RVC OPEN ACCESS REPOSITORY - COPYRIGHT NOTICE

This is the peer-reviewed, manuscript version of the following article:

C.P. Rubio, S. Martínez-Subiela, J. Hernández-Ruiz, A. Tvarijonaviciute, J.J. Cerón, K. Allenspach, Serum biomarkers of oxidative stress in dogs with idiopathic inflammatory bowel disease, The Veterinary Journal (2017), http://dx.doi.org/10.1016/j.tvjl.2017.02.003.

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

The full details of the published version of the article are as follows:

TITLE: Serum biomarkers of oxidative stress in dogs with idiopathic inflammatory bowel disease

AUTHORS: C.P. Rubio, S. Martínez-Subiela, J. Hernández-Ruiz, A. Tvarijonaviciute, J.J. Cerón, K. Allenspach

JOURNAL: The Veterinary Journal

PUBLISHER: Elsevier

PUBLICATION DATE: 9 February 2017 (online)

DOI: 10.1016/j.tvjl.2017.02.003

1	Original Article
2	
3	
4 5	Serum biomarkers of oxidative stress in dogs with idiopathic inflammatory bowel disease
<i>5</i>	uisease
7	
8	C.P. Rubio ^a , S. Martínez-Subiela ^a , J. Hernández-Ruiz ^b , A. Tvarijonaviciute ^{a,c} , J.J.
9	Cerón ^{a,*} , K. Allenspach ^{d, 1}
10	, ,,,
11	^a Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine,
12	Regional Campus of International Excellence 'Campus Mare Nostrum', University of
13	Murcia, Espinardo, Murcia, 30100, Spain
14	^b Department of Plant Biology (Plant Physiology), Faculty of Biology, University of
15	Murcia, Espinardo, Murcia, 30100, Spain
16	^c Department of Animal Medicine and Surgery, Veterinary School, University Autonoma
17	of Barcelona, Barcelona, 08193, Spain
18	d Department of Veterinary Clinical Sciences and Services, Royal Veterinary College,
19	University of London, North Mymms, AL97PT, UK
20 21	
22	* Corresponding author. Tel.: +34 86884722.
23	E-mail address: jjceron@um.es (J.J. Cerón)
24	L-man address. Medone am.es (3.3. Ceron)
25	
26	¹ Dr Allenspach's current address is <i>Veterinary Clinical Sciences</i> , <i>College of Veterinary</i>
27	Medicine, Iowa State University, Ames, IA 50011, USA
28	
	~()
	▼

29	Highlights
30	• Decreased total antioxidant capacity, measured by CUPRAC and TEAC assays,
31	was demonstrated in sera from dogs with IBD.
32	• Serum thiol and PON1 activity was significantly decreased in sera from dogs
33	with IBD compared with healthy dogs.
34	• Oxidative damage in dogs with IBD was demonstrated by increased serum FOX,
35	ROS and TBARS.
36	
37	Abstract
38	The objective of this study was to evaluate and compare a panel of various
39	serum biomarkers evaluating both the antioxidant response and oxidative damage in
40	dogs with idiopathic inflammatory bowel disease (IBD). Eighteen dogs with IBD and
41	20 healthy dogs were enrolled in the study. Trolox equivalent antioxidant capacity
42	(TEAC), cupric reducing antioxidant capacity (CUPRAC), ferric reducing ability of the
43	plasma (FRAP), total thiol concentrations, and paraoxonase 1 (PON1) activity were
44	evaluated in serum to determine antioxidant response. To evaluate oxidative status,
45	ferrous oxidation-xylenol orange (FOX), thiobarbituric acid reactive substances
46	(TBARS) and reactive oxygen species production (ROS) concentrations in serum were
47	determined.
48	
49	Mean concentrations of all antioxidant biomarkers analysed, with exception of
50	FRAP, were significantly lower ($P < 0.0001$) in the sera of dogs with IBD than in
51	healthy dogs. The oxidant markers studied were significantly higher ($P < 0.0001$) in sera
52	of dogs with IBD than in healthy dogs. These findings support the hypothesis that
53	oxidative stress could play an important role in the pathogenesis of canine IBD.

54

55 Keywords: Antioxidant; Cupric; PON1; Reactive oxygen species; Thiol

Introduction

Idiopathic inflammatory bowel disease (IBD) is characterised by persistent or recurrent activation of the mucosal immune system accompanied by infiltrations of inflammatory cells in the intestinal mucosa (Allenspach et al., 2007; Simpson and Jergens, 2011). It is the most common cause of chronic intestinal disease in dogs, and results in diverse and often debilitating clinical signs (Jergens et al., 2003; Allenspach et al., 2016).

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

56

57

58

59

60

61

62

The pathogenesis of IBD in dogs is not completely understood; however it is believed that intestinal inflammation results from a dysregulated immune response to intestinal antigens (Allenspach et al., 2010). There is evidence that oxidative stress plays an important role in the pathogenesis of IBD in human patients particularly in the initiation and perpetuation of inflammation and in subsequent tissue damage. Oxidative stress occurs when there is a marked imbalance between the production of reactive oxygen species (ROS) and their removal by antioxidants (Rezaie et al., 2007). Recent studies suggest that oxidative stress could also represent a significant factor in the pathogenesis of IBD in dogs. One study that evaluated the metabolomics profile in dogs with IBD using an untargeted metabolomics approach suggested the presence of oxidative stress and a functional alteration of the GI microbiota in dogs with IBD, which persisted even in the face of a clinical response to medical therapy (Minamoto et al., 2014). Other recent studies have reported that various serum antioxidant biomarkers, such as Trolox equivalent antioxidant capacity (TEAC), cupric reducing antioxidant capacity (CUPRAC) and paraoxonase 1 (PON1), were decreased in the sera of dogs with IBD (Rubio et al., 2016a,b; Segarra et al., 2016), again suggesting that oxidative stress could play an important role in the pathogenesis of canine IBD.

The purpose of this study was to evaluate and compare a panel of various serum biomarkers evaluating both the antioxidant response and oxidative damage response in sera from dogs with IBD. These included previously the described antioxidant serum biomarkers TEAC, CUPRAC and PON1, and additional antioxidants that have not previously been studied in canine IBD, such as ferric reducing ability of plasma (FRAP) and total serum thiol concentrations. To investigate oxidative damage, we measured ferrous oxidation-xylenol orange (FOX) and thiobarbituric acid reactive substances (TBARS), which measures products of lipid peroxidation in serum. Finally, we measured serum concentrations of reactive oxygen species.

Material and methods

Animals

In this retrospective study, a group of 18 dogs diagnosed with IBD at the Royal Veterinary College (RVC), London, were included. Dogs with a history typical for chronic enteropathy (≥3 weeks of vomiting, diarrhea or both, with or without weight loss) were included. The diagnosis of chronic enteropathy was confirmed based on established criteria (no clinically relevant abnormalities on routine hematology, serum biochemistry; trypsin-like immunoreactivity [TLI], canine pancreatic lipase [cPL] and adrenocorticotropic hormone [ACTH]-stimulation test results within the reference ranges; no abnormalities on abdominal imaging [radiographs, abdominal ultrasound examination or both]; Allenspach et al., 2007). The histopathological criteria for IBD were based on the guidelines for evaluation of gastrointestinal inflammation in companion animals, as established by Washabau et al. (2010). In all cases biopsies were obtained and reviewed by a board-certified pathologist.

106	
107	In addition, 20 clinically healthy dogs were included in this study as a control
108	group.
109	
110	Archived sera from healthy dogs and those with IBD and biopsy samples were
111	originally obtained in 2007 for diagnostic purposes only and were residual samples,
112	stored and available in the RVC archive. They were originally obtained with informed
113	owner consent under the Veterinary Surgeons Act (residual clause) and approved by the
114	RVC Ethics and Welfare Committee and were frozen immediately after blood sampling
115	and stored at -80 °C until further analysis.
116	
117	Antioxidant capacity
118	The TEAC assay, based on the inhibition of the radical ABTS by the sample,
119	was performed according to the assay described by Arnao et al. (1996) validated by
120	Rubio et al. (2016a). The CUPRAC assay, based on the capacity of the sample in
121	reducing Cu(II) to Cu(I), was performed as previously described for use in canine serum
122	(Rubio et al., 2016b). The FRAP assay was performed following the method by Benzie
123	and Strain (1996) which measures the ferric to ferrous ion reduction by the sample.
124	
125	Serum thiol was determined according to the method by Jocelyn (1987), and
126	serum PON1 activity was analysed following a previously described method for use in
127	canine serum (Tvarijonaviciute et al., 2012).
128	
129	All analyses were performed at Murcia University using an automated
130	biochemistry analyser (Olympus AU600 Automatic Chemistry Analyser, Olympus). All

131	assays showed inter- and intra-assay imprecision of <15%. Lower detection limits of
132	TEAC, CUPRAC and FRAP were 0.090, 0.003, and 0.031 mmol/L, respectively. The
133	lower detection limit of serum thiol and PON1 were 4.0 μ mol/L and 0.6 U/mL,
134	respectively.
135	
136	Oxidant biomarkers
137	The FOX assay was based on the automated method described by Arab and
138	Steghens (2004) and performed using the Olympus AU600 Automatic Chemistry
139	Analyser (Olympus). The TBARS assay was determined following the method by
140	Buege and Aust (1978) using a microplate reader (Powerwave XS, Biotek instruments)
141	
142	Reactive oxygen species (ROS) were estimated by luminol-mediated
143	chemiluminescence assay (Vong et al., 2014) using a microplate reader (Victor 2 1420
144	Multilabel Counter; PerkinElmer, Finland) and expressed in counts per second (cps).
145	All oxidant assays showed inter- and intra-assay imprecision less than 15% when
146	evaluated in our laboratory. In addition, the lower detection limits of FOX and TBARS
147	were 55.91 and 0.81 μ mol/L, respectively. The ROS assay showed a lower detection
148	limit of of 1,300 cps.
149	
150	Statistical analysis
151	Data were analysed using Graphpad Prism software (version 5 for Windows).
152	Concentrations of antioxidants and oxidant biomarkers were compared between dogs
153	with IBD and healthy control dogs. The results for each parameter were evaluated for
154	normality using the Shapiro-Wilk test. Thiol, PON1, TBARS and ROS results were not
155	normally distributed, therefore they were presented as median and interquartile range

156	(IQR). Normally distributed data were presented as means \pm standard deviation. We
157	determined statistical differences between healthy dogs and dogs with IBD using
158	unpaired t test (normally distributed data) and Mann Whitney U test (not normally
159	distributed data). Correlations between variables were determined using Spearman
160	correlation analysis. A P-value (two-tailed) of <0.05 was taken as statistically
161	significant in all cases.
162	
163	Results
164	Animals
165	The 18 dogs with IBD included Border collie $(n=1)$, Boxer $(n=3)$, Cocker
166	spaniel $(n=2)$, East-European shepherd $(n=1)$, Greyhound $(n=1)$, Labrador $(n=2)$, Mixed
167	breed (n=1), Old English sheepdog (n=1), Polish Lowland sheepdog (n=1), Rottweiler
168	(n=1), Schnauzer $(n=1)$, Staffordshire terrier $(n=2)$, West Highland white terrier $(n=1)$.
169	Their ages ranged from 7 months to 11 years; eight were females ($n=6$ spayed; $n=2$
170	intact) and 10 were males (n=4 neutered; n=6 intact). The clinical status of each dog
171	was evaluated at the time of diagnosis using the canine chronic enteropathy clinical
172	activity index (CCECAI) scoring system established by Allenspach et al. (2007), which
173	is based on nine variables, including attitude and activity, appetite, vomiting, stool
174	consistency, stool frequency, weight loss, ascites, pruritus and serum albumin
175	concentration. Based on CCECAI, the disease was mild (score 4-5) in two dogs,
176	moderate (score 6-8) in 11 dogs, severe (score 9-11) in two dogs, and very severe (score
177	\geq 12) in three dogs.
178	

179	Histopathologic findings of intestinal mucosal biopsies showed in all cases a
180	lympho-plasmacytic inflammation, in some cases with eosinophils. There was no
181	neutrophilic or macrophagic inflammation in any case.
182	
183	The 20 control dogs consisted of various breeds (Mixed breed, Staffordshire
184	terrier, Italian Spinone, Labrador, Cavalier King Charles spaniel, English Springer
185	spaniel, Akita Inu, Golden retriever, Border collie, Dogue de Bordeaux, Rottweiler,
186	Great Dane, Japanese Spitz, Leonberger). Their ages ranged from 2 to 13 years; seven
187	were female (n =6 spayed; n =1 intact) and 13 were male (n =11 neutered; n =2 intact).
188	
189	Antioxidant response
190	Dogs with IBD had lower TEAC concentrations (0.35±0.06 vs. 0.51±0.04
191	mmol/L; P <0.0001), lower CUPRAC concentrations (0.3±0.05 vs. 0.44±0.05 mmol/L;
192	P <0.0001), lower serum thiol concentrations (median, 63; IQR, 34-94 vs. median, 245;
193	IQR, 216-277 μ mol/L; P <0.0001), and lower PON1 activity than control dogs (median,
194	2.2; IQR, 1.7-2.8 vs. median, 3.5; IQR, 3.1-3.8 IU/mL; <i>P</i> <0.0001; Fig. 1).
195	
196	However, serum FRAP did not differ between dogs with IBD and control dogs
197	$(0.41\pm0.09 \text{ vs. } 0.42\pm0.07 \text{ mmol/L}; P = 0.6459).$
198	
199	Oxidant biomarkers
200	Dogs with IBD had higher serum ROS counts (median, 8,861; IQR, 5,900-
201	14,763 cps vs. median, 1,502; IQR, 1,384-1,648 cps; <i>P</i> <0.0001), higher FOX
202	concentrations (148 \pm 65 vs. 72 \pm 13 μ mol/L; P <0.0001) and higher TBARS

203	concentrations than control dogs (median, 8.0; IQR, 5.9-10.5 vs. median, 2.4; IQR: 1.9-
204	2.8 μmol/L; <i>P</i> <0.0001; Fig. 2).
205	
206	Correlation study
207	We observed correlations between all antioxidant biomarkers except for FRAP
208	and TEAC, and FRAP and CUPRAC (Table 1). The highest correlations ($\rho > 0.90$)
209	were observed between TEAC, CUPRAC and serum thiol.
210	
211	Similarly, all oxidant biomarkers were positively correlated, with the highest
212	coefficient of correlation being between TBARS and ROS (ρ = 0.84; P <0.001). In
213	addition, TBARS and ROS correlated negatively with TEAC, CUPRAC, and PON1 (all
214	$\rho \le 0.45$; $P < 0.01$). A negative correlation was also observed between all oxidant
215	biomarkers and serum thiol (all $\rho \le 0.54$; $P < 0.001$).
216	
217	The CCECAI was not correlated with any of the biomarkers studied (all P
218	≥0.05).
219	
220	Discussion
221	Our study, evaluating the oxidative stress in dogs with IBD compared to healthy
222	control dogs using a comprehensive panel of serum biomarkers, suggests increased
223	oxidative stress status in canine IBD.
224	
225	Serum TEAC and CUPRAC were significantly reduced in dogs with IBD
226	compared with healthy dogs. These results corroborate recent studies in dogs (Rubio et
227	al., 2016a,b; Segarra et al., 2016). Furthermore, Rubio et al. (2016a) observed similar

decreases (about 30%) in the TEAC concentration in dogs with IBD, as we did in the
present study. In this cohort of dogs, dogs with IBD had mean CUPRAC serum
concentrations that were 33% lower than in healthy dogs, compared to a 17% decrease
observed by Rubio et al. (2016b). Decreased TEAC and individual antioxidant (biotin,
folate, β -carotene, and vitamins A, C, and B) concentrations have previously been
reported in human patients with ulcerative colitis (UC; Fernandez-Banares et al., 1989;
Geerling, 1999; Aslan et al., 2011). The decreased antioxidant response in dogs with
IBD could be due to severe, persistent oxidative stress that depletes antioxidant
resources and overtakes the ability of the body to produce more antioxidants (Rezaie et
al., 2007). We failed to detect a difference in serum FRAP between healthy dogs and
dogs with IBD. This might be explained by the different individual antioxidants that
contribute to serum FRAP compared with other total antioxidant capacity (TAC) assays
Ascorbic acid, α -tocopherol and principally uric acid are the contributors to FRAP in
humans, whereas thiols and albumin are the main contributors to CUPRAC and TEAC.
Therefore, we recommend that several different methods be used to measure TAC in
biological samples, because individual assays have different biochemical bases,
resulting in different results and interpretations (Cao and Prior, 1998; Hetyey et al.,
2007; Jansen and Ruskovska, 2013).
Studies have shown that mucosal thiol proteins are targets of oxidative injury
(Grisham et al., 1990). In the present study, serum thiol and PON1 were also
determined as individual antioxidants and both were significantly diminished in dogs
with IBD. Paraoxonase 1 (PON1) is widely distributed among tissues, including the
intestine. This protein is considered to be an antioxidant enzyme as it hydrolyses lipid

peroxides, in addition to its anti-inflammatory role in disease (Ceron et al., 2014). One

of the explanations for decreased PON1 activity could be its inactivation due to an
exacerbated oxidative environment (Nguyen and Sok, 2003). Our results are in
agreement with other studies that reported diminished PON1 activity in dogs with IBD
and human patients with IBD (Baskol et al., 2006; Boehm et al., 2009; Segarra et al.,
2016). In addition, there is evidence that diminished PON1 activity could also be a
consequence of a reduced number of the free SH groups on PON1, because of
exposition to oxygen free radicals (Jaouad et al., 2006), which could explain the high
correlation between serum PON1 activity and total serum thiol found in this study.
We demonstrated increased ROS and products of lipid peroxidation in the sera
of dogs with IBD by TBARS and FOX assays. These results are in agreement with
reports of IBD in humans (Levy et al., 2000; Sampietro et al., 2002; Baskol et al.,
2006). It has been reported that phagocytic cells (neutrophils and macrophages) isolated
from inflamed intestinal tissue in human patients with IBD release large amounts of
ROS during stimulation that could act locally or be secreted into the circulation to
produce different systemic effects (Kitahora et al., 1988; Alzoghaibi, 2013). However,
in our study, inflamed intestinal mucosa in the dogs with IBD contained lymphocytes
and plasma cells, which could suggest that these cells might also be a source of
systemic ROS, as has been suggested in humans (Lantow et al., 2006). Nevertheless,
studies using larger group sizes are needed to evaluate the association between the type
of cells detected in the inflamed mucosa of the dogs with IBD and the systemic
concentrations of oxidants (ROS and lipid peroxides) during the disease.
The relatively low number of dogs with IBD in our study might have limited our

ability to detect correlations between the various serum biomarkers and clinical disease

Page 12 of 20

activity. However, our data show that antioxidants, which act to control oxidative stress,
are decreased, and oxidants generated in association with oxidative stress are increased
in dogs with IBD. These findings could help explain the pathophysiology of the disease.
However, further studies with larger group sizes are necessary to evaluate the potential
of these markers as possible predictors of disease and biomarkers for treatment
monitoring.

Although we did not determine the stability of the oxidant and antioxidants we measured in canine sera, previous reports demonstrated that antioxidants were stable in human serum stored at -80 °C for at least 1 year (Jansen et al., 2013). In addition, the values of the control group were inside the reference values of our laboratory, determined with fresh samples. However, possible changes during the long storage of the samples in any of the analytes measured cannot be disregarded and this should be considered as a limitation of our study.

Conclusions

Our study demonstrated the presence of oxidative stress in dogs with IBD. Based on our results, a profile including biomarkers of total antioxidant status such as TEAC and CUPRAC, individual antioxidant biomarkers such as PON1 and thiol, and biomarkers of oxidant status measuring lipid peroxidation, such as FOX, or TBARS, or directly measuring ROS production, might be useful in the comprehensive evaluation of the oxidative stress response in dogs with IBD.

Conflict of interest statement

enter at
NPq) of
NPq) of
NPq) of
NPq) of
ierva).
rith
ggins, J., odolski,
sease ith
nies in
ry
- 3
in
an
-
i

338 339	ethylbenzthiazoline-6-sulfonic acid) oxidation catalyzed by peroxidase: a new approach for determining total antioxidant status of foods. Analytical Biochemistry
340	236, 255–261.
341 342 343 344	Aslan, M., Nazligu, Y., Bolukbas, C., Bolukbas, F.F., Horoz, M., Dulger, A.C., Erdur, F.M., Celik, H., Kocyigit, A., 2011. Peripheral lymphocyte DNA damage and oxidative stress in patients with ulcerative colitis. Polish Archives of Internal
345 346	Medicine 121, 223–229.
347 348 349 350	Benzie, I.F., Strain, J.J., 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Analytical Biochemistry 239, 70–76.
351 352 353 354	Baskol, G., Baskol, M., Yurci, A., Ozbakir, O., Yucesoy, M., 2006. Serum paraoxonase 1 activity and malondialdehyde levels in patients with ulcerative colitis. Cell Biochemistry and Function 24, 283–286.
355 356 357 358	Boehm, D., Krzystek-Korpacka, M., Neubauer, K., Matusiewicz, M., Berdowska, I., Zielinski, B., Paradowski, L., Gamian, A., 2009. Paraoxonase-1 status in Crohn's disease and ulcerative colitis. Inflammatory Bowel Diseases 15, 93–99.
359 360 361	Buege, J. A., Aust, S. D., 1978. [30] Microsomal lipid peroxidation. Methods in Enzymology 52, 302-310.
362 363 364	Cao, G., Prior, R.L., 1998. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clinical Chemistry 44, 1309–1315.
365 366 367	Ceron, J.J., Tecles, F., Tvarijonaviciute, A., 2014. Serum paraoxonase 1 (PON1) measurement: an update. BMC Veterinary Research 10, 74.
368 369 370 371	Fernandez-Banares, F., Abad-Lacruz, A., Xiol, X., Gine, J.J., Dolz, C., Cabre, E., Esteve, M., Gonzalez-Huix, F., Gassull, M.A., 1989. Vitamin status in patients with inflammatory bowel disease. American Journal of Gastroenterology 84.
372 373 374 375	Geerling, B.J., 1999. The relation between antioxidant status and alterations in fatty acid profile in patients with Crohn disease and controls. Scandinavian Journal of Gastroenterology 34, 1108–1116.
376 377 378 379	Grisham, M.B., Gaginella, T.S., von Ritter, C., Tamai, H., Robert, M.B., Granger, D.N., 1990. Effects of neutrophil-derived oxidants on intestinal permeability, electrolyte transport, and epithelial cell viability. Inflammation 14, 531–542.
380 381 382 383	Hetyey, C.S., Manczur, F., Dudás-Györki, Z., Reiczigel, J., Ribiczey, P., Vajdovich, P., Vörös, K., 2007. Plasma antioxidant capacity in dogs with naturally occurring heart diseases. Journal of Veterinary Medicine series 54, 36–39.
384 385 386 387	Jansen, E.H., Beekhof, P.K., Cremers, J.W.J.M., Viezeliene, D., Muzakova, V., Skalicky, J., 2013. Long-term stability of parameters of antioxidant status in human serum. Free Radical Research 47, 535-540.

388 389 390	Jansen, E.H., Ruskovska, T., 2013. Comparative analysis of serum (anti)oxidative status parameters in healthy persons. International Journal of Molecular Sciences 14, 6106–6115.
391	
392 393 394	Jaouad, L., Guise, C. de, Berrougui, H., 2006. Age-related decrease in high-density lipoproteins antioxidant activity is due to an alteration in the PON1's free sulfhydyl groups. Atherosclerosis 185, 191-200.
395 396 397 398 399	Jergens, A.E., Schreiner, C.A., Frank, D.E., Niyo, Y., Ahrens, F.E., Eckersall, P.D., Benson, T.J., Evans, R., 2003. A scoring index for disease activity in canine inflammatory bowel disease. Journal of Veterinary Internal Medicine 17, 291-297.
400 401 402	Jocelyn, P., 1987. Spectrophotometric assay of thiols. Methods in Enzymology 143, 44-67.
403 404 405 406	Kitahora, T., Suzuki, K., Asakura, H., Yoshida, T., Suematsu, M., Watanabe, M., Aiso, S., Tsuchiya, M., 1988. Active oxygen species generated by monocytes and polymorphonuclear cells in Crohn's disease. Digestive diseases and Sciences 33, 951–955.
407 408 409 410 411 412	Lantow, M., Lupke, M., Frahm, J., Mattsson, M.O., Kuster, N., Simko, M., 2006. ROS release and Hsp70 expression after exposure to 1,800 MHz radiofrequency electromagnetic fields in primary human monocytes and lymphocytes. Radiation and Environmental Biophysics, 45, 55-62.
413 414 415 416 417	Levy, E., Rizwan, Y., Thibault, L., Lepage, G., Brunet, S., Bouthillier, L., Seidman, E., 2000. Altered lipid profile, lipoprotein composition, and oxidant and antioxidant status in pediatric Crohn disease. The American Journal of Clinical Nutrition 71, 807–815.
418 419 420 421 422	Minamoto, Y., Otoni, C.C., Steelman, S.M., Büyükleblebici, O., Steiner, J.M., Jergens, A.E., Suchodolski, J.S., 2014. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut Microbes 6, 33-47.
423 423 424 425	Nguyen, S.D., Sok, D.E., 2003. Oxidative inactivation of paraoxonase1, an antioxidant protein and its effect on antioxidant action. Free Radical Research 37, 1319–1330.
426 427 428 429	Rezaie, A., Parker, R.D., Abdollahi, M., 2007. Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Digestive Diseases and Sciences 52, 2015–21.
430 431 432 433 434	Rubio, C.P., Hernández-Ruiz, J., Martinez-Subiela, S., Tvarijonaviciute, A., Arnao, M.B., Ceron, J.J., 2016a. Validation of three automated assays for total antioxidant capacity (TAC) determination in canine serum samples. Journal of Veterinary Diagnostic Investigation 1040638716664939.
435 436 437	Rubio, C.P., Tvarijonaviciute, A., Martinez-Subiela, S., Hernández-Ruiz, J., Ceron, J.J., 2016b. Validation of an automated assay for the measurement of cupric reducing antioxidant capacity in serum of dogs. BMC Veterinary Research 12, 1.

438	
439	Sampietro, G.M., Cristaldi, M., Cervato, G., Maconi, G., Danelli, P., Cervellione, R.,
440	Rovati, M., Bianchi Porro, G., Cestaro, B., Taschieri, A.M., 2002. Oxidative stress,
441	vitamin A and vitamin E behaviour in patients submitted to conservative surgery
442	for complicated Crohn's disease. Digestive and Liver Disease 34, 696–701.
443	
444	Segarra, S., Martinez-Subiela, S., Cerda-Cuellar, M., Martinez-Puig, D., Munoz-Prieto,
445	A., Rodriguez-Franco, F., Rodriguez-Bertos, A., Allenspach, K., Velasco, A.,
446	Ceron, J., 2016. Oral chondroitin sulfate and prebiotics for the treatment of canine
447	Inflammatory Bowel Disease: a randomized, controlled clinical trial. BMC
448	Veterinary Research 12, 49.
449	
450	Simpson, K.W., Jergens, A.E., 2011. Pitfalls and progress in the diagnosis and
451	management of canine inflammatory bowel disease. Veterinary Clinics of North
452	America: Small Animal Practice 41, 381–98.
453	
454	Tvarijonaviciute, A., Tecles, F., Caldin, M., Tasca, S., Cerón, J., 2012. Validation of
455	spectrophotometric assays for serum paraoxonase type-1 measurement in dogs.
456	American Journal of Veterinary Research 73, 34–41.
457	
458	Vong, L., Lorentz, R., Assa, A., 2014. Probiotic Lactobacillus rhamnosus inhibits the
459	formation of neutrophil extracellular traps. The Journal of Immunology 192,
460	1870-1877.
461	(°)
462	Washabau, R.J., Day, M.J., Willard, M.D., Hall, E.J., Jergens, A.E., Mansell, J.,
463	Minami, T., Bilzer, T.W., 2010. Endoscopic, biopsy, and histopathologic
464	guidelines for the evaluation of gastrointestinal inflammation in companion
465	animals. Journal of Veterinary Internal Medicine 24, 10-26.
466	
	CC

467	
468	Fig. 1. Comparisons of antioxidant biomarkers in healthy dogs and dogs with IBD. The
469	plots show median (line within box), 25th and 75th percentiles (box) and minimum and
470	maximum values (whiskers). TEAC, Trolox equivalent antioxidant capacity; CUPRAC,
471	cupric reducing antioxidant capacity; FRAP, ferric reducing ability of plasma; PON1,
472	paraoxonase 1.
473	
474	Fig. 2. Comparisons of oxidant biomarkers in healthy dogs and dogs with IBD. The
475	plots show median (line within box), 25th and 75th percentiles (box) and minimum and
476	maximum values (whiskers). ROS, reactive oxygen species; FOX, ferrous oxidation-
477	xylenol orange; TBARS, thiobarbituric acid reactive substances.

PC Colding Work

Table 1. Spearman correlation coefficients, levels of statistical significance (95%

479 confidence intervals) between all biomarkers studied.

	TEAC	CUPRA	FRAP	Thiol	PON1	FOX	TBARS
		C					
CUP	0.92***						
RAC	(0.84 to)						
	0.95)						
FRAP	0.26	0.27					
	(- 0.07 to	(- 0.07 to					
	0.55)	0.55)					
Thiol	0.90***	0.90***	0.04				
	(0.81 to)	(0.81 to)	(- 0.30 to			V	
	0.95)	0.95)	0.37)				
PON1	0.68***	0.72***	0.34*	0.65***	* 4		
	(0.45 to	(0.51 to)	(0.01 to)	(0.41 to			
	0.82)	0.85)	0.61)	0.81)			
FOX	-0.40*	-0.39*	0.46**	-0.54***	-0.20		
	(-0.65 to	(-0.64 to	(0.16 to)	(-0.74 to	(-0.50 to)		
	-0.08)	-0.06)	0.69)	-0.26)	0.13)		
TBA	-0.54***	-0.59***	0.12	-0.65***	-0.45**	0.74***	
RS	(-0.74 to	(-0.77 to	(-0.22 to	(-0.81 to)	(-0.68 to	(0.54 to	
	-0.26)	-0.32)	-0.44)	-0.41)	-0.14)	-0.86)	
ROS	-0.70***	-0.77***	-0.07	-0.77***	-0.65***	0.61***	0.84***
	(-0.84 to	(-0.88 to	(-0.40 to	(-0.88 to	(-0.81 to	(0.35 to	(0.70 to)
	-0.49)	-0.58)	-0.27)	-0.60)	-0.40)	0.78)	0.91)

* P <0.05; ** P <0.01; *** P <0.001.

CUPRAC, cupric reducing antioxidant capacity; FRAP, ferric reducing ability of plasma; FOX, ferrous oxidation-xylenol orange; PON1, paraoxonase 1; ROS, reactive oxygen species; TBARS, thiobarbituric acid reactive substances; TEAC, Trolox equivalent antioxidant capacity.

484 485

480

481

482 483

478

486

