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Combining macula clinical signs and patient
characteristics for age-related macular
degeneration diagnosis: a machine
learning approach
Paolo Fraccaro1,2,6,7, Massimo Nicolo4*, Monica Bonetto3,5, Mauro Giacomini3,5, Peter Weller1, Carlo Enrico Traverso4,

Mattia Prosperi2,7 and Dympna O’Sullivan1

Abstract

Background: To investigate machine learning methods, ranging from simpler interpretable techniques to complex

(non-linear) “black-box” approaches, for automated diagnosis of Age-related Macular Degeneration (AMD).

Methods: Data from healthy subjects and patients diagnosed with AMD or other retinal diseases were collected

during routine visits via an Electronic Health Record (EHR) system. Patients’ attributes included demographics and,

for each eye, presence/absence of major AMD-related clinical signs (soft drusen, retinal pigment epitelium, defects/

pigment mottling, depigmentation area, subretinal haemorrhage, subretinal fluid, macula thickness, macular scar,

subretinal fibrosis). Interpretable techniques known as white box methods including logistic regression and decision

trees as well as less interpreitable techniques known as black box methods, such as support vector machines (SVM),

random forests and AdaBoost, were used to develop models (trained and validated on unseen data) to diagnose

AMD. The gold standard was confirmed diagnosis of AMD by physicians. Sensitivity, specificity and area under the

receiver operating characteristic (AUC) were used to assess performance.

Results: Study population included 487 patients (912 eyes). In terms of AUC, random forests, logistic regression and

adaboost showed a mean performance of (0.92), followed by SVM and decision trees (0.90). All machine learning models

identified soft drusen and age as the most discriminating variables in clinicians’ decision pathways to diagnose AMD.

Conclusions: Both black-box and white box methods performed well in identifying diagnoses of AMD and their decision

pathways. Machine learning models developed through the proposed approach, relying on clinical signs identified by

retinal specialists, could be embedded into EHR to provide physicians with real time (interpretable) support.

Keywords: Age related macular degeneration, Machine learning, Automated diagnosis, Statistical learning, macula disease

Background
Age-related macular degeneration (AMD) is the leading

cause of severe reduction in central visual acuity in adults

aged 50 years and older in developed countries [1]. As the

prevalence of AMD is steadily increasing due to increasing

life expectancy [2], early diagnosis and treatment becomes

essential in slowing down progression of AMD and subse-

quent vision loss [3]. Multimodal high-resolution imaging

has had a substantial impact on diagnosis and treatment

of macular diseases [4]. Different imaging modalities can

be used for AMD diagnosis [5]. In particular, optical

coherence tomography (OCT) associated with color

fundus image acquisition technology is a non-contact,

non-invasive, high resolution technique which produces

real-time images used to derive several features of the

macula [6]. Such characteristics may allow OCT to become

an effective screening instrument, employable in non-

specialized environments (such as pharmacies) and by non-

specialized personnel to perform automatic diagnosis of AMD
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without the intervention of a medical retinal specialist.

However, to allow diagnosis by non-specialized personnel,

OCT technology could be coupled with other clinical

decision support functionalities [7] based on patient

data which could enhance the potential of image ana-

lysis data. Currently, the majority of commercially avail-

able OCT technologies incorporate basic algorithms to

automatically identify the presence of risk factors in

macula images and diagnose AMD [8-10]. A recent review

[5] showed how the majority of these algorithms mainly

focus on automatic segmentation of soft drusen, previ-

ously identified as one of the most important signs for the

diagnosis of AMD [11]. But relying on just one sign to

diagnose AMD can be suboptimal since AMD is a

complex pathology which involves different stages of

progression and requires consideration of several clinical

aspects [12]. Therefore image analysis should be used in

conjunction with other clinical biomarkers to enhance

diagnosis [5].

Machine learning techniques [13] have been applied

successfully to identify, extract and analyze features in

macula digital imaging [14-18]. In spite of potential

higher accuracy in predicting disease diagnoses (as com-

pared, for instance, to simple scoring rules on a small

set of variables), many machine learning methods are

usually regarded as non-transparent to the end user, and

labeled as “black-boxes”. Methods that do not allow the

clinician to identify a clear decision pathway for the

diagnosis are often regarded with skepticism in the

clinical community [14].

This paper describes the application of a variety of

more and less interpretable machine learning algo-

rithms with the aims of: 1) reproducing physicians’ diag-

noses of AMD from patient data (demographics and

clinical signs identified by retinal specialists through

examination of medical images) and evaluating model

performances on unseen data; 2) determining which

are the diagnostic criteria followed by the physician

(who may follow different routes to make a diagnosis); 3)

identifying deviations or new rules that may emerge from

the expected. Data were collected cross-sectionally from

routine patient visits and stored in an Electronic Health

Record, specifically designed for macular diseases man-

agement. The work reported in this paper is preliminary

research into the potential of machine learning tech-

niques to be used for AMD diagnostic support; from

the perspective of using longitudinal data (i.e. symptoms/

markers before a diagnosis is made), these decision sup-

port algorithms could be embedded in Electronic Health

Records to support physicians during everyday clinical

practice, and could be further refined by incorporating

features from digital image processing leading to a fully-

automated diagnostic tool suitable for non-specialized

environments.

Methods
Ethics statement

The web Electronic Health Record system [19], data collec-

tion methods [20] and related observational studies were

approved by an ethics committee (San Martino Hospital,

Genoa, Italy) and patients signed informed consent for data

storage and usage for clinical/research purposes.

Study population and case selection

Data on study participants, healthy subjects (those with

normal macula) as well as patients with macular diseases

(both referred to as “patients” in the text), were collected

from March 2013 to January 2014 during routine clinical

practice at the Medical Retina Center of the University

Eye Clinic of Genoa (Italy).

The attributes used in the analysis included patient’s

age and gender, and for patient’s left/right eye’s:

� Primary diagnosis (AMD or other macular diseases);

� Relevant clinical signs [12] identified by clinicians

during the visit as binary variables (positive if

identified):

o Soft drusen;

o Retinal Pigment Epitelium (RPE) defects/pigment

mottling;

o Depigmentation area(s);

o Subretinal haemorrhage;

o Subretinal fluid;

o Macula thickness;

o Macular scar;

o Subretinal fibrosis;

The macula of all eyes included in the study was evalu-

ated by two different ophthalmologist (10 and 2 years of

experience) using a spectral domain OCT machine (Topcon

3D OCT-2000, Topcon Medical Systems, Inc., Oakland, NJ,

USA). Data records were stored per single eye.

The study population included a total of 487patients

(912 eyes, with information on patients’ two eyes not

always available).

Primary diagnosis of AMD is the study outcome

(dependent variable). Accordingly, each eye observation

diagnosed as AMD was assigned to one class, while eyes

diagnosed with other macular diseases were assigned to

another class. The covariate set (input variables) in-

cluded all the other attributes listed above and referred

to the same eye.

There is evidence in support of the hypothesis of disease

correlation between different eyes of the same patient

[21]. A preliminary screening on our data confirmed this

hypothesis. However, information on the fellow eye may

not be available when diagnoses are performed during a

visit (for example, it may be the first encounter). There-

fore, we performed the analysis in this paper without
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taking into account the information about the presence of

AMD in the fellow eye.

Machine learning techniques

The purpose of this section is not to provide a detailed

explanation of machine learning methods, which is left

to referenced works, but to give some introduction

about the techniques which readers may be less familiar

with [22]. All statistical analyses and graphs were done

using the R software (www.r-project.org).

Logistic regression is used for predicting the outcome

of a categorical dependent variable (i.e., a class label)

based on one or more predictor variables. This “white-

box” technique is widely used in automatic medical diag-

nosis [22,23]. An embedded procedure within logistic

regression, called the LogitBoost [24] (as implemented

in RWeka R library [25]), was included to select the most

relevant variables. No variable interactions were ex-

plored. For comparison purposes, a simple model based

on a unique variable was employed, named “one-rule”,

selecting the most discriminative variable, based on a

univariable logistic regression fit.

Support Vector Machines [26] are classifiers that divide

data instances of different categories with a linear

boundary supported by a very clear gap (called max-

imum margin). They can be optimised via different in-

ternal algorithms, therefore a parameter search is often

recommended. Support vector machines can efficiently

perform a non-linear classification using a so-called “ker-

nel trick” which maps their inputs into feature spaces of

higher dimensions. This solution however is more difficult

to interpret. In this study we adopted a linear kernel and

the nu-classification, optimizing the parameter nu in the

value range [0.02, 0.4], with a step size of 0.01 for values

below 0.1, and a step of 0.05 for values above 0.1, using

e1071 library [27] in the R software.

Decision trees are non-linear graphical models that

take the form of a flow chart. They are a “white-box”

method because they produce multiple decision path-

ways in a tree form that can be easily interpretable [28].

Decision trees consist of nodes which represent input vari-

ables, and edges branching from the nodes dependent on

possible values of those input variables. Each terminal

node (leaf) represents the value of the target variable given

the values of the input variables after following the path

from the root to the leaf. A decision tree is usually grown

by starting from the whole population, looking at the most

discriminative variable to predict a desired outcome (which

becomes a node), and splitting the data based on a cut-off

value of this variable (inducing an edge). In our analysis,

we adopted the party package of decision tree learning [29]

within the R software.

A single decision tree often does not yield satisfactory

prediction performance. To improve performance, multiple

different trees can be aggregated, and this takes the general

name of a tree ensemble. A weel-recognised tree ensemble

method is the random forest [30], which infers different

decision trees via resampling and randomization, producing

an average prediction from all trees. We used the random-

Forest package of R [31]. The combination of several

trees makes the method more powerful, but also more

difficult to interpret than a single decision tree. Another

ensemble method is the AdaBoost [32], which fits

several “weak” learners, such as decision trees with only

a small number of pathways, and weights them based

on performance on data subsets. We adopted the

RWeka AdaBoost version of R [25].

We performed the complete cases analysis with all

methods and used three different approaches for imput-

ation of missing values: i) addition of a categorical vari-

able encoding the presence of a missing value; ii)

substitution with the overall population mode for binary

attributes and mean for numeric ones; iii) non-linear

imputation based on random forests [33].

Models’ performance was analysed by means of sensitiv-

ity (true positive rate), specificity (true negative rate), and

using the area under the receiver operating characteristic

(AUC), which is a combined indicator of sensitivity and

specificity, equal to the probability that a classifier will rank

a randomly chosen positive instance higher than a ran-

domly chosen negative one [34]. The robustness of per-

formance was assessed via bootstrapping [35], a validation

technique based on random data resampling with replace-

ment (here, 50 times); we used the very conservative out-

of-bag estimator which calculates errors on unseen data.

To assess the entity of the difference between means of

two performance distributions, a modified t-test was used,

penalising the degrees of freedom due to sample overlap

[36]. Variable importance analysis for the different ma-

chine learning techniques was carried out as follows: odds

ratio/AIC with associated p-values for both multivariable

and univariable logistic regression; conditional independ-

ence split rule + pruning for decision trees as implemented

in ctree function of party library in R [29]; Gini index for

random forest; decrease in AUC by single feature elimin-

ation for AdaBoost and support vector machines.

Results
Study population

Table 1 the characteristics of the study population (487

patients, 912 eyes). The percentage of males was 49.5%.

The mean (std. dev.) age was 65.3 (14.9) years in males, and

70.5 (12.7) years in females. The proportion of AMD diag-

noses was 22.5% in males and 31.4% in females (p < 0.0001

by a test for equality of proportions). Among AMD-

diagnosed patients, dry and wet AMD had a prevalence of

9.7% and 38.1% respectively. Healthy subjects accounted

for 31.6% of the study population.
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Table 2 shows the prevalence of non-AMD and AMD

subjects, stratified by soft drusen variable, Depigmen-

tation area and RPE defect/pigment mottling, which are

the most discriminant variables for AMD. Contingency

tables are available in the Additional files 1 and 2 for all

the other variables.

Performance of statistical learning methods

Table 3 shows the predictive performance of models trained

on the dataset (912 eyes from 487 patients) upon the boot-

strap validation. Results were computed using complete

cases and the three different imputation techniques de-

scribed in the Methods section. Performance is shown in

terms of AUC, sensitivity and specificity. In regards to

AUC, random forest and logistic regression were ranked as

the best, followed by AdaBoost, support vector machine,

decision tree and one-rule. When considering sensitivity

(the percentage of patients who are correctly identified as

having AMD), support vector machine was superior, whilst

random forest displayed the highest specificity (the percent-

age of healthy people who are correctly identified as not

having AMD).

We executed a formal t-test to compare shifts in the

average AUCs of methods –specifically, logistic regression,

support vector machine, AdaBoost and decision trees

against random forest- given the current data, there was

Table 1 Population’s characteristics

Parameter M F Total Missing

Number of patients (%) 241 (49.5%) 246 (50.5%) 487 /

Number of eyes (%) 444 (48.7%) 468 (51.3%) 912 /

Number of healthy eyes (%) 138 (31.1%) 150 (32.1%) 288 (31.6%) /

Age (mean+/−std) 65.3 +/− 14.9 70.5 +/− 12.7 68 +/− 14.1 /

Soft drusen positive (%) 21 (6.4%) 62 (17.9%) 83 (12.4%) 240 (26.3%)

Macular scar positive (%) 19 (5.8%) 32 (9.2%) 51 (7.6%) 237 (26%)

RPE defect/pigment mottling positive (%) 82 (25.2%) 118 (34.1%) 200 (29.8%) 240 (26.3%)

Depigmentation area positive (%) 95 (29.1%) 134 (38.7%) 229 (34.1%) 240 (26.3%)

Subretinal fluid positive (%) 79 (21.8%) 50 (13.4%) 129 (17.5%) 176 (19.3%)

Macular tickness (mean+/−std) 297.4 +/− 64.8 277 +/− 54.5 286.8 +/− 60.5 149 (16.3%)

Subretinal fibrosis positive (%) 18 (5.7%) 26 (7.5%) 44 (6.6%) 248 (27.2%)

Subretinal hemorrhage positive (%) 16 (5.2%) 19 (5.9%) 35 (5.5%) 281 (30.8%)

AMD diagnosis (%) 100 (22.5%) 147 (31.4%) 247 (27.1%) /

Percentages of attributes are calculated considering the total of eyes with no missing values for the specific attribute in the strata (Male/Female) and total.

Table 2 Prevalence of diagnoses of retinal diseases in the whole population stratified by soft drusen, depigmentation

area and RPE defect/pigment mottling (counting one eye as a single case)

Disease (or healthy status) N (%) Soft drusen positive N (%) Depigmentation area positive N (%) RPE defect/pigment
mottling positive N (%)

AMD 247 (27.1%) 76 (30.8%) 136 (55.1%) 125 (50.6%)

Angioid streaks 5 (0.5%) 0 (0%) 3 (60%) 1 (20%)

Central serous chorioretinopathy 69 (7.6%) 0 (0%) 21 (30.4%) 17 (24.6%)

Choroidal hemangioma 3 (0.3%) 0 (0%) 0 (0%) 0 (0%)

Diabetic retinopathy 126 (13.8%) 1 (0.8%) 18 (14.3%) 11 (8.7%)

Distrophy 24 (2.6%) 3 (12.5%) 10 (41.7%) 9 (37.5%)

Epiretinal membrane 30 (3.3%) 0 (0%) 4 (13.3%) 4 (13.3%)

Inflammatory cystoid macular edema 4 (0.4%) 0 (0%) 0 (0%) 0 (0%)

Macroaneurisma 1 (0.1%) 0 (0%) 0 (0%) 0 (0%)

Pathologic myopia 66 (7.2%) 0 (0%) 22 (33.3%) 12 (18.2%)

Retinal artery occlusion 3 (0.3%) 0 (0%) 1 (33.3%) 1 (33.3%)

Retinal vein occlusion 41 (4.5%) 0 (0%) 1 (2.4%) 2 (4.9%)

Uveitis 5 (0.5%) 0 (0%) 1 (20%) 0 (0%)
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not enough evidence against the hypothesis of no differ-

ence in mean (whichever imputation method was used, all

p-values were >0.3). Instead, the one-rule method had a

lower mean AUC than all other methods (p < 0.0001 in all

imputation scenarios).

Figure 1 shows receiver operating characteristic curves

for each method obtained by averaging the results from

the 50 bootstrap tests. As reported in Table 3, random for-

est and logistic regression curves dominate the others.

Since logistic regression was not inferior to random for-

est in terms of AUC, we report the model fit in Table 4.

Soft drusen, as expected, was the most important variable

with an odds ratio (positive vs negative) of 19.3 (p < 0.0001).

Other relevant variables were: subretinal fluid, subretinal

hemorrage, subretinal fibrosisRPE defect/pigment mot-

tling, depigmentation area, and age.

As shown by the overall sensitivity, specificity and

AUC results, the decision tree assures fair performance

and its structure has high interpretability. The tree is

shown in Figure 2 (dataset with mean/mode imputaion

for missing values). The tree should be traversed from the

root node downwards. Split nodes are evaluated according

to the value of the variable of interest and the decision

pathway to follow is the corresponding attribute value on

Table 3 Performance of the machine learning methods in terms of average (+/− std. dev.) sensitivity, specificity and

area under the receiver operating characteristic (AUC), applied to the dataset with different missing value imputation

techniques (complete cases, categorical variable encoding the missingness, mean/mode imputation, and random

forest imputation)

Type of imputation on
the dataset (N = 444)

Performance
function

One-rule Decision tree Logistic
regression

Random
forest

AdaBoost Support vector
machine

Complete cases AUC 0.74+/−0.05 0.90+/−0.03 0.93+/−0.04 0.94+/−0.01 0.92+/−0.02 0.92+/−0.03

Sensitivity 0.87+/−0.10 0.88+/−0.07 0.92+/−0.03 0.90+/−0.03 0.91+/−0.02 0.94+/−0.03

Specificity 0.60+/−0.18 0.74+/−0.15 0.70+/−0.08 0.78+/−0.07 0.71+/−0.06 0.67+/−0.07

Categorical variable
encoding the missingness

AUC 0.73+/−0.04 0.88+/−0.02 0.91+/−0.01 0.92+/−0.02 0.90+/−0.01 0.89+/−0.03

Sensitivity 0.92+/−0.07 0.88+/−0.07 0.92+/−0.03 0.91+/−0.02 0.91+/−0.03 0.93+/−0.03

Specificity 0.42+/−0.05 0.61+/−0.18 0.60+/−0.07 0.68+/−0.06 0.60+/−0.06 0.51+/−0.07

Mean/mode AUC 0.69+/−0.05 0.85+/−0.02 0.88+/−0.02 0.87+/−0.02 0.87+/−0.02 0.86+/−0.04

Sensitivity 0.94+/−0.05 0.92+/−0.04 0.94+/−0.02 0.93+/−0.02 0.93+/−0.02 0.96+/−0.02

Specificity 0.31+/−0.12 0.56+/−0.10 0.54+/−0.05 0.56+/−0.05 0.53+/−0.05 0.47+/−0.06

Random forest AUC 0.79+/−0.02 0.95+/−0.02 0.96+/−0.01 0.96+/−0.01 0.96+/−0.01 0.94+/−0.03

Sensitivity 0.97+/−0.04 0.94+/−0.04 0.96+/−0.02 0.94+/−0.02 0.95+/−0.01 0.96+/−0.01

Specificity 0.60+/−0.06 0.78+/−0.09 0.75+/−0.05 0.81+/−0.04 0.76+/−0.04 0.75+/−0.05

Results are calculated on 50 bootstrap tests, using out-of-bag predictions (in bold the best performance for each characteristic).

Figure 1 Receiver operating characteristic curves plotting performance of different statistical learning methods, averaging results from

50 bootstrap tests (out-of-bag predictions, dataset imputing mean/mode for missing values).

Fraccaro et al. BMC Ophthalmology 2015, 15:10 Page 5 of 9

http://www.biomedcentral.com/1471-2415/15/10



the branch. Again, soft drusen had the highest discrimina-

tive power (76 eyes out of 83 with a positive soft drusen

are diagnosed with AMD) and was selected as the root

node. Following soft drusen, the other variables selected

as node splits were: age, depigmentation area, subretinal

fibrosis, subretinal fluid and RPE defect/pigment mottling,.

Notably, the leaf nodes numbered #2, #6, 13 (correspond-

ing to the first, third, and seventh bottom terminal nodes

from the left) clearly identify sub-groups where the AMD

diagnosis is straightforward (>80% with/without AMD),

whilst the other leaf nodes represent sub-groups where

the AMD diagnosis is present in the range of 20% to 60%

(nodes #2, #9, #11, #12), thus not allowing a definitive

classification.

Table 5 shows variable importance ranking (mean/

mode imputation) for one rule, random forest, AdaBoost

and support vector machine. In agreement with logistic

regression and decision tree, soft drusen and age are

Table 4 Odds ratio from fitting the LogitBoost logistic regression on the AMD diagnosis outcome (dataset imputing

missing values with population’s mean/mode)

Variable (mode) Odds ratio Lower 95% CI Upper 95% CI P-value

Age (per year older) 1.09 1.07 1.11 <0.0001

Gender (M vs F) 1.05 0.71 1.57 0.7985

Soft drusen (pos vs neg) 19.30 7.82 47.65 <0.0001

Macular scar (pos vs neg) 1.75 0.57 5.41 0.329

RPE defect/pigment mottling (pos vs neg) 2.20 1.20 4.04 0.0109

Depigmentation area (pos vs neg) 1.35 0.73 2.51 0.3349

Subretinal fluid (pos vs neg) 3.21 1.70 6.08 0.0003

Macular tickness (per unit increase) 1.00 0.99 1.00 0.139

Subretinal fibrosis (pos vs neg) 4.60 1.39 15.24 0.01245

Subretinal hemorrhage (pos vs neg) 5.91 1.49 23.42 0.01138

Statistically significant p-values are reported in bold.

Figure 2 Decision tree for the diagnosis of AMD (dataset with mean/mode imputation for missing values). The tree is to be traversed

downwards from the root node. The p-values are calculated according to a chi-square test and represent the discriminatory power of a variable

in a data stratum as induced by the tree partition. Each final leaf node gives the probability of AMD diagnosis based on the prevalence in the

population sub-stratum following the corresponding tree pathway induced by node splits on variable values.
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consistently at the top of the ranking. This is confirmed in

all analyses performed with different imputation methods

(see Additional files 1 and 2).

Discussion
This work investigated several machine learning ap-

proaches for deriving an automated system for AMD

diagnosis, using clinical attributes identified by a medical

retinal specialist during a routine visit. The study popu-

lation was monitored via an Electronic Health Record

employed by a single clinical practice in Genoa, Italy.

We compared “white-box” (i.e. more interpretable) vs.

“black-box” (i.e. less interpretable) techniques in terms of

predictive performance. We found that higher complexity-

higher performance does not necessarily hold in all con-

texts and a performance-complexity compromise may be

found. For example, the simplest one-rule model yielded

an average of 74% AUC in experiments, whilst the more

complex, fully non-linear random forest and AdaBoost

yielded 92% AUC. Whilst a single variable cannot be used

for reliable diagnosis, logistic regression (average AUC of

92%) and decision tree (90% average AUC) were not infer-

ior to random forest. These two modelling techniques com-

bined interpretability and performance, as shown through

the odds ratio table and tree diagram, which can be easily

followed by a clinician during the diagnostic process.

Physicians must be involved in the decision about

what type of system will be used in practice because

without their agreement and trust, such a system risks

not to being used. Generally, from the perspective of a

fully automated system, where a computer program per-

forms all calculations, the main driver should not be the

interpretability of the model, but the overall perform-

ance. For example, if a black-box ensures an increment

10% over a white-box method and if this 10% is clinically

relevant (if properly validated in a prospective trial), then

the choice should be obvious. But in the case where

model performances are comparable, such as the results

reported in this study referring, the white-box is a pref-

erable alternative.

The methods proved to be robust to handle missing

values and obtained performances did not change sig-

nificantly varying the imputation methods. Although

complete cases and random forest imputation yielded

better performance than the other methods, we think

that the most reliable analysis is the one with mean/

mode imputation. In fact, the clinicians that performed

the analysis suggested that the majority of missing values

are likely to be clinical signs that they did not identify

during encounters, and thus negative values were not re-

corded in the system to save time, starting from the as-

sumption that if a sign had been identified a positive

value would have been registered in the system.

This study has some limitations. The study population

itself is not large (487 subjects and 912 eyes) and in-

cludes only patients from a local regional area. Although

the out of bag error estimator is very conservative, a way

in which the generalisation error could be challenged is by

considering the study population and the diagnostic

process as regionally biased: for instance, by assuming that

the population of Genoa and neighbouring areas (Liguria)

is different from Italy (or worldwide) and that doctors

make diagnoses differently. Accordingly, it would be inter-

esting to see how the automated diagnostic algorithms

would behave on patients from other countries. This

would unveil indirectly the differences in the population

characteristics and in the gold-standard diagnostic proce-

dures. Performance would be affected only by using two

different systems trained on two different populations,

whilst one could infer a new integrated model which takes

into account such regional differences and aims at the

same diagnostic ability in different settings.

A more thorough analysis of missing values could be per-

formed in order to identify the characteristic of missingness

Table 5 Variable importance ranking for one rule, random forest, adaboost and support vector machine

(mean/mode dataset)

Ranking One rule Random forest AdaBoost Support vector machine

1 Soft drusen Age Age Age

2 Age Soft drusen Soft drusen Gender

3 Depigmentation area Macular tickness Subretinal fluid Soft drusen

4 RPE defect.pigment mottling Depigmentation area Subretinal hemorrhage Subretinal hemorrhage

5 Subretinal hemorrhage RPE defect.pigment mottling RPE defect.pigment mottling Subretinal fluid

6 Subretinal fibrosis Subretinal fibrosis Gender Subretinal fibrosis

7 Macular.scar Subretinal hemorrhage Subretinal fibrosis RPE defect.pigment mottling

8 Subretinal fluid Subretinal fluid Macular.scar Macular.scar

9 Gender Macular.scar Macular tickness Macular tickness

10 Macular tickness Gender Depigmentation area Depigmentation area
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and their relevancy. Also, further investigation on intra-

patient correlation is warranted. Using two records from

the same patient (i.e. both eyes) may yield to correlated ob-

servations, thus overall performance results may be affected

by this correlation (higher than in reality). We carried out a

series of additional experiments, not shown in this paper,

using only single-patient and single-eye data (out of 912

eyes, we selected 487 eyes pertaining to 487 different pa-

tients randomly, for 10 times). The analysis on this uncor-

related data was consistent with the main results in terms

of sensitivity but yielded slightly lower specificity. This is

most likely due to the smaller sample size (487 vs. 912) ra-

ther than the effect of correlation in the main dataset how-

ever a larger study population is required to verify this

claim. A larger population and attribute set may also help

to refine the model and allow prediction of different sub-

types of AMD, for instance neurovascular AMD.

Conclusions
From a rationale point of view, the utility of the system -for

now- is to determine which are the diagnostic processes

followed by the physicians, since the data were cross-

sectional and the diagnoses were made by doctors during

visits. We found that even by using powerful nonlinear ma-

chine learning models, we could not exactly all the consist-

ent sets of diagnostic pathways. Therefore, even in presence

of standardised guidelines, physicians may follow different

diagnostic routes (as those shown in the decision tree)

which in some cases lead to ambiguities (see the propor-

tions of patients with/without AMD in the tree leaves

which correspond to specific variable strata). When longi-

tudinal data and new background variables (e.g. other

image processed data) will be available, an automated sys-

tem will help not only in identifying such different decision

paths (with an augmented information set), but also in

making early diagnoses feasible and better differentiating

those ambiguous subsets of patients.

In fact, we are in an era where diagnosis of AMD is

most commonly pursued by image analysis, yet digital

image processing techniques embedded in commercial

OCT systems are still in their infancy. Imaging can be

integrated with information coming from data collected

during everyday clinical practice by medical retina spe-

cialists. From a technological perspective, implementing

such a diagnostic model into a computer program would

not be a hurdle, and using a multi-platform language (e.g.

Java or Python) could facilitate the integration into

Electronic Health Record systems coming from different

vendors. If the model were also one of those white-box

(logistic regression or decision tree in this case), a graph-

ical user interface showing the diagnostic pathway or vari-

able importance could be provided. Such a program could

be used in real-time by physicians as a support to diagno-

sis as well as for educational purposes.
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