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A Robust and Artifact Resistant Algorithm ¢
Ultrawideband Imaging System for Breast
Cancer Detection

Tengfei Yin,Student MemberEEE, Falah H. Alf, Senior MemberlEEE, and Constantino Carlos Reyes-
Aldasoro,SeniorMember, IEEE

Abstract—Goal: Ultrawideband radar imaging isregarded as one
of the most promising alternatives for breast cancer detection. A
range of algorithms reported in literature show satisfactory
tumor detection capabilities. However, most of algorithms suffer
significant deterioration or even fail when the early-stage
artifact, including incident signals and skin-fat interface
reflections, cannot be perfectly removed from received signals.
Furthermore, fibro-glandular tissue poses another challenge for
tumor detection, due to the small dielectric contrast between
glandular and cancer ous tissues. Methods: This paper introduces
anovel Robust and Artifact Resistant (RAR) algorithm, in which
a neighborhood pairwise correlation-based weighting is designed
to over come the adver se effects from both artifact and glandular
tissues. In RAR, backscattered signals are time-shifted, summed,
and weighted by the maximum combination of the neighboring
pairwise correlation coefficients between shifted signals, forming
the intensity of each point within an imaging area. Results: The
effectiveness was investigated using 3-D anatomically and
dielectrically accurate finite-difference-time-domain numerical
breast models. The use of neighborhood pairwise correlation
provided robustness against artifact, and enabled the detection of
multiple scatterers. RAR is compared with four well-known
algorithms: delay-and-sum, delay-multiply-and-sum, modified-
weighted-delay-and-sum, and filtered-delay-and-sum.
Conclusion: It has shown that RAR exhibits improved
identification capability, robust artifact resistance, and high
detectability over its counterparts in most scenarios considered,
while maintaining computational efficiency. Simulated tumorsin
both homogeneous and heter ogonous, from mildly to moder ately
dense breast phantoms, combining an entropy-based artifact
removal algorithm, were successfully identified and localized.
Significance: These results show the strong potential of RAR for
breast cancer screening.

Index Terms—Breast cancer detection, delay-and-sum (DAS),
finite-difference time-domain (FDTD), ultrawideband (UWB)
imaging.

I.  INTRODUCTION

recently [3] Early diagnosis of breast cancer is one of the
most challenging and important aspects for the management of
the disease, as it may be possible to detect the cancer before it
spreads [4]. Three commonly used screening methods for
breast cancer are X-ray mammography [5], Ultrasound (US)
[6], and Magnetic Resonance Imaging (MRI) [7]. A higher
rate of false-positive examination results with US makes it less
popular than mammography [8], whereas MRI is usually
suggested to be used in conjunction with mammography [9]
Despite the merits of mammography, its deficiencies are
evident: low sensitivity 10], painful breast compressiot]],
and radiation exposure from X-rays, which brings a potential
threat of increasing the cancerkrigl2]. The limitations of
existing methods constitute a motivation for better options

In the last few decades, different modalities of microwave
imaging for breast cancer detection, including passive, hybrid,
and active approaches, have attracted considerable attention.
The passive imaging techniques seek to identify tumors based
on the temperature differences between normal and cancerous
breast tissues with the aid of radiometet8]{14]. Hybrid
approaches differentiate biological tissues by the distinctive
acoustic waves radiated from the thermoelastic expansion
when tissues are under microwave illuminatiob][lActive
methods distinguish normal and malignant breast tissues based
on thear contrast of dielectric properties at microwave
frequencies 16]. Based on the reconstruction technique used,
active detection methods can be categorized into microwave
tomography and ultrawideband (UWB) radar based imaging.
In microwave tomography, the spatial distributions of
dielectric constant and/or conductivity within the breast are
iteratively calculated, thus nonlinear inverse scattering
problems are involved. More details on tomographic imaging
systems can be fod in [17], [18]. UWB radar methods, on
the other hand, aim to identify the presence and location of

BREAST cancer is the most common cancer amor§fong scatters such as tumors, rather than quantitatively
females [1], and one of the leading causes of dea@@mputing the distribution of dielectric properties.

worldwide [2]. Although less common in males, detected UWB radar based imaging systems face several challenges
incidences Of breast cancer among male& baen increasing fOI’ breaSt cancer detection, two Of them iS the antenna design,
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and the construction of realistic finite-difference time-domain
(FDTD)-based [®] breast model. Another difficult challenge
is image formation algorithm. The image formation algorithm
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accurate positioning, strong robustness, and fast computation
speed. A variety of image formation algorithms have been
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proposed over the last decade. Hagretsal. [20]-[2]] first assessment criteria of algorithms and corresponding results.

proposed the confocal microwave imaging (CMI) technigu€oncluding remarks are summarized in Section V.

which adopted delay-and-sum (DAS) beamforming algorithm.

Research on beamforming algorithms for CMI has evolved Il. BACKSCATTEREDSIGNAL ACQUISITION

into two branches: data-dependent and data-independept.
. . . Breast Model

Some promising data-dependent beamforming algorithms that o ] ) )

have been considered are multistatic adaptive microwaveRea“St'C models must incorporate various attributes of the

imaging (MAMI) [22], multi-input multi-output (MIMO) [3], breast, including geometrical properties, spatial distribution of

and time-reversal multiple signal classification (TR-MUSICf"T-rerent constituent tissyes, and the dispersive property. In
[24]-[25]. Data-dependent algorithms caeconstruct high- this study, 3-D anatomically accurate FDTD-based breast
resolution images when the array steering Vectc;podels are developed and employed, based on UWCEM MRI

corresponding to the signal of interest (SOI) is accurateRfeaSt cancer repositor§(]. Besides skin layer and malignant

known, which is difficult in realistic breast imaging scenariodUmor. the breast model comprises three types of faity and

In contrast, data-independent beamformers are free from tfis€€ types of fibro-glandular tissues. The dielectric properties
prior information and have been constantly developed. @ SKin, fatty, and glandular tissues used in the model are
number of data-independent algorithms are proposed in recBfted on Lazebnik’s studies [31], whereas those representing
years, including delay-multiply-and-sum (DMAS) e[p  malignant tumors are obtained from Bagtcal. [32]. ,
modified-weighted-delay-and-sum (MWDAS) 7R and The dlsperswe' nature qf tlssueslls mcqrporate@ |nto.the
filtered delay-and-sum (FDAS) [28]-[29]. Compared with thé:DTD_ model using the tlme-doma_m auxiliary differential
classical DAS algorithm, improved performance of cluttefduations (ADE) ([19], Ch. 9) for a single-pole Debye model.
rejection is offered by DMAS and MWDAS. FDAS shows itdn a Debye model_, the dlelgctrlc'spectr'um of a tissue sample is
capability of detecting multiple scatéss in dense breasts, characterized by different dispersive regions or “poles” at a
where the presence of fibro-glandular tissue is considered. If#19€ ©f frequencies. In each dispersive region there is a
recognized that the increased heterogeneity of normal bred§@xation time, which describes the time needed for electron
introduced by glandular tissues constitutes a big challenge ffflarization to relax towards a new equilibrium when there is
tumor detection. There are two reasons for this: first, althou@? 2PPlied electric field. The relaxation time is regarded as a
there is a large dielectric contrast between adipose ah@nStant in the simplest form. The dispersion in frequency
cancerous tissues, the difference between glandular a#@nain through Debye model can be described as [33]:

cancerous tissues is much less pronounced. Also the glandular ) ]
tissue introduces a significant amount of attenuation and &r(®) = €w + 0s/jwey + (&1 — &)/ (1 +jwry) (1)
dispersion in backscattered signals, making it more difficult to
detect any small tumors present. Despite the strengths of thideree,.(w) is the calculated relative permittivity at a certain
algorithms, all of them are only examined in scenaridéequencyg, is the permittivity in infinite frequency; is the
assuming an ideal artifact removal method is appliedtaic conductivity (in siemens per secondy, is the free-
However, this assumption is oversimplified and infeasible in gpace permittivity (8.854 pF/mj;,, is the permittivity at static
real set-up. Because the artifact is typically several orders faéquency of the dispersive poje= V-1, w is the angular
magnitude greater than the reflections from tumors within thgequency (in radians per second)= 2xf, f (in Hz) is the
breast, even a very small amount of residual artifaseasily  frequency of input signal, ang is the relaxation time of the
mask the desired tumor response, which may result in tH&persive pole (in picoseconds). Debye parameters for each
failure of existing algorithms to identify any tumors present. tissue type are summarized in Table 1][34

In this paper, a new Robust and Artifact Resistant (RAR)
image formation algorithm for early breast cancer detection is

. : . : TABLE |
proposed. Extgnswe S'mmat'ons and _anajys_es'ng TISSUEPARAMETERS ASSUMED FORTHE SINGLE-POLE DEBYE MODEL
backscattered signals received from three-dimensional) (3-D
anatomically realistic MRI-derived numerical breast models € £ 7 (ps) o, (S/m)
were conducted to validate the performance of the proposed Fat-High 39870 7.5318 - 13.0000 0.0803

. _ Fat-Median 31161 47077 13.0000  0.049
algorithm. Results showed that RAR offered superior tumor Fat-Low 28480 39521 130000 02514

identification, accurate localization, and strong artifact Fibro-glandular High ~ 14.2770 547922 13.0000  0.6381
resistance over existing data-independent algorithms. The FL?Tb"'glﬂ;‘dL:llﬂfod‘a“ izgg;; 34_]?;3951'5 };gggg gzzi‘j
. . . loro-glandular Low L. . D . W
robustness of RAR was demonstrated under various scenarios: Skin 150300 397600 13.0000 08310
homogenous and heterogeneous breast models witedvari Malignant Tumor 20.2800 455000 13.0000  1.3000

densities, combining both ideal and practical artifact removal
methqu were consid_ered. The remainder of this paper iSFig. 1 illustrates the 3-D breast phantom and antenna
organized as follows: in Section Il, the breast model and t%‘aniguration used in our simulation. To focus on the breast

configuration of imaging system are introduced. Section Ifisg,e response and avoid possible interference, the chest wall
presents the RAR algorithm and Section IV describes the not included as assumed in [25] and [28]. Two concentric

rings of antennas are positioned around the skin layer, which
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Fig. 1. 3-D FDTD breast model with two concentricgsnof 24 antennas . . o

(indicated by solid dots) surrounding the breast. different tissue types are Fig- 2. Breast medium types represented by relativenifitvity at center
represented by difference values: fat-high(3.1)nfatlian(3.2), fat-low(3.3), frequency of input pulse [30]. A tumor with 10 mm diaends constructed as
fibro-glandular (FG)-high(1.1), FG-median(1.2), F®¥(1.3), and skin(-2). a sphereThe 2D slices are taken at theross-sections of Fig. 1.

has a thickness of 1.5 mm, with a 10 mm spacing to the sKin Yy, 2) = (95, 119, 94) is representative for those which are
surface. Each element is modeled as a point source withtween two antenna rings and center atyth@lane with
horizontal polarizations x¢directed). The outer ring of differentx cross-sections. Those off-center atyh@lane with
antennas is at= 80 mm (antennas 1 to 24), and the inner ringlifferentx cross-sections and are close to the skin surface are
(antennas 25 to 48) is at= 130 mmin which the position of represented by Position 3 at, (y, 2 = (95, 99, 112). In
both rings are related to the chest wall. The sgmplane addition, since a high proportion of breast cancers are invasive
coordinates for both rings of antennas are: (39, 101), (8ctal carcinomas, which start at fibro-glandular regions [36],
120), (63, 140), (82, 153), (100, 158), (116, 1§2B1, 158), tumors which are located within fatty and glandular tissues are
(147, 154), (162, 145), (174, 132), (185, 116)2(197), (189, both considered. To avoid the strong reflections from skin-fat
74), (178, 56), (166, 47), (152, 39), (135, 341.9132), (103, interface, the entire model and antenna array are considered to
31), (84, 38), (71, 44), (59, 55), (43, 69), and, &3). be positioned inside an immersive liquid with the same
For completeness, six breast medium types with variop@rmittivity as that of fat-median tissue at the center frequency
structures and radiographic density classifications ags the input pulse, as it is generally doné][227].
evaluated with the proposed algorithm. The medium types are
selected from the UWCEM databa8€][and shown in Fig. 2. B. Measurement Setup
The density follows the definitions of the American College of The antenna array is excited with a modulated Gaussian
Radiology (ACR)[35]. The details of these phantoms are theulse (Fig. 3), which is given by
following (ACR type, Breast ID, characteristicg)) medium
type A: ACR-14D-071904, homogenous breasts composed of G(t) = sin[w.(t — b)] exp{~[(t — b)/c]*} 2)
fatty-median tissue only, all other tissues are replaced by the
fatty-median tissue; b) medium type B: ACRR-071904, Wherew, = 27rf, is the center angular frequency wijth=
heterogeneous breasts composed of three types of fatty tiss@e85 GHz, the center position of Gaussian envelope).375
all glandular tissues are replaced by the fatty-median tisyue (ns), andc = 0.0802 (ns) is the standard deviation which
medium type C: ACR-1D-071904, full heterogeneous breastgontrols the width of Gaussian envelope. Gaussian modulated
composed of three types of fatty, and three types of gland pulses are selected since they are considered to present better
tissues with a percentage less than 28%medium type D spectral control in practical use [37]he input pulse width is
ACR-lI-ID-010204, full heterogeneous breasts contaifl.-56 (ns), which has a full-width at half maximum (FWHM)
glandular tissues with a percentage ranging between 25% dandwidth of 6.6 GHz. The acquisition of backscattered
50% e) medium type E: ACRH-ID-070604PA2, full signals can be implemented by monostatic or multistatic
heterogeneous breasts contain glandular tissues withmgthod In the monostatic approach, each element in the
percentage ranging between 50% and 7§%medium type E  antenna array transmits the pulse and receives backscattered
ACR-IV-ID-012304, full heterogeneous breasts contaidignals from the breast model sequentially. In the multistatic
glandular tissues with a percentage over 75%. method, each element in the antenna array takes a turn to
Although tumors have irregular shapes, for this study thdsansmit and the backscattered signals are recorded at all
are constructed as spheres. Without losing generality, a 10 rafaments. Despite the advantage of multistatic approach in
diameter tumor placed at three different positions ait€rms of capturing more information about the target, its
considered: 1) close to the center of the outer ring; 2) at tHisadvantages are obvious, such as additional hardware cost
center between the two antenna rings; and 3) off-cent@fd high algorithmic complexity. Monostatic method is
between the two antenna rings. Position 1xa,(z) = (80, adopted for data acquisition in this study. To discretize the
119, 94) represés tumor locations on differenk cross- FDTD problem space, a rule of thumb to select the grid size is
sections and are close to one of the antenna rings. Positon 20 keep it below one-tenth of the wavelength, with the purpose
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o 7 0 transceiver from a breast which is exactly the same as the
§ 05 c’-_é“ i previous one except that no tumor pres&ngin rumor (1) is
2 » £ composed of early-stage artifact, tumor response, glandular
',‘~§_qu g6 tissue response, fatty tissue response, and the multi-reflections
< @ between different tissues, Whi ;07 free(n) COmMprises
02 04 06 08 1 = 3 s 9 12 15 similar level of early-stage artifact, glandular tissue response,
Time (ns) Frequency (GHz) . . .
(a) (b) fatty tissues response, and multi-reflections between ,them

Fig. 3. Modulated Gaussian pulse used as the UWBagieitsignal in the  thusS;(n) is the signal dominated by tumor response. This
FDTD breast model simulations. (a) Time domain. (b) Frecidomain. method not only removes the early-stage artifact, but also the
of making numerical dispersion error negligiblE38]. glandular tissue response, fatty tissue response, and the multi-
Assuming the breast is mainly composed of fatty-mediarﬁﬂeCtionS between tissues. This is not feasible in practice;
tissue, and using the center frequency of input pulse ad'@wever, it could serve as a useful benchmark of the best
baseline, obtaining the wavelength is 21 ntims one-tenth of Performance of algorithms possible. A number of more
wavelength is 2.tnm. A smaller grid size ofix = Ay = Az = practical artifact removal algorithms have been developed,
1 mmis employed for capturing the response from small sizéaese, can be c!assmed as gdaptwe gnd ngn-adaptwe
tumors and adapting possible smaller wavelengths in derf€§Nniaues. Adaptive methods include Wiener filter [32],
breasts. The time step representedibis determined by the €CUrsive least squares (RLS) filtetQ], and singular value
Courant-Friedich-Lecy (CFL) stability conditiondJi which ~COmposition (SVD) [41], whereas some other promising
equals 1.91 (ps) in our simulation. Ten-layer convolutiondfCNidues  include — average subtraction [20], rotation
perfectly matched layer (CPML) [39] absorbing boundarﬁ“btracnon [42], frequency domain pole splitting [43], and

conditions are placed around the computational domain fo'troPy-based time window [44]. Robustness to local
attenuate outgoing radiation. variations of skin thickness and differences in antenna-skin

distances are observed in adaptive filtering methods, however,
varied levels of distortion to the tumor response is introduced.
Considering both the capability of preserving tumor response
A. Pre-processing for Artifact Removal and the effectiveness of removing artifact, the best results are
Recorded backscattered signals consist of two parts: tbHfered by Wiener filter and entropy-based time window [45].
early-stage and the late-stage. The majority of early-stageThe performance of beamformers closely depends on the
parts consist of incident signals and strong reflections frooutcome of artifact removal. If artifact cannot be removed
skin-fat interface, whereas the late-stage parts include tuneffectively, the residual artifact could easily mask the tumor
response, glandular tissue response, fatty tissue response,rasgonsefFor completeness and fairness, it is thus essential to
the multi-reflections between these tissues. Tumor, glandulaeraluate all beamformers in various cases with both ideal and
and fatty responses refer to the signals directly reflected framon-ideal artifact removalinder the same conditions
these tissues. For |d_ent|f|cat|0n,. only tur_nor response s o o Algorithm
needed, and all other signals are viewed as interference, which i o
canbe categorized as the early-stage artifact and the late-stag&N€ Plock diagram in Fig. 4 shows RAR to reconstruct the
clutter. The late-stage clutter mainly includes glandular ad@t€nsity value of each pixel in breast model. Legpresent
fatty tissues responses, which mix with tumor response aff¥f(th location of a pixel within the imaging aréaFor each
should be suppressed for effective tumor detection. The ead§cation, RAR explores and exploits the correlation between
stage artifact includes incident signals and skin-fat reflectioriéM€-shifted signals. To time-shift each signal, an estimated
The incident signal refers to the transmitted signal beirf/érage velocity for all propagation channels, between
received directly (non-reflected) at the same transmittirféa”_sm'tter to scatter and back to receiver, is assumed to be
antenna. These artifact can be several orders of magnitidficiently close to the actual speed and could well represent
greater than the desired tumor response, thus they must!iifg characteristics of propagation channels. eigorrelation
removed before applying any image reconstruction algorithm€tween time-shifted signals at neighboring antenna pairs is
Ideal removal of the early-stage artifact is realized with th@0re likely to occur at tumor positionSonsidering the larger
aid of apriori information generated from a tumor free breasfielectric property of tumor than other comparably sized
model. The ideal tumor response from thietransceiver in a tSSUes, tumor response ige dominant part of received

discrete form denoted &s(n) can be obtained by signals _Withing certai_n time widow, in most if- not all cases.
Thus, time-shifted signals should have a higher correlation

between tumor responses resulted from the same strong
scatterer, compared with those signals from other

heterogeneous breast tissues. The enhancement of tumor
detection is achievedoy rewarding this correlation. To

I1l. IMAGE RECONSTRUCTION

Si(n) = Si with_tumor m) — Si_tumor_free (n) (3

wheren = 1,2,..., K, andK is the signal sampling number
Si wi is the backscattered signal received atithe . : .
iwith_tumor (1) 9 calculate the intensity value bfthree steps are involved.

transceiver froma breast with tumor, and; aumor_free(n) Step 1. Each pre-processeti(n) is time-shifted based on
represents the backscattered signal received at the S"’Weecorresponding icHrip time delay af. The time-shifted
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signals are expressed &én + t;;), wheren=1, 2,..., K, and
7, IS the two-way travel time from thieh transceiver to a
specific locationl within the imaging region. Propagation s i
. . . . ime Shi wumn, i(n,
distance is calculated based on space coordinates in the mod¢ sm — "™ — mmmeJ = —— O Square
Window

Signal propagation speed is calculated under the assumptio wf,}

that each traversed medium, including immersive liquid, skin | Pme it et Sum
. . . Y Ty

layer, and underlying breast tissue, has a constant relative ; \

Pl Sort
permittivity at the center frequency of input pulse. The relative PRI I— éo§|1;ci_gn., :
permittivity at center frequency is chosen because it represent = by £ . 1'
the majority of tissues’ permittivity across the frequency range : —— B —
of the input pulse. The average dielectric property of LS = ., — Windowl (== Palrwibe = Normaization

underlying breast tissue is assumed to be established throug..
an appropriate patient-specific dielectric properties estimatidr'r?- 4;t B'foﬂéd}'lag_rafnIl_lu?;rat_lng the RAR al_ggmhttiss% t?hcalculet]te the

. . th pixe In the Imaging region indicate Yy the mesh area.
algorithm such as the one developed by Wirgeisl.[46]. iniensty o l

Prior to further processing, a window truncation for eaC(rtlorrelation between signals received from neighborin
time-shifted signal is applied. The utility of time window 9 g g

. . . . antenna pairs is expected at tumor locations, considering all
truncation is twofold. First, it only preserves the desired tum P P 9

. . ) WM e _shifted signals are a broadened version of the same input
response. Second, it reduces the algorithmic complexity since

: . . ulse, after reflect from the same strong scattddased on
only truncated signals are needed in the following steps. T . e . o
time window is represented W5, whereW, = zAt. @ is an , the neighborhood pairwise corrglauon_coefﬂments yector
. . : . . P, composed of4 — 1) elements fol is obtained, wherd is
integer andit is the time step used in FDTD, which equal§he number of antenna. Thu,can be expressed as
1.91 (ps) as explained in Section I11B,4, which represents a ' '
length 294t = 562 (ps), equals to the input pulse is used as a
default time window, unless otherwise specified. The selection
of this length is because backscattered signals from dispersive . = . . - o
biological tissues are a distorted version of the excitation pul e?”s'de””g F:orrelann_ coefficieny ; '? in the range of [-1,
as frequency-dependent tissues broaden the duration of #e@ll coefficients are linearly normalized to the range of [0,
input pulse. Studies show that this broadening effect is directlyr 2V0iding negative coefficients generating a high weight.
proportional to the tumor size [32]. The aim of this research is
to detect early-stage breast cancer when the tumor size is Pinor = (PL+1)/2 (7)
small, thus a short-length time window, which is comparable . )
to the input pulse width, is selected. Larger or smaller tinfeft Pisore D€ the sorted y,, in a descending order and
windows could result in either high clutter or tumor locatioti: be the sorted coefficients= 1,2, ..., (A — 1). Therefore,
bias. Thus, the time-shifted signal after truncation with length
of W, can be represented §§n + 7;;), wheren = 1,2, ..., a. Py sore = [R1i1 Ray = Rea-1).] (8)

Let A be the number of antennas. After artifact remadal,

calibrated signals containing tumor responses are collectedWRereR, ; > R, ; > -+ > R(4-1),;. The associated weighting
a monostatic way. Thus, for every single locatipthere ared ~ factorwf, for thelth location is introduced as
sets of time delays corresponding to each transceiver. Let .
Sum;(n) (n = 1,2, ...,a) denote the sum of all time-shifted wf, =124 V% R, 9)
signals within the time window/, atl given by

Py =[rip T3y r(A—l)A_l] (6)

which is the product of the first half elementsPpf,,.. The
Sum;(n) = Y&, Si(n + 1) (4) neighborhood pairwise correlation ensures that the correlation
between two antennas for each location is measuring the
Step 2. To enhance tumor response, and eliminate threflection from the same scawger because of the short
adverse effects resulted from both the early-stage artifact agigtance between two neighboring antennas. The distance
the late-stage clutter, a weight factef, for thelth location is between adjacent array element of 20 ;i is used since it
introduced. The Pearson’s correlation coefficient 7;; ; between provided an optimum trade-off between performance and
neighboring pair of time-shifted signals is calculated as complexity. Considering the useful tumor response contained
in signals from different antennas varies, depending on tumor
T 1= Y8 X ()X () /I, X ()2 28, X,(n)? (5) Iogatio-ns, skin thickr}ess vgriations, differences in ant.enna-
skin distances, and interfering responses from other tissues,
. the selective multiplication of the maximum half coefficients
\{vhelre Xi(n) = Si(’ﬂ—r”), and Xf(n) - Sf(n+Tﬂ_) with g adopted. Thisp mechanism implements the adaptive
j=i+1, are the time-shifted signals kirom theith and . pination of antenna pairs, which guarantees the introduced
(i + 1)th transceiver, respectively;; ; measures the degree\Ne‘i(‘:ﬂ1t can focus on those strongest soasserregardless of
of coherence between time-shifted signals. High positive  ;mor’s position. Considering malignant tumors’ higher
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scattering cross-section relative to comparably size T 1 : 1 T R

heterogeneity in normal breast tissue [32f; adaptively EO gd i’; [‘Lﬁﬁ"

rewards potential tumor locations with a high weight, therek £ ‘ g

enhancing tumor identification in most if not all cases. e e Em 1 15 2 23
Step 3. The last step calculates the intensity for ke i i e

location. Although the maxima of coherent addition of timeEig-_5- lllustration qf ideal artifact_ removgl. (8)gnal recorded at antenda
. . of Fig. 1. A tumor with a 10 mm diameter is placedxay,(z) = (95, 99, 112).

a“gn?d ;lgnals may no '°”Qer exactly Corre_Spond to the t.u ISignaI recorded from a tumor-free breast modelP(ge tumor response

location in a complex medium, the sum still has a relativelybtained by subtracting (b) from (a), which is indicdigaiotted boxes.

high value at tumor locations, since signals from some, if not

all antennas, are still able to add coherently. The constructecAll reconstructed images were normalized to the maximum

signal C,(n) in the RAR algorithm is therefore intensity value of the 3-D imaging volume. Same datasets
were applied for all algattims. To assess algorithm’s imaging
C,(n) = wf; - Sum,(n) (10) performance, two quantitative metrics were applied, which are

signalto-clutter ratio (SCR) and sign&-mean ratio (SMR).
Let I, denote the intensity of a specific locatibwithin the SCR was defined as the ratio of the maximum tumor response

desired imaging area, and it is given by to the maximum clutter response, whereas SMR was defined
as the ratio of mean tumor response to the mean response of
L=3%_,[C(n)]? (11) the whole image. The maximum or mean tumor response was

assumed to be the peak or average intensity of an area defined
The procedure is repeated for every location within th@y twice physical extent of the tumo2f], whereas clutter
imaging region as shown in Fig. 4, ahdoops in total are feésponse was those outside this area. SCR defines the
required. The distribution of intensity at each locatipis difference between tumor and clutter response, whereas SMR
displayed as an image. The pairwise correlation in tH0Ws the image contrast between tumor and non-tumor areas.
proposed RAR algorithm measures the backscattered energv .
intensity from each scatr The combination of neighboring ;:] AN G2 g
antennas ensures that the strong reflection received at eacz ‘ g 2 E
neighborhood antenna pair is from the same strong seatter
considering possible multi-scatéer cases. The maximum

sity

Relative Inten

0 110 14

combining of correlation coefficients implements an adaptive 11012 = tam) 2 (mm)
(b) DAS (c) DMAS

selection of neighborhood paired antennas, only those tha e |
have a high correlation can contribute to the weight factor, »
yielding a flexible beamforming. The efficacy and robustnessE:
of RAR are demonstrated under a variety of challenging =i
scenarios, where non-perfect artifact removal, and in breast 17 g ) .
with varied levels of glandular tissues are considered, anc " 2w T ) )

these are presented in the following sections @0 i i
P g ’ Fig. 6. (a) 2D slice of breast model of medium typeb):(f) Imaging results

with ideal artifact removal. Tumor’s position is indicated by dotted circle.

e
oo oo

Relative Intensity

IV. PERFORMANCEANALYSIS

In this section, algorithm performance is analyzed in depth. Fig. 6 presents theeconstructed images through the five
The superiority of RAR is demonstrated via comparisons wiffgchniques, representing a distribution of energy resulted from
four techniques, including DAS, DMAS, MWDAS, and each voxel within the breast model. The peak intensity of
FDAS. First, algorithmswere evaluated in mostly sparseimage is usually regarded as the tumor position, which has the
breasts with medium type A and B, applying idealized strongest reflection among all heterogeneous breast tissues
artifact removal method. Then combining practical artifadvith a comparable size [32]. It can be seen that the embedded
removal methods, the algorithm effectiveness was investigatéd mm diameter tumor is clearly identified and accurately
for dense breast models with various medium compositiotcalized by all algorithms. However, the clutter rejection
and tumor positions. The computational analysis of algorithnggpability of them varies due to the different weighting

is also provided considering its significance in practical use. mechanisms employed. Specifically, the image offered by
DAS [Fig. 6(b)] is filled with the strongest level of clutter,

A ldeal Artifact Removal which is indicated by the smallest SCR of 7.01 dB (Table II).
Serving asa benchmark of imaging algorithm performance This shows its limited capability for discriminating against
ideal artifact removal (Fig. 5) for obtaining clear tumorlutter since it does not account for any dispersive propagation
response was firstly applied. It can be seen that desired ture@fect. The result of FDAS [Fig. 6(e)] is cleaner than that of
response indicated by the dotted box in Fig. 5(c), which existeAS, which validates the effectiveness of its filtering process,
in later time, is totally obscured in received signals in Figut its performance is still inferior to the other three
5(a). This is due to its small order of magnitudempared algorithms. It is observed that DMAS, MWDAS, and the

with that of incident signals and skin reflections appear earligiroposed RAR algorithm provided almost clutter-free images
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Fig. 7. (a) 2D slice of breast model with medium type(t®-(f) Imaging  Fig. 8. (a)-(d) represent the pre-processed signaatehna 4, 16, 33, and 46
results with ideal artifact removal. as numbered in Fig. 1, exemplifying the performancéeidince between

artifact removal methods. The solid and dotted curvethareesults based on
. . ideal and entropy-based method for artifact remoesipectively. The circle
[Fig. 6(c) (d), and (f)]. Assuming perfect tumor respons€ngicates where tumor response is expected to appe@mér with 10 mm

could be capturecthe cross multiplying of weighted tumor diameter is placed at,(y, z) = (95, 99, 112) of the model shown in Fig. 1.

response from all channels in MWDAS forms particularly

high weights [Fig. 6(d)], which achieved the strongest cluttd/0 are Wiener Filter [32] and the entropy-based time window
rejection with a SCR of 415.58 dB in this case. [44]. The correlation measure between recovered tumor

Imaging results in Fig. 7 employ the same ideal artifadEsponse by these two techniques and perfect tumor response

removal method as in Fig. 6, but the breast model is changd§ 0-66 and 0.60 (ranging from 0 to 1), respectively. In
from homogeneous fatty to heterogeneous fatty [Fig. 7(a)], ‘€€ Filter, thg artifact |n.ea'ch propagation channel is
which three different fatty tissues, fatty-low, fatty-median, angStimated as a filtered combination of the signals from all
fatty-high are included. With increased heterogeneity, mother_channels,_ then the estimated artifact is §ubtract_ed from
dispersion of received signals is expected due to the increaddg Signal received at the chosen channel. Wiener Filter can
propagation behavior difference of frequency componenf§MOVe mosof the artifact. However, this method requires the
among various tissues. Furthermore, the estimated aver&jle" knowledge of the time interval in which only artifact is
propagation velocity might not as well represent the actuﬁ]c!”ded Moreover d_|stort|on is |ntrc_)duce_d to tumor response,
speed ain the homogeneous case, leading to a mismatch which might result in tumor location biaBy contrast, the

between the estimated and actual time defys is reflected €Ntropy-based method introduces zero distortion to tumor
by the imaging results. Compared Fig. 6(b) with Fig. 7(bj’esponse, has higher computational efficiency, and does not

both of which are the results of DAS, more clutter outside tH&€dUiré any prior information. Hence, given both efficacy and
circle is observed in Fig. 7(b), corresponding to a 2.03 d iciency, the entropy—based is chosen_ as the artifact removal
decrease of SCR. The same trend applies for all algorithfi§thod for the following study as used in [47]{48

considered. Despite a slight degradation of clutter suppression19- 8 illustrates the entropy-based time window truncation

the inserted tumor is accurately localized by all techniquel®' artifact removal. The ideal tumor response at antenna 4 is
This also indicates the fault-tolerant capability of sthe shown as the solid curve in Fig. 8(a). Comparing the actually

algorithms for certain propagation time-delay mismatch. ~ received signal [Fig. 5(a)] with the entropy-truncated signal
shown as the dotted curve in Fig. 8(a), it is noted that this

B. Realistic Artifact Removal method effectively removes the majority of the early-stage
Previous results show that all algorithms present decettifact composed of incident signals and skin-fat reflections,
tumor identification and localization capabilities, regardless a¥hich has a several higher orders of magnitude than the tumor
homogeneous or heterogeneous breasts, assuming the turesponse. As shown in Fig. 5(a), the pure tumor response that
response could be ideally extracted. However, perfect removels an order of magnitude of 1e-5 is completely overwhelmed.
of artifact is unlikely in practice, it is therefore critical to tesiThis efficacy can also be noticed at antenna 16 [Fig. 8(b)],
algorithms’ performance in scenarios applying more realistic where almost all artifact is removed and no obvious distortion
artifact removal methds The artifact is a mixed signal is imported, compared with the ideal tumor response within
composed of incident signals and skin-fat interface reflectioriie time period from 1.0 to 1.5 (ns). However, for antenna 33
thus pure tumor response can be difficult to recover. Even thed 46 [Fig. 8(c) and (d)], there is still a large amount of
stateof-the-art artifact removal methods are unable teesidual artifact with high amplitudes. This is because in
completely remove the interference. However, desired tumentropy-based method, the time window truncation of same

response @n be easily obscured by the artifact that has a mudngth is used for signals received at all anterfdls Hence
higher order of magnitude, especially when the tumor hasdapending on tumor-antenna distance variations, truncated
relatively small size. All these pose a great challenge to tkégnalsof different antennas could contain varied percentages
image reconstruction algorithms. of useful tumor response versus residual artifact, which could

Based on the latest review study provided in [45], whichotentially lead to location bias in constructed images.
evaluated seven different artifact removal methods, the best
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Fig. 9. (a) 2D slice of breast model with medium type(l®-(f) Imaging Fig. 10. (a) 2D slice of breast model with medium tgpe(b)-(f) Imaging
results with entropy-based artifact removal. results with ideal artifact removal.

Fig. 9 displays the imaging results where using the sanmbecause phase coherence is independent of signal amplitude,
medium type B as in Fig. 7. Instead of using ideal artifacinly the linear relationship between signal shapes affects
removal, the entropy-based method is applied. Compared wibrrelation coefficients. Second, the maximum combining of
Fig. 7, it is noticed that the performance of DAS, DMASpairwise coefficients adaptively focuses on those points with
MWDAS, and FDAS suffers significantly. The result of DASlarge scattered energy. Considering the relatively high
[Fig. 9(b)] is seriously unrecognizable, only an area with higmagnitude of scattered energy from tumors over other tissues,
intensity is observed. However, none of these high-intensitlyis maintains the capability of RAR in terms of localizing
positions reveal the actual tumor location indicated by themors in most if not all cases with a much higher chance.
dashed circle. Although the results of DMAS, MWDAS, and Aside from artifact, it is agreed that the glandular tissue
FDAS [Fig. 9(c)-(e)] only show a few focused areas, the peakams another challenge for tumor detection. This is not only
of these images are far away from the actual tumor position.dne to the substantial amount of attenuation and dispersion to
contrast, the tumor is conspicuously shown at the corre@ceived signals introduced by glandular tissues, the small
location in the image constructed by RAR [Fig. 9(f)]. Thidielectric contrast between cancerous and glandular tissue
demonstrates the robust performance of RAR even if tlwuld easily result in misidentification of glandular tissues as
artifact cannot be removed faultlessly. Specifically, the SCRmors. Thus, it is important to evaluate algorithm
of DAS, DMAS, MWDAS, FDAS, and RAR are -11.94 dB, -performance in such casé®sults shown in Fig. 10 are based
25.91 dB, -728.06 dB, -17.85 dB, and 5.27 dB, respectivelgn the collected signals frobreast model with medium type
The positive SCR of RAR signifies that it is the onlyC, with the same idéartifact removal used as in [2Results
algorithm that reveals the tumor with correct location, whicheveal that the presence of glandular tissue can seriously
illustrates its clear advantage of excellent artifact resistanaieteriorate algorithmgerformance, even assuming the early-
These results also prove that effective artifact removal is vitsage artifact is ideally removed. Compared Fig. 10(b) with
for imaging, even for breasts with relatively low heterogeneitlig. 7(b), both using the ideal artifact removal, it is observed

The reason behind the robustness of RAR lies in the fattat DAS failed to correctly localize the tumor in Fig. 10(b)
that except RAR, all other algorithms simply exploit thevhere considered glandular tissues. Although the actual tumor
amplitude information of time-shifted signals, expecting thposition has a relatively high value, the peak of the
maximum coherent addition or multiplication could occur atonstructed image no longer corresponds to tumor’s position,
tumor locations. According to the results shown in Section IWhich was the case in Fig. 7(b). This indicates the limited
A, this is indeed the case when tumor responses be detectability of DASo separate the scattering due to glandular
perfectly extracted, and all algorithms can perform wellissues and the scattering due to the tumor. After combining
Nevertheless, when the artifact cannot be removed effectiveygnals from all propagation channels, the multi-reflections
it is very likely that at some non-tumor positions, only théetween tumor and glandular tissues could generate a higher
artifact from one propagation channel can be greater than th&ensity than those reflections from tumor or glandular tissues
coherent sum of tumor responses from all other channels, dodividually, which is indicated by the peak at the éwight
to the different orders of magnitude between artifact arghrt of Fig.10(b). Similar erroneous tumor locations are also
tumor response. For RAR, in addition to utilizing the coherefffered by DMAS and MWDAS [Fig. 10(c) and (d)]. Neither
addition of tumor responses from various propagatioof them localized the tumor correctlwhich indicaes their
channels, it also explores the phase coherence between sigmalserability to the interference caused by glandular tissues.
The introduced adaptive weight control mechanism of RARespite clutter, the result offered by FDAS [Fig. 10(e)]
ensures its robustness on two aspects. First, the neighborhomdealed the tumor with accurately, which shows its advantage
pairwise correlation between all antennas measures theer DAS, DMAS, and MWDAS. This confirms the efficacy
average coherence, which is less likely to be distorted by ooEthe compensation of attenuation and dispersion offered by
or two artifact signals with abnormally large amplitudes. Thisthe filtering process in FDAS. The result is consistent with its
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original presentation [28], whereas the slight difference is dug(f)]. The other four algorithms failed to do so, this proves
to the different percentages of glandular tissues containedtire effectiveness of RAR for cases of ductal carcinoma.
the breast models used. However, the best imaging result isSThus far, breasts with homogenous and inhomogeneous
provided by RAR [Fig. 10(f)], which not only pinpoints thestructures and tumors at different locatohave been
tumor accurately, but also provides the best clutter rejectioconsidered. The breast models emphbpefore are assumed
RAR ensures that high weights measured by correlatido be mildly dense, in which the fibro-glandular tissue is less
coefficients are obtained at tumor positions. Because afttian 25%. It should be considered that the increased glandular
time-shifting the same signals at neighboring antenna pairs f@sues could noticeably increase the breast density and result
tumor and non-tumor positions, higher correlation is obtaingd further signal attenuationTherefore, for comprehensive
between tumor responses which resulted from the same higimalysis, moderately and severely dense breasts are used to
contrast scatterer, whereas lower correlation is expected fest algorithms in the following scenarios. In Fig. 13, the
those signals from low-contrast heterogeneous breast tissugeast with medium type D is used. Although the percentage
Thus, signals with high weights at tumor positons generaté glandular tissues for this type is normally between 25%-
large intensities after being combined, thereby discriminatirig0%, which belongs to a moderately dense category, the
tumor responses against glandular response. Comparing tardomly scattered glandular tissues seriously reduce the
results offered by FDAS and RAR [Fig. 10(e) and (f)lhomogeneity of propagation channetsking the detection of
although both identified the tumor, the clutter suppressianmors much more difficult. From the results shown in Fig. 13,
capability varies considerably, and an improvement of SCiRis clear that RAR is again the only method that identified the
with 3.51 dB is offered by RAR. This is non-trivial, becauséumor correctly. However, strong scattered clutters are
the much more cleaner image offered by RAR emarkably generated. Specifically, comparing Fig. 12(f) with Fig. 13(f),
reduce the uncertainty of the existence of multi-tumors that a@ifee SCR of RAR results dramatically decreased from 3.92 dB
located near this region, which is greatly desirable in practicdo 0.48 dB. This indicates that the increased glandular tissues
Undoubtedly, it is not realistic to assume the early-staget only cause the change of breast density and corresponding
artifact could be ideally removed, especially considering tregnal attenuation, it also complicate the propagation channels,
enormous impact of artifact, which has been confirmed in Figendering the identification of strong scaisrsuch as tumors
9. Therefore, combining the entropy-based artifact removalore difficult to be achieved. Results in Fig. 14 employed the
method, the algorithm performance for heterogeneous breaatme breast model as in Fig. 13, but the tumor is moved
models with medium type C is investigated and results awégthin the scattered glandular tissues to simulate the invasive
shown in Fig. 11 (Figs. 11-18 are available in supplementdlctal carcinoma. In comparison to Fig. 13, algorithm
materials.). In this challenging scenario, the proposed RAR pgrformance in scenario of Fig. 14 further degraded due to the
the only algorithm reveals the tumor with correct location [Fifurther reduced uniformity of assumed propagation channels
11(f)], whereas with other four techniques, the tumor is eith&ncouragingly, the proposed RAR algorithm in this case still
unidentifiable or with wrong estimated locations [Fig. 11(b)kept its edge with a positive SCR of 0.10 dB (Table II),
(e)]. Similar to results in Fig. 9, when the early-stage artifagtdicating its robustness to certain deviation between the
cannot be effectively removed, the late-stage signals no matkssumed uniform propagation channels and the actual ones.
tumor or glandular tissue response is totally masked by theFor completeness, the performance of all algorithms in very
residual artifact, because of the distinctively different order afense breasts with medium type E and F are also investigated.
magnitudes. Even the filtering process introduced in FDAS Is Fig. 15, a tumor in breast model with medium type E,
unable to be immune to this interference. This can be clearich includes glandular tissues with percentage ranging from
illustrated by comparing Fig. 10(e) and Fig. 11(e), where ide&0% to 75% is considered. It is noted that the result offered by
and entropy-based artifact removal methods are applifRAR algorithm [Fig. 15(f)] is the one with highest SCR of
respectively. These results once again confirm RAR’s  0.05 dB, while all others have a negative SCR, corresponding
superiority over other methods in terms of both strong artifatd a poorer performance. Although the peak in the result of
resistance, and high detectability of distinguishing thBAR does not exactly correspond to the tumor position, a
scattering from tumor and glandular tissues. relatively high intensity within the circle is observed. Also the
Since a high percentage of breast cancers are invaspeak generated by RAR is quite close to the tumor position,
ductal carcinomas, which start at fibro-glandular regions [36nd this explains why RAR has a positive SCR. However,
it is worth testing the imaging algorithms in the cas&hen the breast model with medium type F is considered (Fig.
considering tumors are very close to or grow from th&6), all algorithms faiéd to differentiate between the tumor
glandular tissues. Fig. 12 shows a tumor located very closeatad the glandular tisspand nonevere able to provide images
glandular tissues. In the analysis of this case, the backscattendgtth discernable and correct tumor positions. For both
response from tumor and glandular tissues could eas#genarios considered in Fig. 15 and Fig. 16, tumors located
overlap due to the small spacing, raising a challenge about thighin fatty tissues instead of within glandular tissues are also
specificity of algorithms. Encouragingly, although with aested to simulate various clinical scenarios. The results
decrease of SCR from 4.10 dB to 3.92 dB with respect to Figbtained were similar, which indieat the limited detection
11(f), RARwas still able to localize the tumor correctly [Fig.capability of these algorithms for severely dense breasts.
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The poor performance of algorithms considered for severely
dense breasts with medium type E and F is mainly dueeto t
following three reasons. 1) Dense breasts could considerably
attenuate the propagated signals, resulting in very weak tumor

TABLE Il
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pSIGNAL-TO-CLUTTER RATIO (SCR)AND SIGNAL-TO-MEAN RATIO (SMR) OF
ALGORITHMS IN DIFFERENTSCENARIOS BEST RESULTS OF EACH CASE ARE
HIGHLIGHTED IN BOLD

response contained in received sign2)sThe reflected energy Fig.6  Fig.7 Fig.9  Fig.10  Fig. 11
from other scatters such as glandular tissues might be SCR (dB)

equivalent or even higher than that from tumors, due to tlj® DAS 7.01 4.98 -11.94 -2.30 -3.58

variability in adipose versus glandular tissue compositions. &) DMAS 14.92 10.82 -25.91 -4.63 -5.63

For almost fully dielectrically heterogeneous ACR-IIl andd) MWDAS 41558 40325  -728.06 -78.48  -107.49
ACR-IV breasts, the assumed uniform propagation chanre} FDAS 11.43 6.77 -17.85 1.25 -4.24

would not be able to represtethe actual one, and fatal () RAR 13.99 8.47 5.27 476 4,01

inaccuracy of time delay estimation could occur, leading to SMR (dB)

incorrect localization Specifically when the percentage of (b) DAS 17.22 17.03 -1.87 7.62 6.90

glandular tissues is higher than a certain threshold, the averag®mAs 20.75 20.27 -12.35 7.29 7.14

estimated time delay of each propagation path might be fay MwDAS 21.14 21.08 -705.34  -56.50  -89.97
from the actual ones. To solve these problems, the following FDAS 17.22 16.47 -2.86 11.55 8.93

potential solutions could attenuate the effect of previoug RAR 20.98 20.67 20.09 17.12 14.29

problems respectively: 1) Employ multistatic instead ©f Fig.12 Fig.13 Fig.14 Fig.15 Fig.16  Ave

monostatic acquisition to collect more useful backscattered SCR (dB)

signals from the tumor. 2) Enhance_ the cqntrast betw%). DAS %5 183 246 065 280 500
tumor and the background through increasing the reIaUYS DMAS 1228 049 -457 235 528 354
permittivity of tumor, such as using the contrast age 3) MWDAS -306.46 -4011 -87.19 -17.86 -129.46 -67.63
described in [36]. 3) Improve the accuracy of individu e) FDAS 1189 009  -1.60 -031 -047  -168
propagation channel estimation. The investigation of theﬁ‘?RAR 3.92 0.48 0.10 0.05 0.2 408
solutions is beyond the scope of this work. SVR (dB)

The imaging with the RAR algorithm from different vi W ) DAS 558 952 702 509 563 807
apgle5|s glso tested for completeness. The results shown (lcr)u DMAS 307 1113 661 1109 548 743
Fig. 11 with a tumor atx(y, 2) = (95, 99, 112) are selected aS4) MWDAS -28534 -61.82 -6501 -3.34 -11412 -133.92
an example. On one hand, images are reconstructed(ez;q:DAS 112 1071 924 1097 830 9.17
differentx planes, wherg = 85 mm, 95 mm, and 105 mm are 1816 1143 1589 1725 919 1651

selected. Results illustrated that the largest intensity occues—at

planex = 95 mm, corresponding to the actual tumor position,

proving that RAR is able to accurately identify the plane théyperior Fo the classic DAS. In scenarios assuming the early-
bears the tumor. On the other, theand z cross-section stage artifact could be perfectly removed, DMAS outperforms

imaging results by RAR are displayed in Fig. 17, wiyere99 DAS Without qqestion (Fig. 6 and Fig. 7), however, in Iatgr
mm andz = 112 mm are chosen, respectively. It is observetf€narios considered denser breasts and non-perfect _art_lfact
that the reconstructed images clearly identify the tumor in bofiMoval DAS shows more robustness than DMAS. This is
cases, with accurate positioning and strong clutter suppressiBicause the pair multiplication used in DMAS could lead to
SCR and SMR statistics of algorithms are summarized g{roneous peaks in more com_pllcated environments with less
Table II. Based on the calculated average of all ten scenarig@nerence among all propagation channels.
the proposed RAR algorithm achieves the highest SCR of 4.0g! N€ Performance of RAR algorithm with respect to tumor
dB and SMR of 16.51 dB, respectively, indicating its excellert2€ Was also con_5|dered. Comb'”'”g gntropy—based artifact
performance and strong robustneksshould be noted that removal method, in breasts .W'th. medium type A and B,
RAR is the only algorithm which provided a positive SCR ir%umors as small as. S mm in d_lametgr were successfully
in a more dielectrically heterogeneous

2 : . . . identified. However,
results shown in Fig. 11, Fig. 12, Fig. 14, and Fig. 15, pgpvi breast with medium type C, when the tumor size is less than 7
mm in diameter, the imaging results are quite blurry, which

its distinct advantageOn the other hand, MWDAS has the
smallest SCR and SMR in average. In spite of its excelleghy hardly be used to identify the tumor. As for medium type
clutter rejection with ideal artifact removal (Fig. 6 and Fig. 7)D, the smallest tumor that were successfully recognized at
this efficacy suffer significantly even with a small portion ofyjfferent positions were 10 mm as shown in Fig. 13 and Fig.
residual artifact, indicating its limitation in more practicali4. Additionally, the sensitivity of RAR to the error of average

scenarios. The second best technique is FDAS, although itdiglectric permittivity estimation is examined. Coupled with

very sensitive to artifact, results show that the filtering ientropy-based artifact removal method, in mostly fatty breasts
beneficial since in most cases it outperforms the original DASich as medium type A and B, even when the relative error is
algorithm and achieves the second high SCR of -1.68 dB aug to 30%, only a minor reduction of SCR is observed.

SMR of 9.17 dB. Comparing DMAS with DAS, results reveaHowever, for fully heterogeneous breasts with low to medium

that the pure coherence-based algorithm DMAS is not alwaygensity such as medium type C and D, when the relative error
is over 5%, the resulted images can rarely localize the tumor
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precisely. This reinforces the need to have an accurate averages (4 — 1) normalized correlation coefficient for the
dielectric permittivity estimation. In our study, the collectednaximum comming. For a sorting algorithm wittd — 1)
signals are assumed to be noiseless; in practice, howevgimbers, the time complexity is up@§A?). To generate the
possible measurement errors and noise need to be considerg@gighted value, which is the product of the first half number
C. Computational Analysis of sorted coefficients[(4 —1)/2] —1 multiplications are
Besides robustnessomplexity of algorithms is of great involved. Step 4 weights the signal amdnultiplications are

importance, especially for imaging 3-D realistic breast modelrsefqu'r?d' Last step'calculates 'the energy and r@ads 2
In this section the time complexity of algorithms is analyzecf’.perat!ons' Accordingly, 'gnoring small va!ues in summed
As described before} sets of tumor responses are collected jgperations, RAR has an asymptotic complexitg o).

monostatic casethusA signals are need to be processed. CPSLIJmIIJEI?tSIgg rzsggégn a;CCvglthIntel (Rg. Cc()jre (-'I;hM)ISI ?Iuct))
Let K refer to signal sampling points andbe the window ' z ( ) combined wi atla

length, which is smaller thai. Both K anda are much more R2014a software confirmed the computation overhead of

larger thand, which determine the calculation numbers fof;:\]gor|thms. 48 signals with 1500 sampling points in each

raw and truncated signals, respectively. The number S| nal are processed, where a time window length of 294 is

arithmetic operations (without distinguishing between additioﬁmploy.Ed' ThusA = 48,K = 1500’. an_da = 294 in our
and multiplication) needed to calculatach pixel’s intensity simulation tests. Calculated processing time employs the mean

is analyzed. All algorithms considered need the same tim f three replicates to reduce random errors. Fig. 18 compares

shifting process, only other different procesare compared. ?nte r(:oirt'nplt;zxnly z':lr?t(rjmpq)rocgfns]mlg t;umnerto ﬁ?lcslzﬁz %smgletirrr)]lxel
To sum A time-shifted signals, DAS needsl — 1)K ensity ot algo S: ulation resufts veritie € ©

additions. Then the summed signal is truncated by the Wind(ﬁﬁmple.xny analysis. As can be seen, the complexity is maml){
. - etermined by the number of points needed to be processed in
lengtha, thusa and(a — 1) operations for multiplication and

addition are required to obtain the energy of this signal. DA ch s_|gnal, .Wh'Ch can blé_or a in different methods. A
. . extensively higher computation burden than other algorithms
thus has an asymptotic complexity®fK).

The st lep 1 DVAS i generati st ofpis fom (3 2751 FOAS, Wi reares e st poceseng
A signals for pair multiplicationand [(A(4 —1)/2) — 1]K ) ’ y

ltiolicati ired. Step 2 o — 1)/2 sianal 0.0003 seconds. In addition, the same linear growth is
multiplications are required. Step 2 SUAG —1)/2 signals - o coveq in DAS, DMAS, MWDAS, and RAR, whereas
with K sampling points[(A(4 — 1)/2) — 1]K additions are

) : i . . . . FDAS has an exponential tendency. This demonstrates that
involved. The last integration witlhthe time window requires

_ Y ..~ RAR maintains the same level of high computational
a and (a — 1) operations for multiplication and addition,

: . ) _ epiciency, even compared with the simplest DAS algorithm.
respectively. Ignoring small values in summed operations o

all steps, DMAS has an asymptotic complexityogk).

Unlike DAS and DMAS, MWDAS brings forward the ) ) ) .
windowing of signals, thus for each signal, onlgalculations A Novel imaging algorithm for early breast cancer detection
are needed. Step 1 requies— 1)a summations and one entitted RAR is proposed. The efficacy of RAR is verified

division to obtain the reference waveform. Step 2 involvelénder a r_1umbe_r of scenarios, using F[_)'_I'D-based 3-D breast
weighting signals fromd channels via the generated referenc@md_e'S W'_th various structures_ and_densmes_.

waveform, requiringda multiplications. Step 3 is the energy. S|mulat|on_r_esults showed imaging .algonthm performance
calculation of weighted signals and negtis— 1) operations. is more sensitive to the early-stage artifacimpared with the

Last step multiplies signal energy from all channels, wherl%t("\'s'{"Jlge clutterdue to_the different orders of ma_lgmtude O.f
ese two types of interferences. Results with superior

A — 1) multiplications are needed. Thus MWDAS re 'reé . . .
E4Aa—)1)uopl)Z:ati<;ns in all and hasaco%plexitﬂ(h) qu robustness were provided by RAR in comparison to other

Two additional parts are needed for FDAS in addition talgonthms including DAS, DMAS, MWDAS, and FDAS. In

o . . i gne four of the six challenging scenarios (Fig. 11, Fig. 12, Fig.
that of DAS. First is the collectionf adistance-dependent 14, and Fig. 15)RAR was the only algorithm which clearly

reference waveforms for filter design. Second is the filterin e ) .
. . . %entmed and accurately localized tumors. These scenarios
process. Since the gathering of reference signals could D€

: . . consideed practical artifact removalarious tumor positions,
precomputed, main extra computational burden of FDAS lies . . .
: S ) o .and breasts ranging from mildly to moderately density
in the filtering process when calculating each pixel intensity.

) . L . Classifications. Simulations also proved the computational
ForK sampling pointsk (NK) multiplications are required to efficiency of RAR, which has the same asymptotic complexit
implement FIR filtering in time domain, whehleis the filter y ' ymp plexty

length. Combined with extra DAS operations and ignore sm%ﬁ Irjoé/i;neDr:\fASr(’)v?g: d NLW?:ASR ailgocr)lr:rmzt 'tl'hh: es)l(grg;lgzngf
values, FDAS has a complexity 6{K?) as a result. P P y y b

. . ‘ . negligible increased computational effort. These results show
In RAR, the windowing of signal is brought forward, thusthe high potential of RAR for the early-stage cancer detection

only a calculations is required for each signal. Step 1 involvgﬁ low to medium density breasthe investigation of RAR’s

4 __1? calculat_lon of _nelghborhood pairmise Corre_Iat'Or‘berformance for further enhancement of tumor detection in
coefficients, which requirega(A — 1) operations following severely dense breasts will be involved in future work.
(5). Then the normalization nee?iéd — 1) operations. Step 3

V. CONCLUSION
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