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Abstract

Event Correlation used to be a widely used technique for interpreting alert logs
and discovering network attacks. However, due to the scale and complexity of
today’s networks and attacks, alert logs produced by these modern networks
are much larger in volume and difficult to analyse. In this research we show
that adding post-correlation methods can be used alongside correlation to sig-
nificantly improve the analysis of alert logs.

We proposed a new framework titled A Comprehensive System for Analysing
Intrusion Alerts (ACSAnIA). The post-correlation methods include a new pri-
oritisation metric based on anomaly detection and a novel approach to clustering
events using correlation knowledge. One of the key benefits of the framework
is that it significantly reduces false-positive alerts and it adds contextual infor-
mation to true-positive alerts.

We evaluated the post-correlation methods of ACSAnIA using data from a
2012 cyber range experiment carried out by industrial partners of the British
Telecom SATURN programme. In one scenario, our results show that false-
positives were successfully reduced by 97% and in another scenario, 16%. It
also showed that clustering correlated alerts aided in attack detection.

The proposed framework is also being developed and integrated into a pre-
existing Visual Analytic tool developed by the British Telecom SATURN Re-
search Team for the analysis of cyber security data.

1. Introduction

A 2013 study showed that 84% of attacked organisations had evidence of the
attack in their event log files (Verizon, 2013). This demonstrates that the task
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of successfully analysing event logs for the purpose of attack detection is non-
trivial. Event Correlation is a process used to detect attacks by finding multiple
network events and activities with similar properties. Take for instance, in
intrusion detection, an alert indicating the exploit of a known vulnerability on
a host can be correlated with the host’s list of vulnerabilities. This may prove
useful in validating the intrusion alert as threatening or non-threatening.

Most widely used security event analysis tools such as IBM’s Intelligent
Operation Center (IBM Corporation, 2013) and AlienVault’s USM (Alienvault,
2013) apply event correlation.

In our proposed framework - ACSAnIA, event correlation is the primary
component and it is targeted at the analysis of Intrusion Detection System
(IDS) alerts. The reason is that IDSs - particularly signature based IDSs - are
known to generate a vast amount of low-level alerts with a high percentage
being false positives. Using event correlation, IDS alerts can be grouped into
high-level structures called meta-alerts. Meta-alerts make it easier to identify
alerts that are interesting. Furthermore, meta-alerts significantly reduces the
amount of data required to be assessed by a security analyst.

Post-correlation processes such as “Prioritisation Analysis” are used to anal-
yse alerts after correlation has been performed (Salah et al., 2013). Prioritisation
assigns a level of importance to each meta-alert. This aids a response system
in determining the order IDS alerts should be addressed. In general, our ob-
servation from literature is that a small amount of research has focussed on
improving post-correlation methods.

1.1. Contributions

In ACSAnIA, we focus on improving attack detection and enhancing the
output of the correlation by performing post-analysis. The main contributions
presented in this paper are:

1. A new metric for prioritising alerts based on anomalous behaviour.

2. A new method for applying clustering on correlated alerts.

3. An improved data structure for representing robust attack patterns.

The first contribution is the prioritisation metric. Our hypothesis is that a
set of correlated alerts should be prioritised if it represents anomalous network
behaviour at a given time. The prioritisation metric is based on our previous
work (Shittu et al., 2014). In our new work we have improved the correlation
phase. It uses the LOF (Local Outlier Factor) algorithm (Breunig et al., 2000)
to assign an outlier value between 1 and 4 to each group of correlated alerts.
In this research, each group of correlated alerts is referred to as a meta-alert.
Meta-alerts with higher outlier values indicate higher anomalies thus higher
prioritisations.

The second contribution is that this research is the first to apply clustering to
meta-alerts. In prior art, cluster analysis is often applied to low-level IDS alerts.
One of the drawbacks of this is that low-level IDS alert clustering only discovers
alerts with similar properties and is not suitable for discovering progressive
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attacks which involve many alerts. In our work, a meta-alert can be seen as an
overview of an attack with potentially multiple steps. Clustering similar meta-
alerts into groups allow the discovery of similar attack patterns. In our work, we
apply a density based clustering method, DBSCAN (Ester et al., 1996) which
finds arbitrary sized and shaped clusters within a given density scope.

The final contribution is that through investigating methodologies for un-
derstanding attacks, we propose a new approach to extracting attack patterns
from meta-alerts. Attack patterns are properties observed accross two or more
meta-alerts that capture part of an attackers intention. Frequent pattern mining
is applied to meta-alerts for pattern extraction using a graph mining algorithm,
GSPAN (Yan, 2002).

To the authors’ knowledge, the contributions listed are novel and timely.
In Contribution 1, others have proposed prioritisation metrics but not based
on anomaly analysis. Our results show that anomaly behaviour is a suitable
approach for prioritisation IF outlier alerts exist in the dataset. In one of the
datasets which had distinct outliers we significantly reduced the false positives
by upto 99.7%. In another scenario with lesser distinct outliers the false positives
were reduced by 16%. For Contribution 2, it is acknowledged that Patel (2009)
first proposed clustering meta-alerts however we improve on this by using more
robust data structures and clustering approaches. To achieve this we adapt data
structures from graph based analysis. For Contribution 3, to our knowledge, is
an entirely new area of investigation used to detect new types of attack patterns
based on meta-alerts.

2. Related Work

The related work in this section is taken from three key areas - alert priori-
tisation, correlation and attack pattern extraction.

To the knowledge of the authors, very little work has been done on defining
IDS alert prioritisation metrics. Porras et al. (2002) first proposed an alert rank-
ing framework, M-Correlator, with a prioritisation component that consisted of
two security metrics: relevance and the priority scoring. Relevance scoring mea-
sured the validity of an alert while priority scoring measured the severity of an
alert given the targeted asset’s value. The priority score also combined an inter-
est score which measured the degree to which an analyst expressed interest in
the attack category the alert belonged. Using a Bayesian model they determine
the overall priority of an alert based on the acquired evidence. A limitation
in their approach is that knowledge from alert correlation is not taken into
account during the prioritisation despite their framework consisting of a simi-
larity based correlation component. Since it is solely based on user and network
knowledge the framework is limited to discovering known incidents while novel
attack incidents remain unprioritised.

Noel and Jajodia (2007) proposed an alert prioritising framework which
used a different metric. The metric calculated the proximity of an alert to
a critical asset. Thus, alerts targeted at assets closer to critical assets had a
higher priority over those further away. Similarly, in Porras et al’s framework,
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it only used network knowledge and no alert or correlation context was taken
into consideration. A more robust alert prioritisation system is proposed by
Alsubhi et al. (2008, 2012) who define 7 metrics for prioritising alerts. One
of the metrics, called alert relationship metric is relevant to our work. The
alert relationship metric measures the degree to which the alert correlates with
successive alerts. Using this prioritisation metric a high value could indicate
the alert is potentially a causal alert. Our proposed outlier metric differs in
two main ways. Firstly, we assign prioritisation at the meta-alert level rather
than the alert level. Secondly, we not only measure the causality of alerts but
furthermore, the unusualness of the causality.

Zomlot et al. (2011) also proposed a prioritisation model for the alert cor-
relation system they had previously presented (Sundaramurthy et al., 2011).
In their work on prioritisation, they use Dempster-Shafer to assign a degree of
belief to each meta-alert (generated by the correlation system) which indicated
the likelihood of true positivity given the quality of the IDS sensor which raised
the alerts. Unlike alert prioritisation, more effort has been focussed on alert
correlation techniques. Using Salah et al’s correlation model taxonomy, these
can be classified into case-based, similarity-based and sequential-based methods.
Case-based methods involve a rule language that uses expert domain knowledge
to define alert types that may occur in a given attack scenario.Cuppens and
Ortalo (2000); Cheung et al. (2003); Steven Eckmann (2002); Cédric Michel
(2001) proposed LAMBDA, CAML, STATL, and ADELE respectively. More
recent work in case-based models include work by Zali et al. (2013) and Alireza
Sadighian (2013). Although these provide high-quality correlations capturing
known attacks, their limitation is that they are difficult to implement and main-
tain on large-scale complex networks. In similarity methods, the correlation is
based on feature similarity. Valdes and Skinner (2001) as well as Dain and Cun-
ningham (2001) first introduced this approach. Although simpler to implement,
such methods do not capture complex nor hidden correlations. More Recently,
Hofmann and Sick (2011) and Chen et al. (2014) both proposed improved simi-
larity techniques using feature selection and probablistic and real-time clustering
techniques. Sequential-based correlation is more suitable for capturing causally
correlated alerts with little or no apriori knowledge. Sequential-based meth-
ods include those proposed by Ning et al. (2001) and Debar and Wespi (2001).
Both used rule-like pre-requisites and consequences for correlating alerts. Qin
(2005) also used abstract pre-requisites and consequences combined with statis-
tical evaluation for correlating alerts. Sequential-based alert correlation models
which use little to no a priori knowledge are based on Bayesian inference. Exam-
ples include work by Ahmadinejad and Jalili (2009); Ren et al. (2010); Marchetti
et al. (2011) and Benferhat et al. (2013).

Each of these alert correlation models output a set of correlated alerts rep-
resented in a graph like structure known as an Alert Correlation Graph (ACG).
Ning and Xu (2003) addresses how ACGs can be made useful to an analyst by
simplifying the graphs using node and edge reduction techniques. However, few
have focussed on how to prioritise alert correlation graphs in the event where
many ACGs are produced. Based on our experiments with alert correlation
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models this case is typical in real environments. In environments where a vast
amount of alerts are produced, it is likely to generate a similarly vast amount of
alert correlation graphs. Our work aims to address this challenge by introduc-
ing post-correlation components to make analysing the graphs a more tractable
problem for the human analyst.

In the study of attack pattern extraction and recognition many apply fre-
quent pattern mining algorithms. Khan et al. (2010) developed two probabilistic
models to integrate with a prior existing pattern mining algorithm, Prefix-Span
for mining frequent structures in Subgraphs. In their work they test the algo-
rithm on intrusion alert traffic and discover meaningful attack patterns. Sadod-
din and Ghorbani (2009) also applied FP-Growth, a frequent pattern mining
technique for discovering graph attack patterns. Other work using pattern min-
ing algorithms include work by Lagzian (2012).

One of the main challenges with applying frequent pattern mining on ACGs
is that ACGs are multi-attributed weighted graphs therefore most of the meth-
ods cannot be used to mine such complex structures. In this research we investi-
gate attack pattern structures and how frequent pattern mining can be applied
on graph structures without the need for over-simplifying the data structures
which may cause information loss.

3. Background on Alert Analysis

3.1. Low-level Alert

Figure 1 corresponds to a log entry of a single intrusion alert triggered by a
Snort IDS. Line 1 identifies the type, classification and the default priority of
the intrusion alert. Line 2 logs the time the intrusion was detected and the IP
addresses and ports of the sender and recipient of the packet which triggered
the alert. In addition, lines 3 & 4 log details of the packet such as the packet’s
Time to Live(TTL), network protocol, Type of Service(TOS), length and other
packet header details.

ICMP -INFO PING -> Misc activity -> Priority 3
03/07 -15:45:37.137344 -> 172.16.113.84 -> 135.13.216.191
ICMP TTL :255 TOS:0x0 ID :1332 ipLen :20 DgmLen :38
Type:8 Code:0 ID :2049 Seq :5632 ECHO

Figure 1: Snort IDS Alert Example

The ACSAnIA system uses six of the intrusion alert’s attributes which are
logged. Each ACSAnIA alert is represented as a 6-tuple (α1, α2, ..., α6) where
the elements of the tuple are the attribute values of the alert’s timestamp, source
IP, source port, destination IP, destination Port, and intrusion type respectively.
These attributes are either text, IP address or of numeric data types. An alert
of type Ta is an alert instance which has Ta as the value for α6.
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3.2. Meta-alert and Alert Correlation Graph

Ameta-alert is a higher-level alert which contains one or more low-level alerts
(e.g. Snort alerts) grouped together by an aggregation or correlation system.
Figure 2(a) shows a set of intrusion alert tuples labelled a1 to a6. After some
form of correlation, a logical relation such as Figure 2(b) is established and is
referred to as an “Alert Correlation Graph”.

In prior research, a meta-alert has been referred to as a hyper-alert, hyper-
alert graph, alert correlation graph and attack graph. To ensure clarity, only
the terms meta-alert and alert correlation graph are used in this paper. In
general, the term meta-alert is used when describing correlated alerts. As a more
technical definition, particularly when referencing the “graph” data structure
of the correlation alerts depicted in Figure 2(b), the term “Alert Correlation
Graph” is used.

a1: (03/07 -16:28 , 1.1.1.40 ,26582 , 5.5.5.3 , 25, Policy attempted download of a pdf)
a2: (03/07 -16:28 , 5.5.5.3 , 3727, 10.0.0.3 , 25, Policy attempted download of a pdf)
a3: (03/07 -17:30 , 1.1.1.43 ,48097 , 5.5.5.3 , 25, Policy attempted download of a pdf)
a4: (03/07 -17:30 , 5.5.5.3 , 3730, 10.0.0.3 , 25, Policy attempted download of a pdf)
a5: (03/07 -17:35 , 1.1.1.48 ,53514 , 5.5.5.3 , 25, Policy attempted download of a pdf)
a6: (03/07 -17:35 , 5.5.5.3 , 3727, 10.0.0.3 , 25, Policy attempted download of a pdf)

(a)

(b)

Figure 2: (a)A set of alert tuples -(timestamp, source IP, source port, destination IP,
destination Port, and intrusion type) before correlation and (b) A meta-alert/alert

correlation graph

An alert correlation graph is a weighted directed acyclic connected graph G
= (V, E) where V represents a set of nodes and each node v ∈ V represents
an 6-tuple low-level alert. Each edge, evi,vj

∈ E is a connection between two
nodes vi, vj which indicate that 1) vi and vj are correlated and 2) vi represents
an alert that occurred before vj . The weight of the edge depicts the correlation
strength between both nodes.

4. Architecture of the Proposed System

The ACSAnIA framework consists of seven components: (1) Offline Correla-
tion (2)Online Correlation (3) Meta-alert Comparison (4) Meta-alert Prioritisa-
tion (5) Meta-alert Clustering (6) Attack Pattern Discovery and (7) Reporting

6
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System. A knowledge repository and database is also used to persist alert infor-
mation and discovered knowledge. Figure 3 shows the architecture of ACSAnIA.

Offline Correlation 
(1) 

Online Correlation 
(2) 

Historical  

Alerts 

Real-time 

 alerts 
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Meta-alert 
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poll 
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Update 
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Figure 3: Architecture of the ACSAnIA Framework

4.1. Offline Correlation

ACSAnIA uses a set of historic alerts to build a correlation model. The
correlation model is built by the offline correlation component and is periodi-
cally used and updated by the online correlation component. The correlation
model consists of two knowledge tables: (i) Correlation Likelihood Table and (ii)
Correlation Constraint Table. A correlation likelihood represents the strength
between two alert types Ta and Tb. More specifically, it refers to the likelihood of
an alert of type Tb occurring after an alert of type Ta. For any two alert types,
Ta and Tb, the correlation likelihood L(Ta, Tb) is conditional to a constraint
being true. The relationship between correlation likelihood and constraint is
represented in Eq.1.

L(Ta, Tb) = P (Ta → Tb|C) (1)
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A constraint, C, is a rule which captures the conditions under which two
alerts are correlated. For example a constraint such as timea,b ≤ 20secs indi-
cates that both alert types Ta and Tb are correlated when they occur within 20
seconds of each other. Another illustration of a constraint is {destIPa,b = 1},
this indicates that both alert type Ta and Tb are correlated when they share
the same destination IP (In other words, the difference between their destina-
tion IP addresses is zero). Table 1 illustrates further examples of constraints
encountered.

Constraints Descriptions
{DestPorta,b =1 } The destination port of alert of Ta and

an alert of Tb must be identical
{DestIPa,b ≥=0.5} The destination IP of alert of Ta and

an alert of Tb must be common up to
at least the 2nd Octet.

{DestIPa,b ≥ 0.5, SourceIPa,b ≥
0.25, DestPorta,b = 1 }

The destination IP of alert of Ta and
an alert of Tb must be common up to
at least the 2nd Octet, their source IPs
must be common up to at least the 1st
Octet and their destination port must
be identical.

Table 1: Examples of Constraints between Alert Types

When two alert types have n : n > 1 constraints between them, the correla-
tion likelihood between the two alert types is the minimum likelihood of the n
constraints:

L(Ta, Tb) = min{P (Ta → Tb|Ci)}
n
i=1 (2)

where the probability of Ta → Tb occurring given Ci is defined as:

P (Ta → Tb|Ci) =
P (Ci) ∗ P (Ci|Ta → Tb)

P (Ta → Tb)
(3)

In Eq.3, given a set of historical alerts, P (Ta → Tb) refers to the number of
times Tb occurs after Ta in the same time window W with respect to the number
of times Ta occurs in that same window. P (Ci) refers to the number of times an
alert of Type Tb occurs after an alert of Ta where both types satisfy constraint
Ci with respect to the number or times Ta occurs in the total historial alert
dataset H. Finally, P (Ci|Ta → Tb) is the probability of Ci given both Type Ta

and Tb occur within the same time window.
Algorithm 1 shows how the offline correlation component computes all cor-

relation likelihoods and constraints.
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Algorithm 1 Offline Correlation Process
1: function offline Process

2: A = All alert attributes
3: H = Historic Alerts
4: T = All alert types in H
5: T ′ = All pairs of types in T
6: for all Ta, Tb ∈ T ′

do

7: C(Ta, Tb) =
8: getConstraints(A, Ta, Tb)
9: L(Ta, Tb) =
10: min{
11: P (Ta → Tb|C(Ta, Tb)i)
12: }ni=1

13: end for

14: end function

1: function getConstraints(C, Ta, Tb)
2: k = 1
3: C(Ta, Tb)← ∅
4: Get first order feature set
5: for all ci ∈ C do

6: if P (Ta → Tb|ci) > θ then

7: C(Ta, Tb)← C(Ta, Tb)k ∪ ci
8: end if

9: end for

10: Gets k relevant feature sets
11: k ← 2
12: C ← ∅
13: while (C(Ta, Tb)k−1 6= ∅) do

14: C ← All k combinations from
15: C(Ta, Tb)k−1

16: for all ci ∈ C do

17: if P (Ta → Tb|ci) > θ then

18: C(Ta, Tb)k ← C(Ta, Tb)k ∪ ci
19: end if

20: end for

21: k + 1
22: end while

23: return C(Ta, Tb)
24: end function

Lines 1 to 5 describe the dataset required to initialise the offline process. A is
the set of alert fields used by ACSANIA i.e. (timestamp, source IP, source port,
destination IP, destination Port, and intrusion type), H is a set of historical
alerts used to train the model which are retrieved from log files or an alert
database, T is a finite set of all values possible for field type and T ′ is a set
containing all 2-permutations of the set T where T ′i represents the ith Ta, Tb

pair.
For each pair, the function getConstraints generates a set of constraints

by computing all possible k-combinations of the attributes in A using an step-
wise apriori approach. Firstly, we start with the k−combination where k = 1.
This means we generate constraints of length 1, where each constraint, C only
contains one attribute a ∈ A. For each constraint, we measure the probability
that Ta will occur before Tb given they have the constraint C in common. If
the probability does not exceed a given threshold θ, it is pruned and considered
as non-relevant to the pair Ta, Tb. At the end of each incremental stage, non-
pruned constraints are used to generate K + 1 combinations : k <= |A|. This
is how the Constraint 3 in Table 1 is generated.

4.2. Online Correlation

Each incoming alert aj , received in real-time is analysed against a set of
alerts S = {a1, a2, ..., an} that had occurred within the last Tθ seconds before
alert aj . To determine if aj and an alert in S are correlated, their types are
extracted and used to find the relevant correlation likelihood and constraints
(stored in the knowledge repository by the offline component). Two alerts are
correlated if:

1. The correlation likelihood of Type ai and Type aj is greater than or equal
to a threshold, Cθ

9



2. At least one of the respective constraints of Type ai and Type aj holds
true for ai and aj .

Each analysed historic alert is stored as a node in the database. If the
incoming alert aj is correlated with an existing alert ai, aj is added to the
meta-alert which ai belongs to. Consequently, an edge is added to the meta-
alert to depict the correlation.

4.3. Meta-alert Comparison

The correlation process typically produces multiple meta-alerts. Under in-
tense traffic analysis, hundreds of meta-alerts may be produced within a short
time frame. In order to make sense of the generated meta-alerts, a quantita-
tive approach is used to measure the differences between each meta-alert. This
is subsequently used by the Meta-alert Prioritising and Meta-alert Clustering
Components.

The importance of such analysis is explained in this real example that was
observed in the analysis of one of our networks. Two arbitrary meta-alerts,
m1,m2 where pulled out from a large set of generated meta-alerts. m1 consists of
two connected nodes (v1m1

, v2m1
) where v1m1

represented a suspicious ping from
a mail server to a web server and the v1m1

represented the response from the web
server to the mail server (the reply also triggered an intrusion). m2 also consisted
of two connected nodes however different context. v1m2

represented an intrusion
triggered on a packet from an external address routed to our networks DMZ mail
server, the DMZ server then routed the packet to our internal mail server. This
also triggered an alert which is represented by v2m2

. Despite the similarity in
structure, visual analysis enables a security analyst to understand the attack
patterns and their context (and that they are not the same type of intrusion).
In addition, it was observed that many of the generated meta-alerts were similar
to either but not both. Given thousands of meta-alerts detecting such attack
patterns may prove infeasible to perform visually. Clustering analysis however
could potentially solve this challenge.

As previously described in Section 3, the alert correlation graph (ACG) is
the data structure of a meta-alert. Graph Edit Distance (GED) is used as the
distance metric to compute the quantitative differences between alert correlation
graphs (Shapiro and Haralick, 1981).

For any two alert correlation graphs, acg1 and acg2, the difference between
them is the GED which is calculated by counting the minimal number of actions
required to transform acg1 into acg2 by manipulating acg1 using a number of op-
erations such as node deletion/insertion, edge deletion/insertion and node/edge
substitution. Algorithm 2 details the Meta-alert Comparison for any two meta-
alerts. The distance values between all pairs of meta-alerts is computed and
persisted in the knowledge repository as illustrated in Figure 3.
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Algorithm 2 Edit Distance between meta-alerts (Tekhov, 2009)
1: function EditDistance(’acg1, ’acg2)
2: L ← maximum cost allowed
3: Q ← ∅ ⊲ A queue sorted by
4: minimum path cost
5: vi ← random vertex from ’acg1
6:
7: for vj in ’acg2 do

8: s = new substitutePath(vi,vj)
9: Q ← Q ∪ s
10: end for

11: d ← new deletePath(vi)
12: Q ← Q ∪ d
13: while true do

14: e = Q.firstPath()
15: if e.isComplete() then

16: return e
17: end if

18: if e.cost() > L then ⊲ The maximum
cost has been exceeded

19: return L
20: end if

21: Extend(e, acg1, ’acg2, Q)
22: end while

23: end function

1: function Extend(e, acg1, acg2, Q)
2: if acg1(V) ⊆ e then

3: vi = next vertex in acg1 : vi /∈ e
4: for vj ∈ acg2 do

5: s ← e ∪ new substitutePath(vi,vj)
6: Q ← Q ∪ s;
7: end for

8: d ← e ∪ new deletePath(vi)
9: Q ← Q ∪ d
10: else

11: for vi ∈ acg2 do

12: if vi /∈ e then

13: i ← e ∪ new insertPath(vi)
14: end if

15: end for

16: end if

17: end function

In Algorithm 2, there are three key operations - substitute path, delete path
and insert path. Each operation requires a cost function which is used to sort
them in the queue. Using domain knowledge, a set of cost functions suitable for
meta-alert comparison are defined.

Insert and Delete Path C(NI), C(ND). When comparing any two ACGs, if
one graph has more nodes (i.e. low-level alerts) than the other, a set of node
insertions or deletions may be used to transform one graph into the other. For
each intrusion type, we define a weight wN(T ), In our experiments, all weights
were defaulted to 1.

For edges, the cost of edge insertion/deletion is equivalent to the weight of
the edge.

Substitute Path. The substitution of a node replaces an alert for another. There-
fore the more similar the alerts, the less the cost of substitution. We measure
the similarity between the alerts using the Euclidean metric in eq.4.

C(NS) = d(vi, vj) =

√

√

√

√

n
∑

k=1

(vi(αk)− vj(αk))2 (4)

Note that vi(αk) is the kth attribute of alert vi and n is the total number
of attributes. For categorical attributes, we use string edit distance and for IP
attributes we use a common prefix metho. An example of the difference between
two IP addresses is shown in Table 2.

In our work we also define a cost for edge substitution. The cost of edge
substitution is the absolute value of the differences between the weights of both
edges eq. 5.
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Table 2: IP Similarity

172.16.113.20 10101100 . 00010000 . 01110001 . 11001111
172.16.115.20 10101100 . 00010000 . 01110011 . 00010100
Common Mask 11111111 . 11111111 . 11111100 . 00000000

22/32 = 0.68

C(ED) = |WEs
−WEd

| (5)

4.4. Meta-alert Prioritisation

The meta-alert prioritisation component assigns a priority level to each meta-
alert based on its dissimilarity to a set of other meta-alerts. There are four
priority levels, meta-alerts which are highly similar to others are typically as-
sociated with a Priority 1 or 2 while highly dissimilar meta-alerts are assigned
level 3 or 4.

Each meta-alert is mapped to a prioritising value based on the degree to
which it is an outlier. The degree to which a meta-alert is an outlier is calculated
using the Local Outlier Factor (LOF), of a point Breunig et al. (2000). The
mapping between priority values and the LOF of a meta-alert is illustrated:

p(g) =



















1 0.00 ≤ nLOF(g) ≤ 0.25

2 0.25 < nLOF(g) ≤ 0.50

3 0.50 < nLOF(g) ≤ 0.75

4 0.75 < nLOF(g) ≤ 1.00

(6)

In equation 6, g is a meta-alert and nLOF is the weighted LOF value. nLOF
is calculated over five steps using a point’s (meta-alert’s) neighbourhood, reach-
ability distance and local density.

1. k-neighbourhood & k-distance: A k-neighbourhood of a meta-alert gi,
denoted as Nk(gi), is a set of other meta-alerts in which the difference
between any of the other meta-alerts and gi is less than or equal to the
k-distance. The k-distance of a gi is the distance between gi and the
kth nearest meta-alert. k is a configurable parameter provided for the
algorithm’s computation.

2. reachability distance: This is the maximum between the distance between
two meta-alerts and the latter meta-alert’s k-distance.

rdk(g,gj) = max{D(g, gj), k-distance(gj)} (7)

3. Local reachability density: A meta-alert’s local reachability density is
the inverse of the average reachability distance between it and its k-
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neighbourhood.

lrdgi :=











∑

gj∈Nk(gi)

rdk(gi, gj)

|N(gi)|











−1

(8)

4. Local Outlier Factor: For each meta-alert, g, its LOF degree is calculated:

LOF gi =

∑

gj∈Nk(gi)

lrdgi
lrdgj

|Ngi |
(9)

5. LOF Priority: Since the value LOF could range between 0 and ∞, we use
a weighted technique to map the LOF to a value between 0 and 1.

nLOF (g) =
LOF (g)

max{LOF (gi)}
|G|
i=0

(10)

Following the computation of the prioritisation value of each meta-alert,
the meta-alert prioritisation component uses a filtering subcomponent which
forwards all alerts with a threshold greater than Pθ to a reporting system for
further investigation.

4.5. Meta-alert Clustering

The meta-alert clustering component receives the set of meta-alerts, G and
groups them into clusters if |G| is greater than two. A given meta-alert, g is
considered to belong to cluster Ci if it is density reachable by an inlier member
of cluster Ci. An inlier of a cluster is any meta-alert, gi ∈ Ci that has at least
k other meta-alerts which is similar to it(i.e. the difference between gi and gj :
gj ∈ Ci should be less than a threshold referred to as ǫ). The clustering process
uses the DBSCAN algorithm and is illustrated in Algorithm 4.

4.6. Attack Pattern Discovery

The attack pattern discovery component receives the clusters of meta-alerts
and attempts to extract a set of representative features for each cluster using
frequent pattern mining. Prior to pattern mining, the attack pattern discovery
component represents each meta-alert as a less complex graph structure. This
graph structure is referred to as a pattern graph. An attack pattern graph is a
graph representation of a meta-alert where each node either represents an alert
type or attribute of an alert type and each edge either represents the correlation
between two alert types or the association of an attribute to an alert type.

Figure 4 illustrates the mapping from a meta-alert graph to a graph pattern.
The node labelled “HTTP IE Security...” in Figure 4(a) represents an alert.
Each alert is represented as multi-dimensional vector. Because graph pattern
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Algorithm 4 DBSCAN algorithmic procedure (Ester et al., 1996)
1: function ClusterGraphs(G, k, ǫ)
2: i = 0 //the ith cluster
3: C = ∅ //A set of all clusters
4: for all g ∈ G do

5: if (state(g) == unvisited) then

6: state(g) ← visited
7: N(g) = getNeighbors(g, ǫ)
8: if (sizeOf(N(g) < k) then

9: category(g) ← NOISE
10: else

11: Ci ← ∅
12: growCluster(g, N(g), Ci, ǫ, k)
13: end if

14: end if

15: end for

16: end function

17: function growCluster(g, N(g), Ci,
ǫ, k)

18: Ci ←Ci∪ g
19: for all g’ ∈ N(g) do

20: if (state(g’) is unvisited) then

21: (g’) ← visited
22: N(g’) ← getNeighbors(g’,

ǫ)
23: end if

24: if (sizeOf(N(g’)) geq k) then

25: N(g) ← N(g) ∪ neigh-
bors(g’)

26: end if

27: if (category(g’) is NULL)
then

28: Category(g’) ← i
29: Ci ← Ci∪ g’
30: end if

31: end for

32: end function

mining is not suitable for multi-attribute nodes, each node is flattened into a
single attributed labelled node. This is done by representing each attribute of
an alert as a new node. In order to maintain all attributes and by associating
each attribute node to the alert type node using an edge as illustrated in Figure
4 (b). Attribute nodes are distinguished from alert type nodes by using different
shapes. A graph frequent pattern mining algorithm, GSPAN is used to extract

Figure 4: (a) An Alert Correlation Graph (b) Attack Pattern Graph of the Alert Correlation
Graph

frequent patterns from each cluster. Given a set of graphs and a minimum
support threshold value Sθ, a set of frequent patterns is extracted. Each frequent
pattern extracted from any cluster Ci is a subgraph common to at least Sθ meta-
alerts in the cluster. The GSPAN algorithm is too long and detailed to describe
in this paper. We refer interested readers to the original paper (Yan, 2002).
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4.7. Reporting System

The reporting system is a visual analytic web application and is integrated
into the “Saturn Assure Analytics” tool-kit developed at British Telecom’s Se-
curity Research Labs. This tool-kit is described in detail by (Rowlingson et al.,
2013).

Figure 5: A snippet of the ACSANIA reporting system dashboard.

Figure 5 shows a snippet of the dashboard. The interface enables an analyst
to explore each prioritised meta-alert extensively through a range of interactive
actions. For example he or she may sort and filter meta-alerts based on their
size, priority level, recency and more. The view displays a summary of the
meta-alert (top-left) and to navigate between meta-alerts, the UI consists of a
navigation tab (far right). In general, the key benefit of the reporting system is
that it aids an analyst in understanding and detecting attacks from analysing
alerts by 1) significantly reducing the content to be investigated and 2) adding
contextual information to each low-level alert.
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5. Evaluation Metrics

The ACSAnIA system is evaluated by using quantitative measures to mea-
sure the quality of the prioritisation and clustering components.

5.1. Alert Prioritisation Quality

The quality of the prioritised meta-alerts is measured using the sensitivity
metric typically known as the true positive rate (TPR). The TPR evaluates the
ability of the system to correctly prioritise the right meta-alerts. It is defined
as follows:

TPR =
TP

P
=

# of correctly prioritised alerts

# of true positive alerts
(11)

The false positive rate (FPR) is also measured as the system’s ability to
ensure that unimportant meta-alerts are not prioritised.

FPR =
FP

N
=

# of incorrectly prioritised alerts

# of prioritised alerts
(12)

5.2. Cluster Quality

Intuitively a set of well clustered points are those where there is a high
intra-similarity between the members of each cluster but a low inter-similarity
between the various clusters. To measure this quality, the silhouette coefficient
of each cluster is measured. The silhouette coefficient is defined as:

SC(Ci) =















|Ci|
∑

k=1

bk − ak

max{ak, bk}















/|Ci| (13)

Such that ak and bk are the mean intra-cluster similarity and inter-cluster sim-
ilarity of the kth member of Cluster Ci respectively. For each member, g of a
cluster Ci, a and b are defined as follows:

a =

∑

gk∈Ci

D(g, gk)

|Ci|
and b =

∑

gk∈C∁
i
D(g,gk)

|C∁
i |

Note that C∁
i is the set of graphs which are members of all other clusters.
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6. Experiments and Results

As part of the British Telecom’s SATURN Research programme (Rowlingson
et al., 2013), a cyber range experiment was carried out in 2012 by industrial
partners (Winter, 2012). This experiment was used as a case study in evaluating
ACSAnIA. The cyber range experiment models a simulated computer network
which comprises of two sub-networks – a main network with approximately 200
workstation clients and a branch network comprising of 10 workstation clients.
To model real network activities, the experiment utilised comprehensive scripts
for simulating email sending, server activity and content download activities.
Figure 6 shows the network architecture.

Figure 6: Network Architecture of Cyber Range Simulated Network
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The cyber range experiment includes two simulated attacks on the modelled
network. The alert logs generated from both the Delimitised Zone IDS and
Internal IDS are analysed by ACSAnIA. (These are shown in Figure 6 as DMZ
IDS and INT IDS).

During the experiments, ACSAnIA was deployed on a 64-bit Windows Sys-
tem with an Intel(R)Core i5 CPU processor at 2.40GHz, JVM 1.4.2 and 6GB
for maximum heap memory.

6.1. Attack 1 – Main Network DMZ

A web server in the DMZ zone of Figure 6 is attacked by an offsite attacker.
The attack comprised of 4 phases – DMZ Scanning (Casual & Intense), vul-
nerability assessment, exhaustive penetration and brute-force audit from the
attacker on the web server. Normal network activity includes server activity
such as email routing from a DMZ mail server to an internal mail server and
network pinging between the DMZ mail and FTP servers.

The following configurations were applied to the ACSAnIA system for analysing
the intrusion logs from Attack 1.

Components Correlation Prioritising Clustering Pattern

Parameters Cθ Tθ k Pθ k ǫ minSupp
Values 0.7 30 mins 3 3 2 2 2

Table 3: System Configurations for Experiment on Attack 1

The Snort DMZ IDS (shown in Figure 6) captured 3225 alerts during the
course of Attack 1. 649 alerts were false positives while 2577 were triggered as a
result of the attack. Due to the low volume of alerts received, when ACSAnIA
received the alerts for post processing, we allowed the correlation component to
correlate alerts within a 30 minute time window. At the same time, in order to
maintain high quality correlations, we set a correlation threshold of 0.7. The
remaining parameters in Table 3 were set experimentally.

Our expected result was that the ACSAnIA prioritising component would
filter out false positives and its clustering and attack pattern discovery compo-
nents would aid in understanding the attack scenario.

6.1.1. Results

According to the default priorities assigned by a Snort DMZ IDS, 78% of
the alerts were within medium priorities (i.e. priority 2 & 3). After ACSA-
nIA re-computed the priority levels, it was observed that alerts were regrouped
as either very low (i.e. priority 1) or very high (i.e. priority 4) but not in-
between. ACSAnIA successfully creates a margin between alerts by identifying
alerts which are outliers as high priority and alerts which are common intrusion
activity as low priority. This is shown clearly in Figures 7 and 8. In the at-
tack 1 scenario, common intrusion activity corresponded to false positive alerts
therefore low priority. With a priority threshold Pθ = 3, ACSAnIA would only
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report alerts at Priority 4 and would achieve a TPR and FPR of 71% and 0.3%
respectively.
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Figure 7: Attack 1: Default priority assignment
(before ACSAnIA)
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Figure 8: Attack 1: New Priority assignment
(after ACSAnIA)

The Clustering component also successfully separates low level alerts (false
positives) from high level alerts (true positives). Our correlation component
generated 165 meta-alerts. In Figure 9, meta-alerts(alert correlaton graphs)
within the cluster are common intrusion activity and therefore lower priority
. The more unusual the intrusion activity, the further apart from the cluster
and the higher the priority.To measure the quality of the cluster, the silhouette
coefficient was applied and yielded 0.983. This implies good clustering.

The clustering analysis and attack pattern discovery reveals that most meta-
alerts that form the dense area of the cluster in Figure 9 are smaller meta-alerts
which capture small network intrusions, particularly benign activity. These
meta-alerts include intrusion alerts raised as a result of the simulated network
activity such as network pinging and email routing. Some of the automated
email content routed across the network contained suspicious but not necessarily
malicious PDF content. The outliers to the clusters however represent larger
meta-alerts. The majority of the meta-alerts contained intrusion alerts that
capture intense network scanning and exploit activity on the web server.

6.2. Attack 2 – Main Network Internal
A vulnerable host is situated in the main enterprise network amongst the 200

clients(illustrated in Figure 6). It is compromised by an off-site attacker and by
an internal attacker. The internal attacker had been previously compromised by
the off-site attacker. The internal attacker is supposedly situated in the branch
sub-network of the computer network. The attack consists of the following
phases:
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Figure 9: Clustering distribution of Attack 1 meta-alerts

1. Network scanning i.e. reconnaissance from the internal attacker to the
main network

2. Failed exploit attempts on branch client workstations from internal at-
tacker using shellcode embedded in email content

3. Successful exploit on internal vulnerable machine from internal attacker
using shellcode embedded in email content

4. Gain of full control and admin access of vulnerable machine from offsite
attacker

5. Offsite attacker uses vulnerable machine to explore internal network

The system configurations for this scenario are altered to effectively analyse
the sheer volume of alerts in this attack scenario in comparison to Attack 1.
Table 4 shows the adjusted system configurations.

Components Correlation Prioritising Clustering Pattern

Parameters θ Tθ k Pθ k ǫ minSupp
Values 0.8 5 mins 12 2 48 2.4 5

Table 4: System Configurations for Experiment on Attack 1

The Snort INT IDS (shown in Figure 6) captured approximately 125,000
alerts during the course of Attack 2. After filtering the alerts, only 34,697 alerts
were analysed by ACSAnIA. It is to be noted that the labelling of this dataset
is still in progress. To our knowledge, only 88 alerts in the alert log have been
identified as true positive alerts. Under these circumstances the worst case
FPR rate of the IDS is approximately 99%. In addition, it was discovered that
the IDS did not trigger alerts of some phases of the attack, particularly the
Phase 3. Due to the sheer volume of alerts received, the ACSAnIA correlation
component was set to a smaller time window, 5 mins. We maintain high quality
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correlations by using a strict correlation threshold 0.8. The remaining values
were set experimentally.

6.2.1. Results

In Attack 2, both the Snort and ACSAnIA assignment of the alert priorities
follow a similar pattern as Attack 1. Figure 10 shows that according to Snort’s
priority assignment, it is observed that majority of the alerts are within medium
priorities. This scenario is not as straight forward as Attack 1 i.e. not all inliers
correspond to false positives and low priority. From Figure 11, It is observed
that ACSAnIA regroups common intrusion activity into Priority 1 and Priority
2(low to medium priority) and still succesfully prioritises unusual activity as
higher priority.
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Figure 10: Attack 2: Default priority assignment
(before ACSAnIA)
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Figure 11: Attack 2: New Priority assignment
(after ACSAnIA)

By ACSAnIA filtering all alerts with priority less than 2, only 533 were
prioritised. Of these alerts, 88 were true positive alerts and were contained
in a single meta-alert. Thus we can say our true positive rate is 100% (note
that this is relative to the 88 alerts identified as true positives by the IDS).
Although the false positive rate remains high at 83.4%, it is 16% less than the
initial FPR of the IDS which raised the alerts. The correlation component
generated 2,369 meta-alerts. The clustering component identified one large
cluster and 73 outliers with a silhouette coefficient of 0.989. In Figure 12,
the clusters are represented. meta-alerts part of the “Cluster” correspond to
those in lower priorities, meta-alerts further apart from the cluster correspond
to unusual activity and therefore are assigned higher priority.
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Figure 12: Clustering distribution of Attack 2 meta-alerts

6.2.2. Conclusion

A key observation in the results in both attack scenarios 1 & 2 is that
ACSAnIA assigns higher priorities to the alerts which the previous Snort IDSs
also prioritised highly. Hence, there is a consistency between both systems.
This could be as a result of the following: in both scenarios, highly prioritised
alerts have the least frequencies. In a scenario where the vast amount of alerts
are supposed to be high priorities, ACSAnIA is unlikely to perform well. This
is particularly because ACSAnIA strongly correlates unusual and infrequent
activity with higher priorities.

In general, ACSAnIA significantly reduces the volume of alerts a Security
Analyst needs to inspect first through correlating alerts into higher level abstract
alerts called meta-alerts and then by filtering out low priority meta-alerts. Using
the reporting system, a security analyst can explore the clusters and patterns of
each meta-alert. Thus, ACSAnIA provides a platform for understanding attack
patterns.

7. Summary

In this paper a system for analysing intrusion alerts has been presented. The
usefulness of the post-correlation analysis has been demonstrated by evaluating
the quality of core post correlation component’s output. From evaluating the
prioritisation component, we have shown that in one scenario we can reduce
false positives by 97% and in another by 16%. The significant reduction in the
first scenario is likely due to the small scale of the attack. Nonetheless, both
are significant reductions. It is also to be noted that the prioritisation phase is
mainly based on the likelihood that unusual intrusion activity corresponds to
high alert priorities. For example, ACSAnIA would prioritise unusual intrusion
actitivity that corresponded to noise as high priorities rather than low priorities.

The evaluation of the cluster component showed that some alert correlation
graphs may share similar characteristics and thus alert correlation graphs can be
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grouped into clusters. We evaluated the selected clustering parameters by using
the silhouette coefficient which averaged to around 0.9 showing good clustering
quality. To the author’s best knowledge, this research is the first to investi-
gate and successfully carry out alert correlation graph based clustering using
traditional clustering and distance metrics. Finally, we discussed how attack
patterns can be extracted from alert correlation graphs. In future, we intend to
perform more experiments on real-time attack pattern extraction.

The ACSAnIA System is currently being integrated into the British Tele-
com’s Security Assure Analytics tool-kit for analysing Cyber security data.

8. FutureWork

The future work of this research mainly focusses on improving the clustering
component to perform real-time clustering.

Our approach to prioritisation and clustering is based on batch analysis, i.e.
at every set interval, a set of recent meta-alerts are extracted from the database
and their prioritisation values are calculated. Consequently, they are clustered.
In today’s computer networks where intrusion activity is highly dynamic, and
data volumes are high a batch approach may not be feasible. To address this,
real-time prioritisation and clustering methods are being investigated. In par-
ticular we are investigating Incremental local outlier detection Pokrajac and
Hartford (2007) and real-time graph clustering Aggarwal et al. (2010).
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