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Abstract 

In 1977, Ukraine experienced a local epidemic of African swine fever (ASF) in the Odessa region. A 

total of 20 settlements were affected during the course of the epidemic, including both large farms 

and backyard households. Thanks to timely interventions, the virus circulation was successfully 

eradicated within six months, leading to no additional outbreaks. Detailed report of the outbreak’s 

investigation has become publically available in 2014. The report contains some quantitative data 

that allow studying the ASF spread dynamics in the course of the epidemic.  

In our study, we used this historical epidemic to estimate the basic reproductive number of the ASF 

virus both within and between farms. The basic reproductive number (R0) represents the average 

number of secondary infections caused by one infectious unit during its infectious period in a 

susceptible population. Calculations were made under assumption of an exponential initial growth 

by fitting the approximating curve to the initial segments of the epidemic curves. The within- and 

between-farm R0 were estimated at 7.46 (95% confidence interval: 5.68 – 9.21) and 1.65 (1.42 – 1.88) 

respectively. Corresponding daily transmission rates were estimated at 1.07 (0.81 – 1.32) and 0.09 

(0.07 – 0.10). These estimations based on historical data are consistent with those using data 

generated by the recent epidemic currently affecting Eastern Europe. Such results contribute to the 

published knowledge on the ASF transmission dynamics under natural conditions and could be used 

to model and predict the spread of ASF in affected and non-affected regions and to evaluate the 

effectiveness of different control measures. 
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transmission rate. 

  



Introduction  

African swine fever is a viral contagious disease of domestic pigs and wild boar, which can be 

transmitted by direct contacts of susceptible animals with infectious ones or their tissues. Other 

possible routes of infection are: consumption of feed and swill contaminated by the virus and 

vector-borne transmission by soft ticks. Acute forms of the disease demonstrate a nearly 100 

percent mortality in infected animals, although chronic and subclinical forms may be observed in 

regions where the disease is endemic (Morilla et al., 2002; Blome et al., 2012; Gallardo et al., 2015; 

Guinat et al., 2016). In the absence of an effective vaccine, the only effective control measures to 

prevent virus spread is the enforcement of strict movement restrictions of pigs, pig products and 

humans in affected areas and the culling of affected herds. Both measures incur severe economic 

losses to the pig industry (Costard et al., 2009).  

Numerous observations of real-life outbreaks reveal that when introduced into a farm the virus not 

only spreads rapidly within the farm but is also transmitted to neighboring farms and backyard 

holdings. This short-distance transmission occurs mainly because of movements of pigs, pig 

products, waste and vehicles contaminated by the virus. Wild boar populations are also able to 

maintain circulation of the virus, making possible the virus introduction into pig farms by direct or 

indirect contact with wild boar; note that this transmission route might happen mostly in low 

biosecurity farms (Oganesyan et al., 2013; Vergne et al., 2015, 2016; Guinat et al., 2016).  

In 1977, an ASF epidemic occurred in Odessa city (Ukraine, formerly the Ukrainian Soviet Socialist 

Republic of the USSR) and the neighboring settlements. ASFV was probably introduced by merchant 

vessels entering the Odessa seaport. Within 6 months the disease spread to 20 settlements located 

up to 200 km from Odessa city (Fig. 1). The virus was detected both in small scale backyard holdings 

and large pig farms. No signs of infection were found in wild boars during monitoring within areas 



adjacent to the infected settlements. Due to strict control measures based on stamping-out policies, 

the epidemic was eradicated and further spread of the virus prevented. A detailed report on the 

study of the outbreak and control measures aimed at its eradication has recently been published by 

the National Research Institute for Veterinary Virology and Microbiology (Russia), which was 

responsible for investigation of the epidemic in 1977 (Anonymous, 2014). The report contains, in 

particular, quantitative data that reflect the infection dynamics of the virus at farm level during the 

course of epidemic as well as pig mortality dynamics within the very first affected farm. The 

information at hand allows the estimation of the basic reproductive number (R0), which is one of the 

main quantitative characteristics of an epidemic (Anderson and May, 1992). The basic reproductive 

number is the number of secondary disease cases one infected case is expected to cause in a 

susceptible population during its infectious period. It is widely used in quantitative epidemiology to 

characterize epidemic dynamics and evaluate control strategies.  

This paper aims at estimating R0 both within farms (when the virus is transmitted from infectious to 

susceptible animals) and between farms (when the virus is transmitted from infectious to susceptible 

farms).   

 

Materials and methods 

Data  

This study was based on several incidence data recorded during the ASF epidemic in the Odessa 

Oblast of Ukraine during the period from February 10 to July 2, 1977 as reported in (Anonymous, 

2014).  

In the course of the epidemic, all samples were collected in affected holdings by regional 

veterinarians and forwarded to the National Research Institute for Veterinary Virology and 



Microbiology, which possessed the only specialized ASF diagnostic laboratory in the USSR at the time 

of the event. The ASF was diagnosed by haemadsorption test (HAT) on porcine bone marrow cells, 

which is the OIE reference method of the ASF virus diagnostics (OIE, 2016). It was found that the ASF 

virus belongs to the genotype I serogroup 4, which was also responsible for epidemics in some 

European and South-American countries in 1964 – 1984 (Malogolovkin et al., 2015). 

Two datasets are available in the report. The first one represents the observed dynamic of pig 

mortality at subsidiary farm in Usatovo village, which was the very first affected holding (see Annex, 

Table 1). We used these data in order to estimate the within-farm R0. The second dataset contains 

observed incidence of the disease at farm level (see Annex, Table 2). This information includes the 

disease onset date, the final diagnosis date and the number of susceptible animals in each of the 20 

affected locations in the Odessa oblast. These data were used for estimation of between-farm R0. 

The name and level of administrative division were also recorded for each settlement enabling their 

geographical location to be established and mapped. 

 

Overview of the method used to estimate R0  

In order to estimate R0 both within and between farms, we used the method of initial exponential 

growth based on the analysis of the initial segment of the epidemic curves. This method assumes 

that, in a homogeneously mixed population of susceptible units (either pigs within a farm and farms 

within the study area), the number of new cases increases exponentially during the initial stages of 

the epidemic. According to (Iglesias et al., 2011), R0 can be defined as: 

𝑅0 = 1 +
𝐷∗𝑙𝑛(𝑁𝑡 𝑁0⁄ )

𝑡
                (1), 

where D is the duration of infectious period, i.e. the period during which an infected animal (or an 

infected farm) can infect susceptible animals (or susceptible farms); Nt and N0 are numbers of newly 



infected animals (or farms) at the time t and at the beginning of the epidemic, respectively. In 

general, t is set at the time it takes for the incidence to double i.e. the time at which 𝑁𝑡 = 2 ×

𝑁0(Dietz, 1993; Zhang et al., 2012). Since the duration of infectious period D cannot be measured or 

estimated directly, we used three values coming from the literature as three scenarios.  

From the estimation of R0, we calculated the transmission rate β which, in our case, represents the 

daily rate at which infectious animals (or farms) infect susceptible ones. It was calculated as follows:  

𝛽 =  𝑅0 D⁄              (2). 

 

Estimation of R0 between farms 

1. For each of 20 affected farms, we measured the time spent between the disease onset and 

the final diagnosis - Dbf. Once the ASF has been recognized in the region, in some cases clinical 

diagnostics took place with subsequent laboratory confirmation by HAT, which resulted in 

very short Dbf of 2 – 3 days.  An arithmetic mean value 𝐷̅𝑏𝑓 equal to 19 days was accepted as 

a median scenario of a farm’s infectious period, and used as a time step for epidemic curve. 

This reflects our assumption that a farm could remain infectious until ASF is diagnosed and 

all pigs depopulated. Even though in many cases a holding was quarantined before the ASF 

confirmation, it has been reported that the transmission of the virus could have happened 

even after quarantine being imposed (Anonymous, 2014). To reflect the uncertainty on this 

parameter, two other values of a farm’s infectious period were taken from literature: 15 days 

(Gulenkin et al., 2011) and 30 days (Barongo et al., 2015). 

2. The entire period from February 10 to July 2, 1977 was divided into equal periods of duration 

𝐷̅𝑏𝑓; the number of newly infected holdings Nt was calculated for each period, which resulted 

in construction of the epidemic curve.  



3. An exponential model was fitted to the observed incidence during the initial stage of the 

epidemic, i.e. from the onset of the epidemic to its peak (Fig. 2). Goodness of a model fit was 

assessed by means of R-squared value, which represents the percentage of the dependent 

variable’s variation explained by the independent variable. 

4. The mean and the confidence interval of the estimated parameter driving the exponential 

growth were used to estimate R0bf using formula (1). The calculations were performed using 

Monte Carlo simulation with 10,000 iterations. The median value of R0 and the 95% 

confidence interval limits were established for each of the three D scenarios. 

5. We estimated the transmission rate βbf and its confidence interval using formula (2).  

 

Estimation of R0 at the on-farm level 

1. According to subsequent experiments with the ASF virus strain that caused the epidemic 

in Odessa region, the duration of the infectious period in pigs infected by direct contact 

(group housing) was between 3 and 14 days (Anonymous, 2014). Similar values were also 

used by Guinat et al., 2015. We accepted these values as boundary scenarios, while 7 

days was taken as a median scenario being a mean typical infectious period of ASF in pigs 

(Dwf) used in literature (Table 1).  

2. Three epidemic waves were observed in the course of epidemics in the study farm, which 

could be due to animals being kept in different buildings of the farm.  Assuming that the 

force of infection between animals of different buildings was negligible as compared to 

the force of infection between animals of the same building, the three waves (February 

11-13, 15-19 and 20-23) were considered independent for the analysis. In a similar way 

to the between-farm study, we fitted three exponential models to the three observed 



incident curves for three time periods (Fig. 3) and estimated the means and the 95% 

confidence intervals of the basic reproductive numbers R0wf and of the transmission rate 

βwf for each of the three epidemic waves.  

3. We used the bootstrap technique for random sampling from the three acquired 

distributions in order to estimate the median value of R0wf for the infectious period equal 

to 7 days, which considered a most typical scenario. 

 

Table 1. Summary of modelling studies estimating transmission parameters of ASFV in domestic pigs 

(see also Guinat et al., 2016) 

Study Genotype  
Virus 

isolate 

Duration of 

infectious period, 

days 

Between-

farm R0 

Within-farm 

R0 

Belyanin et al., 2011 II various 6.8 (5.0 – 8.6) - - 

De Carvalho Ferreira 

at el., 2013 
I 

Malta’78 

Netherlands’86 

6.8±1.8 

4.6±1.4 
- 

18.0 (6.90 – 46.9) 

4.92 (1.45 – 16.6) 

Pietschmann et al., 

2015 
II Armenia’08 2 - 9 - 

6.1 (0.6 – 14.5) 

5.0 (1.4 – 10.7) 

Guinat et al., 2015 II Georgia 2007/1 3 - 14 - 

5.0 (2.4 – 9.1) 

within pen 

2.7 (0.7 – 5.2) 

between pen 

Gulenkin et al., 2011 II 
Stavropol 

01/08 

5 within farm 

15 between farm 
2 - 3 8 - 11 

Barongo et al., 2014 IX Uganda 30 between farm 

3.24 (3.21 – 

3.27) 

1.63 (1.6 – 1.72) 

- 



1.90 (1.87 – 

1.94) 

1.58 

1.77 (1.74 – 

1.81) 

Current study I O-77 
7 within farm 

19 between farm 

1.65 (1.42 – 

1.88) 
7.46 (5.68 – 9.21) 

 

Software  

The standard Microsoft Office Excel 2003 package (Microsoft, USA) with @Risk 4.5 add-on (Palisade, 

USA) was used for data processing, distribution fitting and for Monte-Carlo simulations. Exponential 

models’ fitting was performed in R statistical software environment (R Core Team, 2014). ArcGIS 

10.3.1 (Esri, USA), a GIS software system, was used for georeference and geovisualization.  

 

Results 

The estimates of basic reproduction numbers and transmission rates for different scenarios of 

between-farm and within-farm ASFV spread are presented in Tables 2 and 3 together with 

corresponding values of R-squared used to asses goodness of models’ fit. For an infectious period 

duration of 19 days in affected farms, the between-farm R0 was estimated at 1.65 (95%CI: 1.42 – 

1.88), leading to a daily transmission rate between farms of 0.09 (0.07 – 0.10). For an infectious 

period duration of seven days in pigs, averaged within-farm basic reproduction number and daily 

transmission rate were estimated at 7.46 (5.68 – 9.21) and 1.07 (0.81 – 1.32), respectively. It should 

be noted for both between- and within farm transmission, that while the estimations of the daily 

transmission rate were relatively consistent across the different scenarios of infectious period 

duration, the estimations of the basic reproduction number varied greatly. 



 

 

Table 2. Estimated values of basic reproductive numbers and transmission rates at between-farm 

level 

 

Dbf, days 

15 19 30 

R0bf 1.51 (1.33 – 1.70) 1.65 (1.42 – 1.88) 2.03 (1.66 – 2.39) 

β 0.10 (0.09 – 0.11) 0.09 (0.07 – 0.10) 0.07 (0.06 – 0.08) 

R-squared 0,9098 

 

Table 3. Estimated values of basic reproductive numbers and transmission rates at within-farm level 

 1st wave  2nd wave  3rd wave  

Dwf, 

days 
3 7 14 3 7 14 3 7 14 

R0wf 

3.35 

(2.88 – 

3.82) 

6.49 

(5.41 – 

7.57) 

11.98 

(9.77 – 

14.18) 

3.97 

(3.43 – 

4.50) 

7.93 

(6.64 – 

9.21) 

14.87 

(12.28 – 

17.46) 

3.98 

(3.37 – 

4.59) 

7.97 

(6.49 – 

9.38) 

14.91 

(12.07 – 

17.80) 

β 

1.12 

(0.96 – 

1.27) 

0.93 

(0.77 – 

1.08) 

0.86 (0.70 

– 1.01) 

1.32 

(1.14 – 

1.50) 

1.13 

(0.95 – 

1.32) 

1.06 (0.88 

– 1.25) 

1.33 

(1.12 – 

1.53) 

1.14 

(0.93 – 

1.34) 

1.07 (0.86 

– 1.27) 



R-

squared 
0.9799 0.9741 0.9675 

 

  



Discussion 

Quantitative data on the natural ASF epidemic spread dynamics, especially within an infected farm, 

can rarely be found in academic literature (Guinat et al., 2016), which is why this study is relevant 

not only in terms of the R0 estimation but also in terms of the systematization and publication of the 

retrospective ASF outbreak data.  

As shown in Table 1, the results of this study are in close agreement with the results obtained by 

other authors. It should be noted that the available data on the between-farm ASFV transmission 

were acquired by studying real-life outbreaks having occurred in different regions and countries of 

the world caused by different virus genotypes. Quantitative characteristics of between-farm ASFV 

transmission calculated by different authors are virtually identical. A lower dependence of the 

between-farm ASFV transmission rate on the biological properties of the virus can be assumed since 

such transmission is mainly facilitated by the livestock management structure, the intensity of 

business interactions between farms and by trade.  

As for the within-farm transmission, the majority of published data are based on laboratory 

experiments in which different methods, doses and virus strains were used for animal inoculation, 

which is bound to influence the quantitative characteristic of the infectious period duration (see 

Table 1 and Guinat et al., 2016). This is why a huge variability is seen in the estimations of R0. The 

study by Gulenkin et al., 2011 is the only published research to date in which the within-farm R0 was 

estimated in field conditions presented by 3 ASF outbreaks on the territory of the Russian 

Federation. 

The assumption of a homogenous mixing of the population under study implies that every 

susceptible unit in the population has an equal probability of becoming infected whichever unit is 

infectious. The country was unaware of the ASF in 1977 and no any disease-specific protective 



measures were applied even at large collective farms and state farms. It should be noted that 11 out 

of 20 affected farms, including the very first one used for the modeling, were represented by private 

backyards or subsidiary holdings that can be considered low biosecurity holdings easily exposed to 

the virus introduction. Within such farms, pigs were likely to be in close contact with each other, 

validating the assumption of homogeneous mixing at within-farm level. Also, despite that farm 

distribution is spatialized making transmissions theoretically more likely between farms that are 

close to each other, the relatively small scale of the affected region makes us believe that the 

assumption of homogeneous mixing of farms is acceptable and did not generate misleading results. 

This homogeneous mixing is indirectly supported by the fact that the initial growth of the incidence 

(both within and between farms) almost perfectly followed an exponential model (see Figures 2, 3 

and R-squared values in Tables 2 and 3), which is the case under the homogenous mixing assumption.  

The estimation of R0bf for the strain responsible for the ASF epidemic in the Odessa region in 1977 

can help in understanding the spatiotemporal characteristics of the ongoing ASF epidemic in the 

European part of Russia and in Eastern European countries by simulating between-farm spread of 

the virus in case of introduction into a disease-free region. Given that there are no vaccines available 

which could be used for either emergency or preventive vaccination of pigs against ASF, one of the 

methods of containing the spread of the disease is stamping out of the susceptible animal 

population. Such a method is associated with the following problems: 1) the size of the risk zone of 

a possible disease spread from an initial outbreak area (farm, affected location) to other farms is 

unknown and should be estimated; 2) the minimal number of farms where depopulation is to be 

carried out should be estimated. Knowing the R0 value for the transmission at the between-farm 

level the number of farms which are to be depopulated can be calculated using the following ratio: 

𝑝 = 1 − 1 𝑅0⁄   (Anderson and May, 1992). We calculated p to be 0.39 (0.29-0.47) taking into account 



the previously established median R0bf value. Consequently, we can state that in order to guarantee 

the prevention of an epidemic in the region where ASFV has been introduced, the susceptible 

population on at least 29% of pig farms theoretically should be stamped out. During the epidemic in 

Odessa region, 30.5% of susceptible pig population of the whole region (the area of which amounts 

to ~33,000 km2) was depopulated, while 100% of pigs were depopulated within 5 to 20 km zone of 

an approximate total area up to 8,000 km2 around infected holdings (Fig. 1), which allowed 

prevention of the virus circulation in the region (Anonymous, 2014). Based on these measures, a 

new edition of the Instruction on Prevention and Eradication of ASF (Anonymous, 1980), which is 

currently in use in the Russian Federation, was accepted. It requires that a protective zone of 5 – 20 

km radius should be applied around an infected holding. Total depopulation of susceptible pigs must 

be enforced within this zone. Additionally, a surveillance zone 100 - 150 kilometers in radius, where 

enhanced monitoring measures and restrictions on animal movement and trade of live pigs and pig 

products are put in place, should be established. In comparison, current EU legislation requires total 

stamping-out within an infected holding only. Protection and surveillance zones of 3 km and 10 km 

in radius respectively should be established with enhanced screening and pigs’ movement 

prohibition within 30 days after ASF confirmation (Council Directive, 2002).  These requirements are 

consistent with the measures applied during eradication of the ASF in Spain 1985 – 1995 (Morilla et 

al., 2002). Apparently, regulations of Russian Instruction are significantly stricter, but their effective 

implementation may be difficult. Indeed, it has been shown that the ASF virus can spread to a 

distance of more than 100 kilometers from an initial outbreak area (Korennoy et al., 2014; Iglesias 

et al., 2015), that underlines a significance of further studies on between-farm ASFV spread patterns. 

The development of spatially-explicit between-farm transmission models is attractive but would be 



hampered by the lack of data on the population at risk, particularly regarding the location of all farms 

in the region and the number of pigs kept in each. 
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Figure 1. Study area and the ASF infected holdings. Numeration is consistent with Table 2 (see 

Annex).  



 



Figure 2. Dynamics of the epidemic process on the between-farm level and fitted exponential 

model with standard deviations 

 

Figure 3. Dynamics of disease detection on a farm in Usatovo village and fitted exponential models 

with standard deviations 

 



  



Annex 

Table 1. Dynamics of diseased animal detection on a farm in Usatovo village (adopted from Anon., 

2014)  

Date Number of clinical cases in animals 

11.02.1977 8 

12.02.1977 14 

13.02.1977 43 

15.02 – 16.02.1977 21 

17.02.1977 57 

18.02.1977 68 

19.02.1977 22 

20.02.1977 4 

21.02.1977 17 

22.02.1977 41 

23.02.1977 54 

 

 

Table 2. Affected holdings recorded in the period from February to July 1977 (adopted from Anon., 

2014)  

Raion 

Num 

on 

map 

Name of location, 

holding  

Number of 

susceptible 

animals 

Date of 

disease 

occurrence 

Date of final 

diagnosis 



(2-level 

administrative 

divisions) 

Belyaevsky 

1 
Usatovo village, 

subsidiary holding 
4746 10.02.1977 11.04.1977 

2 
Ilinka, ‘Chapaeva’ 

collective farm 
3659 13.04.1977 20.04.1977 

3 

Naberezhny village, 

subsidiary holding of a 

military base 

105 15.04.1977 20.04.1977 

Kominternovsky  

4 

Kominternovskoe 

village,  ‘XX Partsyezda’ 

collective farm 

7585 19.03.1977 05.04.1977 

5 

Belyari village, 

‘Udarnik’ subsidiary 

holding 

1330 05.04.1977 11.04.1977 

6 

Grigorovka village, 

subsidiary holding of a 

military base 

57 10.04.1977 20.04.1977 

7 
Oniskovo village, 

fattening state farm 
2298 08.04.1977 20.04.1977 



Ivanovsky 

8 

Buyalik village, 

subsidiary holding of a 

military base 

79 04.04.1977 11.04.1977 

9 

Krasnoznamenka 

village, ‘Druzhba 

narodov’ collective 

farm 

12582 11.04.1977 20.04.1977 

Ovidiopolsky 

10 
Roksolyany village, 

‘Lenina’ collective farm 
2627 17.04.1977 20.04.1977 

11 

Prilimanskoe village, 

private backyard 

holding 

6 05.04.1977 20.04.1977 

Odessa city 

12 

Lenposelok village, 

subsidiary holding of a 

military base 

52 16.04.1977 20.04.1977 

13 

Krivaya Balka village, 

private backyard 

holding 

21 09.04.1977 20.04.1977 

Berezonsky 14 

Berezovka town, 

private backyard 

holding 

2 21.04.1977 23.04.1977 



Razdelnyansky 15 

Novodmitrievka village, 

‘Shlyakhom Lenina’ 

collective farm 

13865 12.04.1977 06.05.1977 

Belgorod 

Dnestrovsky 
16 

Starokozachye village, 

‘XXI Partsyezda’ 

collective farm 

11372 20.05.1977 25.05.1977 

Savransy 

17 

Osichki village, 

‘Druzhba’ collective 

farm 

1834 27.05.1977 02.07.1977 

18 

Kantseba village, 

private backyard 

holding 

18 19.05.1977 08.07.1977 

19 

Belousovka village, 

Kotovskogo collective 

farm 

1509 19.05.1977 29.07.1977 

20 

Nedelkovo village, 

private backyard 

holding 

3 02.07.1977 19.07.1977 

 




