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Panagiotis E. Mergos
Andreas J. Kappos

Estimating fixed-end rotations of reinforced
concrete members at yielding and ultimate

<Abstract: Strain-penetration of the longitudinal reinforcement of reinforced concrete (RC) members in the joints and/or footings results in
fixed-end rotations at the member ends. Several experimental studies have shown that fixed-end rotations caused by strain-penetration
contribute significantly (up to 50%) to the total displacement capacity of RC members. Hence, accurate determination of these fixed-end
rotations at yielding and ultimate limit states becomes of primary importance when defining the structural response of RC members. The
purpose of this study is to present the theoretical background and the assumptions behind the most common relationships found in the
literature for determining strain-penetration induced fixed-end rotations at yielding and ultimate. Furthermore, new simple relationships
are proposed on the basis of realistic and mechanically-based assumptions. Comparisons between the existing and proposed
relationships demonstrate the limitations of the former. Finally, the proposed relationships are calibrated against experimental
measurements of RC column specimens subjected to cyclic loading with recorded fixed-end rotations due to strain-penetration in the

adjacent joints and/or footings.>

Keywords: <Reinforced concrete; seismic; strain-penetration; fixed-end rotations; anchorage slip; yielding; ultimate>

1 Introduction

Performance-based design increasingly gains gramrgismic design of RC structures. A basic prerequisite of reliable
performance-based design of RC structures is the reliable knowledgdioéiual member lateral displacement at the
threshold of different performance levels.

In general, for RC members, lateral displacement at yielding and ultcaatee considered as the sum of three individual
components. The displacements originating from flexural and sheanddion mechanisms and the displacement due to
strain-penetration of the longitudinal reinforcement at the beam-cojamts and/or footings. Estimation of the latter

displacement component represents the main focus of the study présseted

Several experimental studies have shown that fixed-end rotatiosedcly strain-penetration of longitudinal bars in the
joints contribute significantly (up to 50%) to the total displacement capsfdRZ member§l-3].

Various analytical methodologies have been developed so farefatetermination of fixed-end rotations caused by strain-
penetration in the anchorage zone. These methodologies rang¢hfranost elaborate and accurate, which use the finite
element or finite difference metho@d-6] to rather simplified ones, yet accurate enough, which assume prdscribe

distributions of bond stress along the anchorage Idiigii3].

The main objective of this study is to propose new simple closed-féatirorships for calculating anchorage slip rotations
at yielding and ultimate. The proposed relationships are mechanics Wased assures that all main parameters affecting
anchorage slip are taken sufficiently into consideration. The new redbifis are calibrated against experimental
measurements and are later used to evaluate widely adopted relatiomshipfliterature.



2 Fixed-end rotation at yielding

If s denotes slippage of the tension reinforcement from its anchoragi-efixerotatiorts;, is given by Eq. (1), whene is

the neutral axis depth ands the effective depth of the member end section

0,,=—— 1)

d - x

The most common assumption, when estimating fixed-end rotdtioelding, is that the bond stregs is constant alongn
anchorage length,.[7-13]. This assumption is convenient but does not accurately reflect thehezeomenon.

As shown in Fig. 1, when,. is assumed constant alobg, bar stress¢(x) increases linearly from zero at the end_gfto
the bar yield strengtfy at the member end section. Since the bar remains in the elagtc steel straing(x) also increase
linearly from zero ta, at the respective locations. Anchorage slip at yieldjr@an now easily be calculated by integration
as

s, = J'gs(x)dx:%-gy~LbE )

ey Ly 3)

Py-

ay,snp =

> .Lbe:(/ly' m.' yl (4)

One problenin the afore-described approach is the determination of the unifamch $icess,.. Biskinis and Fardis [11]
suggest that,\f.. This value is adopted as the mean bond stress algnghich is about 40% to 50% of the maximum
bond strength,, of the local constitutive bondlip law of unconfined or confined concrete, respectively, for “good” bond
conditions according to Model Code 1990 [14]. The samgevar 7, is proposed by Lehman and Moehle [3] and Sezen
and Setzler [10], who studied fixed-end rotations of RC columns subjectgdlic loading.

By settingz,.=Vf;, the following equation fo, i, is Obtained, which is the same as the one adopted in EC8-Part3 [15].

by (5)

y,slip =



Despite the convenience of the previous approach, it is not considierthe actual local bond-slip resporest assumes
constant bond stress along the anchorage length, while the sligsesmguadratically from zero to the maximum vajust

the beam-column end section. This is not consistent with theddond-slip constitutive law presented in Fig. 2.

To overcome this limitation, a new, simple procedure is proposehlier@valuatings,. The method assumes that the local
bond stress of an anchorage point is a general power functithe afistancex from the anchorage point of zero stress,

strain, and slip (Fig. 3). Hence, it is assumed:

7, (x)=b-x° (6)

The proposed method assumes that all points dlgngmainon the ascending branch of the local bond-slip law. Hence, at
the end of the calculations, the following relationship should ks, (see Fig. 2). lis worth noting that Eq. (6) a&=0
yields z,(x)=0, which is in accordance with the boundary condig@)=0 atx=0 and the local constitutive bond-slip law

shown in Fig. 2.

Parameterd andc are considered unknown and will be determined in the followingatisfying local bond-slip law at
x=Lpe @and at an arbitrary anchorage pdmat distance=x=L,/m, wherem>1 (see Fig. 3). Thus, no additional assumptions

are introduced for the calculationtmfindc.

Application of Eq. (6) to the two points mentioned aboveegjiv

|
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\

J

By equilibrium of an infinitesimal anchorage lengthand the boundary conditior<0 = ¢,=0), one obtains:

do

s
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Forx=Ly it is assumed that the steel bar is at the point of yields&,. Solving forL,. and using Eq. (7), leads to:

o1 L fy,~dbl-(c+l) ©)
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Furthermore, since the reinforcement bar remains in the elastic region:

O'S(X): 4 ) b c+1 (10)

£,(x) =



whereE is the elastic modulus of steel. By ignoring the concrete strainpgpigireg the boundary conditios(x)=0 atx=0,

slip s(x) at distancex becomes:

s(X) = [e.(x)dx= 4 . - X 11
7". s 7E ( )

4 b ez |
s, = L.
E-d, (c+1)-(c+2) s
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Moreover, by considering the relationship of the bond-slip constitigiveascending branch shown in Fig. 2 and Eq. (7), it
is obtained:

) ome (13)
J

Combining Egs. (12) and (13) and simoés an arbitrary constant, it follows that:

2a

(m“z)a =m°> a-(c+2)=c—> c= (14)
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Slip s, can now be determined by applying Eq. (11) together with%qg. (
4 b c+2 fyl 'Lbe gy'Lhe
s, =—— R B (15)
E-d, (c+1)-(c+2) E-(c+t2) (c+2

By further substitution of . from Eq. (9) and using the local bond-slip constitutive law, theviing is obtained:

- (16)

Finally, by substituting: from Eq. (14) and solving fag, it results:



;- {(1+ a)-§"-¢,- f,-d, J“a (17)
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It is important to note that Eq. (17) provides a closed-form solution toallealation ofs, from the steel properties and the
local bond-slip constitutive law parameters. The proposed methodalkegy into account the variation of bond stress along
the anchorage length and accounts for the actual shape ot#hddmd-slip law by introducing the constitutive parameters

a, S; andry,,.

One of the advantages of the proposed methodology is thth&dt calculates, as a function of local constitutive bond-
slip law parameters that have already been calibrated for differedt dmmditions and levels of confinement. Fig. 4(a)
comparess, predictions for different bar diameters derived by the uniform bond stessEnption,.=V/; (i.e. EC8-Part 3
[15] approach) and the proposed methodology for the bondaiiptitutive law parameters corresponding‘@od” and
“Other” bond conditiongor the pull-out failure mode in accordance with Model Code 2010 [16]. Additional parameters
influencing bond, like yielding, transverse stress, longitudinal crgckil cyclic loading are not examined herein. In Fig 4
concrete compressive strength is assumed eqéai3dMPa and steel yield strendgjf¥500MPa.

It can be seen tha, predictions differ significantly for different bond conditions. The lowgewalues are predicted for
concrete in “Good” bond conditions. This is expected since bond-slip ascending response is stiffer in this case. It is also
interesting to compare EC8-Part 3 [4okdictions with the predictions of the proposed methodology for “Good” bond
conditions (Fig. 4-right)lt can be seen that the two solutions tend to converge for saratliameters, but they deviate
significantly for large diameters. This observation drives to the concltigdmo unique uniform,. can be assumed for all
bar diameters, as assumed (for simplicity) in EC8-Part 3 [15]

An additional advantage of Eq. (17) is the fact that it can bdilye@pplied to the calculation of anchorage slip for steel
strainses, less thare,. This is achieved by simply setting in Eq. (EZ) instead ofs, and corresponding stresg, =E s,
instead of,.

Fig. 4(b) compares anchorage slip calculated according to EC8-Pis} 8nd proposed approaches for the same material
properties as above and bar diametgr8mm. It can be seen thagf predictions from the two methodologies coincide for
this bar diameter size. However, further comparison reveals that the EC8-PHS| approach may considerably
underestimate anchorage slip at low steel stresses. This is because the hmiidrsiress valug.=\f, assumed by EC8-
Part 3 [15] only applies for yielding of the longitudinal reinforcamé&or lower steel stresses, lower slgues and bond
stresses are expected. Hence, the EC8-Part 3 [15] approach may madedstind and underestimate slip of the anchorage.

Having established, and using the definition of the yield curvature, fixed-end rotattoneldingd, i, can be determined as

0, qip = %LTJ (18)

3 Fixed-end rotation at ultimate

For the calculation of fixed-end rotation at ultimagg;, the additional ‘plastic’ fixed-end rotation arising from the inelastic



partLy, of the anchoragé,, si, has to be added @,q;,. Typically, 8, ipiS significantly higher thad, g, due to the large
strains and the reduced bond capacity developed in the inelasti fhee anchorage.

To calculate accuratelg,, «i, €laborate analytical methodologies are generally required like the mentioned in the
Introduction. In addition to these methodologies, a numbers&farehers have made various simplifying assumptions in
order to provide approximate estimateségf,. The most widely adopted approach for calculatthgs, at onsetof
flexural failure is the equivalent plastic hinge length approach 8l.7According to this approacHy, i,can be determined

by the following equation, whetg,, ,is the strain-penetration length at flexural failure:

‘9puv5|\p=((pu7(py)-l‘spu (19)

Different empirical relationships, based on experimental results, havepbmessed in the literature for the calculation of
Lsp,» Paulay and Priestley [17] propose the following equatipm(MPa).

L,,,=0.022.d - f, (20)

Depending on the way the curvature of the RC member end settitexural failureg, is calculated, EC8-Part 3 [15]
proposes two different equations for the determinatiobsgf (fyi, f. in MPa), depending on the model used for confined

concrete.

- f
L,,,=0.24 ——="

w028 1 (219

(21b)

d
sp,u il \/E

At this point, it is important to mention that the actual valuegf, cannot be treated as independent of the assumptions
made for the calculation af, in moment-curvature analysis. These assumptions concern the dimestihodels for
confined and unconfined concrete, the constitutive modelefaforcing steel, the determination of the ultimate concrete
strain at failure:, and the steel strain at failurg. A thorough description of the assumptions made for the deteromrot

pyin the three different equationslof, , (Egs. 19 to 21) can be found in Fardis [18].

In the following, a more genier approach for determiningg,, will be developed. The methodology is based on the
assumption of uniform bond stresg inside the inelastic part of the anchoragg(Fig. 5. The same assumption has been
made by several researchg8s13] who found good correlation of the experimental measuremewtsthe analytical
calculations. However, the previous research efforts aimed at calculating digggihand notlg.

The aim of the proposed methodology is to propose a closedrédationship that accounts seperately for the effects of the
main parameters governing the development of the inelastic fixddeatations (i.e. reinforcing steel strain-hardening
response, bar size, material strengths and bond-slip response betwéandtsurrounding concrete). In this manner, all
possible combinations can be taken into consideration. Furtherther@roposed relationship will be able to determine

inelastic fixed-end rotations, i, at limit states prior to flexural failure. This is very important for theppses of



performance-based design for multiple performance levels.

An important issue when calculatifigs,is the assumption regarding the reinforcing steel strain-hardening ctinstiaw.
Most analytical modelg8-10,12] assume, for simplicity, linear hardening constitutive. |Al@vertheless, a previous
analytical study by Mergos and Kappos [13] has shown that thinearity of the strain-hardening material law plays a
significant role in the determination 6f ;,. Hence, in the following, closed form relationships will be derivadbith

linear and nonlinear strain hardening laws of reinforcing steel.

Linear strain-hardening law

Figure 5 illustrates bond stress, steel stress and steel strain distributiohgjamgere reinforcement plastic skp
and the corresponding fixed-end rotat#y,, are developed. When linear strain-hardening law is assumed, steelastes
yielding os is given by Eq. (22) as a function of the respective steel strass the steel strefg and straires, at maximum

strength.

(22)

The anchorage length,, in the inelastic range is determined by equilibrium and by usmg22). In Eq. (23)¢s, andes,
are the steel stress and strain at the loaded end of the anchoragg (Fig

L, = — = g : (23)

s = T . (24)

The respective fixed-end rotation is given by the following eqoativhich makes the common assumption [18] that the
neutral axis depth remains approximately constant after yielding of thituidingl reinforcement. In this equatiop, is the

curvatureat the critical end section of the RC member.

‘9=,“._ : (25)

The strain penetration length, can now be calculated as:



Lsn = = : (26)

The equation above can be also written in the following fornered, is the normalized post-yield strain ratiQ=(ess

e)l(esiey); in the post-yield range,,, ranges from zero to unity.

J @7)

According to Eq. (27)Ls, increases linearly with the normalized post-yield strain egtioThe same equations can be also
written as

L, = LBV LS 7 K (28)

The second term of Eq. (28) can generally be neglectedsgirag,. In this casel g, takes the simple form of Eq. (29):

L :(Gsoifyl).dbl (29)

sp
8.7,

The post-yield fixed-end rotatiof, o, corresponding to arbitrary post-yield curvatyreand steel straims, of the RC

member end section can now be calculated by the standard aquatio

(30)

Nonlinear strain-hardening law

Nonlinearity of the strain-hardening law increases considerably thelexitypof the analytical derivation of post-yield
anchorage slig,. In the present study, the nonlinear strain-hardening law suggsskriestleyet al [17] is examined. This
is given by the following relationship:

(e, -e.)
o= fsu—(fsu—fyl)~t J (31)



The steel stresg(x) at a distance x from the loaded end of the anchorage is deteloyieedilibrium:

4z

bp

Us(x):o-sn37 X

Hence, the respective steel strain can be calculated by combini(@lLEgnd Eq. (32) as:

o ( fsu—0'50+41bp-xldb‘\
s, = J' t—(Eq—¢,) dx
0 fsu - fyI
whereL,,, is given by the general Eq. ()35
_ dbl '(Uso_ fyl)
o 4.7,

Now, the equivalent plastic hinge length for anchoragelgjipan be determined by:

The analytical solution of Eqs34-36) has the following form:

f.,—-f,)-d
Ly = (o f) 90 RACH
87,

where:

[17 3-(1-2,) + 2-(1- gm)a}
15-¢

no

A(e,,) =

no

(32

(33)

(34)

(36)

37

(38)

(35)



Fig. (6a) presents variation bf,,) with the normalized post-yield strain rati. It can be seen thatz,,) increases initially
nonlinearly withe,, and then tends to stabilize. In fact, when ¢,, approaches unity,(c,,) slightly decreases, but this can be

neglected for practical applications. The maximum valugef) is approximately ¥a.

More interestingly, Fig. (6b) shows the variationlofith the normalized ratie,=(ossfy)/(fs-fy). In this figure, it can be
seen thal(s,,) increases almost linearly from zero to ¥oasincreases from zero to unity. This observation drives to the
conclusion that for practical applications, Eq. (37) can beemras:

(Uso_ fyl)'dm
8.7

bp

,_
u
A w

(39)

sp

Comparing Egs. (29) ar(89), it can be observed that they can both be written iroft@ning general form:

-f,)-d
Lsp:%-# 40)

bp

whereu is a scalar that accounts for the constitutive strain hardening Iste@edf(i.e =1 for linear hardening law ang3/4
for quadratic hardening law). It is worth noting that for the noalifardening law it ig</. This is due to the fact that for
the same,, strains alond.,, are generally lower than the ones corresponding to linear hagdemi as evident in Fig. 5.

It is generally suggested thagbe taken a:%bp=q/-\/fC wherey is a constant parameter. For example, Lehman and Moehle [3]
suggest thay be taken equal to 0.5 f&®&C columns subjected to cyclic loading. Alsiwat and Saatcioglu [8jestghat,

be taken equal to the residual bond strengtif the local bond-slip constitutive law (Fig. 2). According to MoGeHe
2010 [16] and for pull-out failuregy is equal toVf, for “Good” and 0.5Vf, for “Other” bond conditions. However, the
previous values should be modified by reduction factors aticgufor reinforcement yielding, longitudinal cracking,

transverse stress and cyclic loading. Hence, significantly smaller \afteasapply.

By substitutinge,, in Eq. @0), L, takes the following general form:

(Gsoify\>idhl l—(o-so/fylil) -I f,-d

L, = . ‘u=|L ™ ~/1J|- oo (41)

R I (42)

The form of Eq. (42) can be considered as a generalizatitthve &qs. 20-21) that are widely adopted for the calculation of



Lsp,u[17-18]. The general form of all equations is the following

| bl
Lsp,u =K - (43)

wherex is a scalar given by

K=———"7""7H"=5-u (44)

Egs. (43) and (44) are useful because they reveal the infloéddéerent parameters dn,, , More particularly, it is shown
that Ly, , increases with,, andd, and decreases witlf.. These observations are in agreement with models in existing
literature. In addition, Eq. (44) shows thaf ,depends on the steel stress at failure, the strain-hardening consléwtiued

the general bond conditions (i.e. level of confinement, positiorinforcement, cyclic loading, longitudinal cracking, and

transverse stress). The latter parameters are not taken explicitly into congidergtis. 20-21).

Figure 7 illustrates the range ofor possible values af (0.1< w<I) andos, (fy (1.1=< 05, /fy <1.5) for nonlinear hardening
constitutive law (i.ex=3/4). It can be seen thataries from 0.01 to 0.47. It is recalled that according to EC83H4a8] « is
either 0.11 or 0.24. Hence, it is obvious that EC8-Part 3 [H] lerd to serious underestimation or overestimatidn,of

and consequentlyy siiy

In Eq. (44),05is the steel stress corresponding to onset of flexural failure of the Ribenendsection. Usage 0b, ,,
instead of, is strongly recommended for non-ductile RC members that can flkiire at steel stress levels significantly
lower thanfs,. This depends also on the type of the strain-hardening lavinEar hardening law, for example, it is unlikely

thatos, , Will reachf, even for well confined members.

In addition to the above, it should be clarified thgf, should not be used for the determinatiorggfi, as it will lead to
overestimation of the post-yield fixed-end rotations. Instead, the wélug corresponding to the curvature of the member

end-section should be appligd, varies from 0 at yielding tbg, ,at onset of flexural failure.

4 Calibration against experimental data

In this section, the equations derived analytically for the determmafifixed-end rotations at yielding and ultimate will be
calibrated against experimental data. To this goal, a set of specimens cad)iRi@ columns subjected to cyclic loading

up to onset of flexural failure is utilised. For all columns, fixed-estations due to strain penetration in the footing were
recorded during the testing procedure. Column properties andiregpéally recorded fixed-end rotations are reported in
Table 1; it is worth recalling herein that measurement of fixed eatlans is not easy or standardised, and hence subject to

uncertairy.

Figure 8a compares the analytical predictions,qf, based on EC8-Part 3 Eq. (5) with the experimental measurements. It
can be seen that EC8-Part 3 [15] underestimates significantly tleeiragptal fixed-end rotations. The teéstprediction

ratio has a meaaf 1.93 and medianf 2.03 and coefficient of variatioof 25%. Figure 8b presents the same comparison
when the proposed Eq. (18) is applied. The following constitltoued-slip parameters are adopted for this comparison:
0=1.0,5,=0.85nm and,,=1.25\f,. These parameters were chosen both because they provide thertmatiao with the

experimental results and they are consistent with the experimergalirament of the local bond-slip response under cyclic



loading conditions by Lehman and Moehle [3]. The tegirediction ratio has a meaf 1.00 and medan of 1.03 and
coefficient of variatiorof 23%.

Figure 9a compares the analytical prediction®Qfi, based on EC8-Part 3 ¢Jfrom Eq. (21a) and Eg. (21b)) with the
experimental measurements. It can be seen that Eq. (21a) underestimatgzetimental fixed-end rotations. The test-
prediction ratio has a mean of 1.34 and median of 1.38 asffladent of variation of 33%. On the other hand, Eq. (21b)
slightly overestimates experimental measurements. More particularlip{asidiction ratio has a mean of 0.97 and median

of 0.80 and coefficient of variation of 50%.

Figure 9b presents the same comparison when the proposedtBds (applied for L, For the calculation of the plastic
fixed-end rotatiord, i, the yield and ultimate curvatuyg andg, were calculated by moment-curvature analyses and by
employing the confined concrete model by Mander et al. [2@}fa@ steel model with nonlinear hardening law suggested by
Priestleyet al [17]. Critical concrete and steel strains at the ultimate limit state were assonaecordance with the
recommendations by Mander et al. [20] and Priegtteal [17].

The following constitutive bond-slip parameters are employed ferabmparisony=0.29 andu=0.75. Parameter was
chosen in accordance with the adopted steel model and parameter selected to provide the best fit to the experimental
results. The tedb-prediction ratio has a mean ofl0.and median of 1.00, and coefficient of variation5d6. The
predictions are slightly better than the EC8-Part 3 predictions, but stillogfficeent of variation is very high. This
observation reflects the level of uncertainty when calculating displacemmpboents at the ultimate limit state. As noted
earlier, the uncertainty in the experimental fixed-end rotation measoteshould also have affected the quality of the

comparison.

5 Conclusions

Accurate determination of fixed-end rotations at the ends of RC mendoer to strain penetration of the longitudinal
reinforcement in the joints and/or footings, at yielding and utgnfianit statesjs of primary importance for defining their

inelastic structural response and is also a prerequisite for their desigrobasatiiple performance levels

Fixed-end rotations are either calculated by over-simplified empinigabaches that are not able to capture all aspects of

strain-penetration response or by advanced numerical solutions that lbamused in everyday engineering practice.

In an attemptd bridge this gap, this study proposed new closed-form relationships fom@etey strain-penetration fixed-
end rotations at yielding and ultimate limit states. The relationships are tras#aiple, yet rational, mechanical models
that increase the reliability of the results, while they also promideetter insight into the parameters affecting strain

penetration.

The new relationships were first used to examine the validityiadly adopted equations in the literature and EC8-Part 3
[15] and then calibrated against experimental data fR@rcolumn specimens subjected to cyclic loading for which fixed-

end rotations were recorded.

Regarding fixed-end rotation at yielding, comparison of the E&8-® equation and # proposed herein shows that the
EC8-Part 3 approach is of limited validity since it assumes armamifond stress along the anchorage length taken always as
1,e=Vf.. However, it is shown that this uniform bond stress depends on Isiagtoss like thebond conditions (“Good” and
“Other” in accordance with fib Model Code 2010 [16]), level of confinement, and longitatlvar diameter. Moreover, it is
demonstrated that the EC8-Part 3 equation should not be ussddbstresses lower than the yield strength.

For the fixed-end rotation at ultimate, comparison of the EC8-Pagti8tien and that developed herein reveals again the



limitations of the EC8-Part 3 approach. It is shown that the straietfagion length.g, ,used in EC8-Part 3 to calculate the
plastic fixed-end rotation is not a function of only the longitubiirza diameter, concrete strength and steel yield strerigth; i
also depends on the steel stress at flexural failure, the constitutivehsirdaning steel law and the general bond conditions

(i.e. level of confinement, position of reinforcement, cyclidiog, longitudinal cracking, and transverse stress).

Finally, comparisons with experimental results from reinforced concatenn specimens subjected to cyclic loading
demonstrate that the EC8-Part 3 equations underestimate significarfiiethend rotation at yielding. They provide better
estimations of the fixed-end rotations at ultimate, but still with higkfficients of variation. The proposed equations
produce very good predictions of the fixed-end rotation at yieléinedictions of the fixed-end rotation at the ultimate limit

state are generally better than the EC8-Part 3 equations, but thedycacharacterised by high coefficients of variation.
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Table 1 Experimentally recorded fixed-end rotations of RC column specimens

Reference Specimen Cross h fe fy dbi Ls 0expy gjip 8expy giip 0expp giip
sectionom)  (MPa)  (MPa)  (mm) (mm) (rad) (rad) (rad)
3] 415 Circular 610 31 462 159 2440 0.002 0.023 0.021
3] 815 Circular 610 31 462 159 4880 0.0022 0.0255 0.0233
3] 1015 Circular 610 31 462 159 6100 0.0024 0.0271 0.0247
3] 407 Circular 610 31 462 159 2440 0.002 0.0276 0.0256
3] 430 Circular 610 31 462 159 2440 0.0025 0.037 0.0345
[19] 328 Circular 610 345 441 19.05 1828.8 0.0028 0.04 0.0372
(19 828 Circular 610 345 441 19.05 4876.8 0.0028 0.0297 0.0269
(9] 1028 Circular 610 345 441 19.05 6096 0.003 0.044 0.041
[2] U4 Square 350 32 438 25 1000 0.0028 0.024 0.0212
2l ué Square 350 373 438 25 1000 0.003 0.034 0.031




