk) jointly attack αk, and αi attacks (αj 7→ αk).

Proposition 14 For any meta-argumentation network Am there exists a neural net-

work N such that N computes Am.

Proof: We are concerned with the situation αi 7→ (αj 7→ αk) without recursion. In the

reduced network, node i attacks node jk, and nodes jk and j jointly attack node k. In

the neural network (with the same structure as in Fig. 6(c)), we have ¬i ∧ j attacking

k (recall that we have defined joint-attacks as conjunctions). If i is in then jk is out
and k is in; if i is out then k is out iff j is in. In the neural network, the hidden neuron

representing jk will be activated, attacking and defeating k iff i < −Amin (or out)
and j > Amin (or in), which clearly produces the same intended outcome.

5 Case Study: Public Prosecution Charging Decision

In this section, we apply the neural cognitive argumentation framework to the mod-

elling of a public prosecution charging decision, which was part of a real legal case.

The modelling of the charging decision includes many of the argumentation aspects ad-

dressed by our proposed framework, notably uncertainty, joint-attacks, argument sup-

port and ADF-style reasoning. The results show that the neural model can be a useful

tool in the analysis of legal decision making, including the analysis of what-if ques-

tions, as detailed below.

The following is an extract from a charging decision statement made 29 May 2012

by Alison Levitt, Queen’s Counsel, Principal Legal Advisor to the Director of Public

Prosecutions in relation to allegations that a police officer passed confidential informa-

tion to a journalist about Operation Weeting, a police investigation into allegations of

phone hacking by newspapers in the United Kingdom.

In what follows, we will represent the main aspects of the arguments discussed in

the charging decision statement as a neural cognitive model, and analyse the possible

model set-ups and computations, and their alternative conclusions in relation to the

actual outcomes of this legal case study. We are interested in exemplifying the use of

the proposed model in practice, and analysing its usefulness as a tool for modelling

the different aspects of argumentation, including the analysis of what-if questions, as

detailed below.

“On 2 April 2012 the Crown Prosecution Service received a file of evi-

dence from the Metropolitan Police Service requesting charging advice in

relation to two suspects. The first is a serving Metropolitan Police Officer

in the Operation Weeting team whose name is not in the public domain.

He is currently suspended. The second suspect is Amelia Hill, a journalist

who writes for The Guardian newspaper.

16



The allegation is that the police officer passed confidential information

about phone hacking cases to the journalist.

All the evidence has now carefully been considered and I have decided

that neither the police officer nor the journalist should face a prosecution.

The following paragraphs explain the reasons for my decision.

The suspects have been considered separately, as different considerations

arise in relation to each of them.

Between 4 April 2011 and 18 August 2011, Ms. Hill wrote ten articles

which were published in The Guardian. I am satisfied that there is suf-

ficient evidence to establish that these articles contained confidential in-

formation derived from Operation Weeting, including the names of those

who had been arrested. I am also satisfied that there is sufficient evidence

to establish that the police officer disclosed that information to Ms Hill.

I have concluded that there is insufficient evidence against either suspect

to provide a realistic prospect of conviction for the common law offence

of misconduct in a public office or conspiracy to commit misconduct in a

public office.

In this case, there is no evidence that the police officer was paid any money

for the information he provided.

Moreover, the information disclosed by the police officer, although con-

fidential, was not highly sensitive. It did not expose anyone to a risk of

injury or death. It did not compromise the investigation. And the informa-

tion in question would probably have made it into the public domain by

some other means, albeit at some later stage.

In those circumstances, I have concluded that there is no realistic prospect

of a conviction in the police officer’s case because his alleged conduct is

not capable of reaching the high threshold necessary to make out the crim-

inal offence of misconduct in public office. It follows that there is equally

no realistic prospect of a conviction against Ms. Hill for aiding and abet-

ting the police officer’s conduct.

However, the information disclosed was personal data within the meaning

of the Data Protection Act 1998 and I am satisfied that there is arguably

sufficient evidence to charge both the police officer and Ms. Hill with of-

fences under section 55 of that Act, even when the available defences are

taken into account.

I have therefore gone on to consider whether a prosecution is required in

the public interest. There are finely balanced arguments tending both in

favour of and against prosecution.

Journalists and those who interact with them have no special status under

the law and thus the public interest factors have to be considered on a case

by case basis in the same way as any other. However, in cases affecting

the media, the DPP’s Interim Guidelines require prosecutors to consider
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whether the public interest served by the conduct in question outweighs

the overall criminality alleged.

So far as Ms Hill is concerned, the public interest served by her alleged

conduct was that she was working with other journalists on a series of

articles which, taken together, were capable of disclosing the commission

of criminal offences, were intended to hold others to account, including

the Metropolitan Police Service and the Crown Prosecution Service, and

were capable of raising and contributing to an important matter of public

debate, namely the nature and extent of the influence of the media. The

alleged overall criminality is the breach of the Data Protection Act, but,

as already noted, any damage caused by Ms. Hill’s alleged disclosure was

minimal. In the circumstances, I have decided that in her case, the public

interest outweighs the overall criminality alleged.

Different considerations apply to the police officer. As a serving police

officer, any claim that there is a public interest in his alleged conduct car-

ries considerably less weight than that of Ms Hill. However, there are other

important factors tending against prosecution, including as already noted,

the fact that no payment was sought or received, and that the disclosure

did not compromise the investigation. Moreover, disclosing the identity of

those who are arrested is not, of itself, a criminal offence. It is only unlaw-

ful in this case because the disclosure also breached the Data Protection

Act.

In the circumstances, I have decided that a criminal prosecution is not

needed against either Ms. Hill or the police officer.

However, in light of my conclusion that there is sufficient evidence to pro-

vide a realistic prospect of convicting the police officer for an offence un-

der the Data Protection Act, I have written to the Metropolitan Police

Service and to the IPCC recommending that they consider bringing dis-

ciplinary proceedings against him.” Alison Levitt QC

Let us start by considering the arguments for and against prosecuting the journalist

(pj) and the police officer (pp).

Arguments for prosecution:

A: The articles contained confidential information;

B: The police officer disclosed the information;

C: A prosecution is required in the public interest.

Arguments against prosecution:

D: There is no evidence that the police officer was paid any money;

E: Information disclosed by the police officer, although confidential, was not highly

sensitive;

F: It did not expose anyone to a risk of injury or death;

G: It did not compromise the investigation;

H: It would probably have made it into the public domain by some other means;

I: The public interest outweighs the overall criminality alleged;
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J: Together, the articles would expose the commission of criminal offences;

K: Together, the articles would hold others to account;

L: The articles contributed to an important matter of public debate, namely the

nature and extent of the influence of the media.

Let us also analyse more closely the arguments relating to whether a prosecution is

required in the public interest. The assumption is that both the journalist and the police

officer have violated the Data Protection Act.

Arguments for bringing charges under the Data Protection Act:

M: The information disclosed was personal data;

Arguments against bringing charges under the Data Protection Act:

N: Disclosing the identity of those who are arrested is not, of itself, a criminal

offence;

O: It is only unlawful in this case because the disclosure also breached the Data

Protection Act.

Remark 15 Notice how argument O was used rhetorically as part of an argument

against bringing charges under the Data Protection Act. Argument O is, in fact, simply

stating that the disclosure was unlawful because it breached the Data Protection Act.

Consider also how the sentence below is used as part of the argumentation: “The

alleged overall criminality is the breach of the Data Protection Act, but, as already

noted, any damage caused by Ms. Hill’s alleged disclosure was minimal”. Our model

will help quantify such damage and will require a definition of minimal, as will become

clear. Similarly, the following sentences provide clues as to the weights to be assigned

to the neural network, in relation to the police officer: “Any claim that there is a public

interest in his alleged conduct carries considerably less weight” and “There is a high

threshold to make out the criminal offence of misconduct in public office”. We shall

return to these once we have created the network model.

The QC’s conclusion can be summarized as follows:

(a) It was decided that a criminal prosecution is not needed;

(b) It was decided that in the case of the journalist, the public interest outweighs

the overall criminality alleged;

(c) There is sufficient evidence to provide a realistic prospect of convicting the po-

lice officer for an offence under the Data Protection Act;

(d) A recommendation was made to the police to consider bringing disciplinary

proceedings against the police officer.

Our model’s conclusion: Our model is concerned with making explicit the following

relations (items 1 to 4 below).

On the issue of the police officer’s misconduct:

1. Do the weights of the arguments exceed the high threshold for the offence of

misconduct?

Arguments A, B and C should support the prosecution of the police officer (pp).

Argument C should do so with a low weight (w) since the prosecution would be for
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misconduct in public office. Arguments D, F, G and H attack pp collectively (argument

D with a high weight (W) for obvious reasons, and argument H with a low weight due

to its speculative nature). Argument E attacks argument B. These are all the relevant

arguments in relation to pp, as shown in Figure 7, where dashed lines indicate attacks.

As a result, neuron B fails to activate, and the weight of the arguments that collectively

attack neuron pp should overcome the weight of the arguments that support pp. Hence,

neuron pp should fail to activate. We discuss neuron/argument pj next.

2. If the police officer should not be prosecuted for misconduct then the journalist

should not be prosecuted for aiding his conduct.

Item 2 above can be modelled in Figure 7 using ADFs simply by stating that if ar-

gument pp is out (represented by a negative weight from input neuron pp to the hidden

layer) then argument ¬pj should be in; hence, the journalist should not be prosecuted

(in the neural network, if input neuron pp is not activated then output neuron ¬pj will

be activated; see dashed line representing a negative weight from input neuron pp in

Figure 7). This separation between arguments pj and ¬pj allows one to ignore how ar-

guments would influence neuron pj during the modelling of neuron ¬pj, and is referred

to explicit negation in logic programming [19]. Thus, in case neuron pp fails to activate,

which is the case here, neuron ¬pj will be activated. This completes the prosecution’s

analysis on the basis on misconduct.

pp B

pp¬pj

A

B

C FD G H

w wW

E

Figure 7: Neural implementation of legal case: prosecution decision

On the issue of the violation of the Data Protection Act:

3. Do the weights of the arguments show that the public interest outweighs the

violation of the Data Protection Act?

It is clear that arguments J, K and L support argument I, while argument M attacks

I. In addition, argument N attacks M, and O attacks N, as shown in Figure 8. The

conclusion is that indeed argument I should prevail.

4. Different weights apply to the journalist and the police officer.

Argument M supports the argument that the journalist should be prosecuted for

violation of the Data Protection Act (let us call this pjDP ). It also supports the argument
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for prosecuting the police officer for a violation of the Data Protection Act (call it

pjDP ). The attacks from argument I on pjDP and ppDP should have different weights:

a high (negative) weight W for pjDP and a low (negative) weight (w) for ppDP . Our

model’s conclusion, therefore, is that pjDP should not prevail (i.e. the journalist should

not be prosecuted), but differently from the QC’s conclusion, if the value of the weight

ω connecting argument M to ppDP should be greater than the absolute value of w

then argument ppDP should prevail, i.e. the police officer would be prosecuted for

violating the Data Protection Act. The actual values of weights ω and w may be a matter

for debate, but perhaps the QC’s arguments should have focused more on providing a

justification for such values.
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Figure 8: Neural implementation of legal case: decision based on data protection act

The above modelling exercise with the use of a neural cognitive model, may also

help in the separation of concerns and systematic questioning of some of the assump-

tions made. For example, in this case study, some questions that emerge include: should

different weights really apply to the journalist and the police officer, assuming they had

to work as a team in the public interest? Aside from possible issues of remit, why

should prosecution not be recommended straight away for the violation of the data pro-

tection act, and disciplinary proceedings should be evoked and recommended instead?

We believe that our model should help prompt the user to ask such questions, organise

the relationships among the different arguments under consideration, and investigate

the impact of different weight assignments to the network model. For example, what

if the weights W and w are assigned the same value? What if the weights ω and w are

assigned the same absolute value? The user would then be able to run the model and

consider the possible outcomes by analysing the different sets of prevailing arguments

obtained as stable states of the neural network.
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6 Conclusion and Future Work

We have presented a neural cognitive model of argumentation that is capable of cap-

turing a range of argumentation semantics and situations including joint-attacks, argu-

ment support, ordered attacks, disjunctive attacks, metalevel attacks and self-defeating

attacks. All these different modes of argumentation can be modelled, learned and com-

puted by means of a connectionist representation. In its most general form, arguments

are weighted according to their strength, can support or attack other arguments di-

rectly, but can also combine conjunctively or disjunctively, sequentially or in parallel,

at object- or meta-level, as exemplified throughout the paper. We have shown that all

these different modes of argumentation can be represented and computed in a natural

way by a connectionist network. This also indicates that the connectionist approach

can offer an adequate tool for argument computation.

When dealing with uncertainty and metalevel preferences, in [14], the question of

where the weights would come from is raised. In [2], voting by an audience is evoked

as a solution that depends on metalevel considerations, as in [26]. With the framework

proposed in this paper, the question gains a new dimension in that, as with any neural

network, the weights can be learned from examples (i.e. instances from previous cases).

As future work, we plan to explore the framework’s learning capacity as part of a larger

case study.

Uncertainty is intrinsic in human argumentation, yet most logic-based models of

argumentation do not deal with uncertainty explicitly. Argumentation can be seen as a

method for reducing one’s uncertainty with the prevailing arguments being precisely

those that are less-uncertain. In line with [21, 23, 35], the neural cognitive model in-

troduced here lends itself well to this idea due to the use of weights and activation

intervals as part of a neural network. However, we believe that the neural cognitive

approach may also be advantageous from a purely computational perspective due to

the networks’ ability to adapt through learning and to compute prevailing arguments

in parallel. All of the above is important given the objective of developing models of

human argumentation. Future work includes, in addition to the evaluation of the frame-

work’s learning capacities, further experimentation on legal reasoning, a comparison of

the framework’s knowledge representation and learning capacity, e.g. in contrast with

[23, 32], and the evaluation of the framework’s parallel computation gains. A graphical

interface is being developed to facilitate the interactive drawing and running of the net-

works as shown in the figures above, with all the features introduced here. We believe

that such an interface can be useful as a tool for modelling, running and the elaboration

of argumentation frameworks in a range of application areas.
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