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Objective: The role of inflammation in structural and symptomatic osteoarthritis (OA) remains unclear.
One key mediator of inflammation is the chemokine CCL2, primarily responsible for attracting mono-
cytes to sites of injury. We investigated the role of CCL2 and its receptor CCR2 in experimental OA.

Design: OA was induced in 10 weeks old male wild type (WT), Ccl2~/~ and Ccr2~/~ mice, by destabili-
sation of the medial meniscus (DMM). RNA was extracted from whole joints at 6 h and 7 days post-
surgery and examined by reverse transcription polymerase chain reaction (RT-PCR). Gene expression

Iéavzvords: changes between naive and DMM-operated mice were compared. Chondropathy scores, from mice at 8,
CCR2 12, 16 and 20 weeks post DMM were calculated using modified Osteoarthritis Research Society Inter-

national (OARSI) grading systems. Changes in hind paw weight distribution, as a measure of pain, were

assessed by Linton incapacitance.

Results: Absence of CCL2 strongly suppressed (>90%) selective inflammatory response genes in the joint

6 h post DMM, including arginase 1, prostaglandin synthase 2, nitric oxide synthase 2 and inhibin A. IL6,

MMP3 and tissue inhibitor of metalloproteinase 1 were also significantly suppressed. Similar trends were

also observed in the absence of CCR2. A lower average chondropathy score was observed in both Ccl2™~

and Ccr2~/~ mice at 12, 16 and 20 weeks post DMM compared with WT mice, but this was only sta-

tistically significant at 20 weeks in Ccr27!~ mice. Pain-related behaviour in Ccl2~/~ and Ccr2~/~ mice post

DMM was delayed in onset.

Conclusion: The CCL2/CCR2 axis plays an important role in the development of pain in murine OA, but

contributes little to cartilage damage.

© 2016 The Authors. Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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these cytokines do not appear to have a major role in vivo in joint

destabilisation models of OA, although not all studies agree>".

Introduction

Although osteoarthritis (OA) is described as a non-inflammatory
form of arthritis, it is frequently associated with low-grade syno-
vitis and modestly elevated levels of inflammatory cytokines, sys-
temically and within the synovial fluid"%. The role of inflammation
in the structural and symptomatic course of disease is debated.
Whilst cartilage degradation is induced readily in vitro following
stimulation with inflammatory cytokines such as IL1, IL6 and TNF,
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of Rheumatology, Roosevelt Drive, 0X3 7FY, UK.
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The chemokine CCL2, also referred to as monocyte chemotactic
protein 1 (MCP1), is a key chemo-attractant molecule that binds to
the cell surface leucocyte receptor CCR2. It recruits principally
monocytes and to a lesser extent, memory T cells and dendritic cells
to sites of inflammation. CCL2 is expressed in the synovial sublining
cells of OA joints, and has been found in synovial fluid of OA knee
joints®? and following acute traumatic injury'®'’. Ccl2 is strongly
and rapidly (<6 h) induced in whole joints upon surgical joint
destabilisation in the mouse'?. Ccl2 is also induced in rat cartilage
upon surgical destabilisation'® and in vitro upon mechanical injury
of cartilage'*. The principal role of CCL2 in the joint may be to recruit
leucocytes following joint injury. However, this role is unlikely to be

1063-4584/© 2016 The Authors. Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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the case in cartilage, an essentially avascular tissue, where several
other mechanisms for chemokine action have been proposed'>'®,
CCR2 is expressed by sensory neurons, and ligation by CCL2 can
directly excite nociceptive neurons, thereby contributing to pain'’.
Neuronal CCR2 is regulated transiently in the dorsal root ganglia 8
weeks following surgical joint destabilisation in animal models,
where it is also associated with infiltration of macrophages, a po-
tential source of algogenic molecules, and persistence of pain. In the
absence of CCR2, there was transient distal mechanical allodynia
(assessed by von Frey filaments) following destabilisation of the
medial meniscus (DMM), but no development of motion-induced
painful behaviour'®. The Miller study also demonstrated that
chondropathy scores in the Ccr27!~ animals at 8 weeks post
destabilisation were similar to those in wild type (WT) animals'®. In
another study, using incapacitance testing, where asymmetrical
hind limb weight bearing is used as a surrogate measure of pain, we
reported development of painful behaviour in WT animals between
10 and 12 weeks post joint destabilisation'®. At this time, no
regulation of Ccl2 or Ccr2 was detected in joint extracts or dorsal
root ganglia of animals displaying pain-related behaviour. Nor was
there up-regulation of other genes associated with an inflammatory
response such as CD68, CD14, IL1, COX2 (*° and unpublished data).
Our hypothesis is that CCL2, acting through CCR2, contributes to
structural and symptomatic disease in a murine model of OA. In the
present study, we have performed a comprehensive analysis of the
disease course in Ccl2/~ and Ccr2~/~ mice at several time points post
DMM. We show histological cartilage damage scores from the joints
at these points, measure the acute inflammatory response in the joint
over the first 7 days of surgery in knockout and WT animals, and
examine pain-related behaviour responses in these groups over time.

Methods
Animals

Mice were kept in approved animal care facilities (individually
ventilated cages and maintained under a 12-h light/dark cycle at an
ambient temperature of 21°C) and were housed 4—6 per cage. The
mice were fed a certified mouse diet (RM3; Special Diet Services)
and water ad libitum. Animal experiments were performed
following local ethics and statutory approval. Ccr2 7/~ and Ccl2~/~
mice on a C57BI1/6] background were obtained from Jackson Labo-
ratories (USA). Both colonies were maintained as homozygote
breeding pairs. C57BI/6] mice were used as controls and were
purchased from Charles Rivers, UK.

Surgical joint destabilization

Surgical joint destabilization was performed by DMM, in male
mice at 10 weeks of age as previously described?' (total numbers of
mice used: Ccl2~/~ n =38, Ccr2~/~ n =32, WT n > 30). All pro-
cedures had local (Imperial College then Oxford University) ethical
approval. Some mice also underwent sham surgery (capsulotomy
only; n = 4—6 at each time point). Briefly, mice were anaesthetized
by inhalation of Isoflurane (4% induction and 1.5—2% maintenance)
in 1 L/min oxygen. All animals received a subcutaneous injection of
Vetergesic (Alstoe Animal Health Ltd) prior to surgery. The mice
were fully mobile within 5 min following withdrawal of Isoflurane.
The contralateral (left) knees were used as non-operated controls.
Animals were sacrificed at 6 h, 7 days (for RNA extraction, see
below) and 8, 12 and 20 weeks (for histology) after surgery. For
histology, knee joints were fixed, decalcified, sectioned in the cor-
onal plane and stained with Safranin O. Safranin O stained sections
were scored according to a modified Osteoarthritis Research Soci-
ety International (OARSI) score by two observers (blinded) and a

summed score obtained. The summed score was the sum of the
three highest total section scores for all four sections of the joint
(minimum of eight sections per joint, 80 microns apart).

A separate set of experiments was performed independently
and was approved by the Institutional Animal Care and Use Com-
mittee at Rush University Medical Center. Briefly, the anterior fat
pad was dissected to expose the anterior medial meniscotibial
ligament, which was severed. The knee was flushed with saline and
the incision closed. Knee joints were collected 16 weeks after DMM
from 12 WT and 11 Ccr2~/~ mice. These joints were processed and
cartilage degeneration in the medial compartment was assessed
histologically, as previously described®?.

RNA extraction and reverse transcription polymerase chain reaction
(RT-PCR) for whole joints

Mice were sacrificed 6 h or 7 days after surgery, the skin and
muscle were removed as previously described'? and the joints snap
frozen in liquid N, and stored at —80°C. The frozen joints were
transferred to a prechilled biopulveriser in liquid N, and pulverised
to a fine powder. RNA from the pulverised tissue was extracted
using 1 ml Trizol (ThermoFisher Scientific, UK) as previously
described'??°. 1 pg of total RNA was reverse transcribed using the
High Capacity cDNA Reversion Transcription kit (ThermoFisher
Scientific, UK) according to the manufacturer's protocol. The cDNA
library was interrogated by qPCR on custom designed Tagman Low
Density Array microfluidic cards (ThermoFisher Scientific, UK) on a
ViiA7 thermocycler (ThermoFisher Scientific, UK). The Tagman
probes used for each gene and the accession numbers for the
analysed genes are listed in the Supplementary Data (Table S1). All
TagMan Low Density Arrays (TLDAs) were analysed together and C;
values extracted using the Expression Suit Software v 1.03 (Ther-
moFisher Scientific, UK). Fold changes for each gene were calcu-
lated using the AAC; method, employing the 40S ribosomal protein
S18 (RPS18) gene as an endogenous control and using the average
of the control AC; values for each experiment as a normalizer.

Pain-related behaviour assessments

Measurements of pain-related behaviour, as described previ-
ously were obtained twice weekly for the first week then at weekly
intervals after DMM or sham surgery, by Linton incapacitance
testing'®?3. The assessor was blinded with regard to treatment
(sham or DMM) (but not genotype). Pain-related behaviour was
judged to be meaningful when mean values dropped below 70%
weight borne through the operated compared with non-operated
joint. Statistical significance was determined by comparison of
measurements with the sham-operated control.

Statistical analysis

All groups of data were assessed for approximation to the
Gaussian distribution using the D'Agostino and Pearson omnibus
test of normality>*. Distributions were considered to be Gaussian if
the P value for the null hypothesis was greater than 0.05. When
multiple comparisons between multiple end points were performed,
the Bonferroni post hoc test was used to adjust for multiplicity?>.
GraphPad Prism version 6 was used for statistical analysis. To derive
the sample size we performed power calculations based on previous
data in WT mice 8 weeks post DMM?°. Initial experiments were
powered to detect a 50% change in chondropathy score (6 points),
based on a standard deviation of 6.7, with 90% power and «. set at
0.05. This gave 16 mice (eight in each group). Further animals were
added subsequently to increase the power to detect a smaller dif-
ference between groups (see discussion for further details).
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Results

Altered inflammatory responses in the joints of Ccl2/~ and Ccr2/~
mice following joint destabilisation

We first examined the functional effect of CCL2 or CCR2 dele-
tion by comparing gene expression profiles of whole joints at 6 h
and 7 days post surgical destabilisation. Several inflammatory
response genes were strongly induced within 6 h of joint desta-
bilisation (Table I). These included arginase 1 (Arg1), nitric oxide
synthase (Nos2), Ccl2, IL6, Ptgs2 (Cox2), TNF-stimulated gene 6
(Tsg6) and hyaluronan synthases (Has) 1 and 2. A smaller number
of these were still regulated 7 days post destabilisation; Ccl2, Nos2,
Ptgs2 and Tsgb6. Two macrophage/monocyte markers, Cd14 and
Cd68 were examined. Cd14 was significantly raised at 6 h in WT
joints. Cd68 was elevated but not significantly at this early time
point.

Of the genes strongly regulated 6 h post destabilisation, a
number of genes were suppressed in the Ccl2~!- joints. Table II
shows these results expressed as a ratio compared with WT
levels. Those suppressed at 6 h by >90% included arginase 1, Ptgs2,
Nos2 and inhibin beta A (Inhba). Other suppressed genes included
116, Mmp3 and Timp1. For Ccr2~/~ joints, significantly suppressed
genes at 6 h post DMM included Mmp3, Ptgs2, Argl, Adamts4 and
Inhba. For both Ccl2~/~ and Ccr2~/~ joints, Cd68 was significantly
reduced compared with WT joint levels. There was no difference in
Cd14 levels between WT and knockout joints. At 6 h, Arg2 was the
only gene that was significantly higher in both Ccl2/~ and Ccr2~/~
joints.

At 7 days post destabilisation fewer genes were regulated in WT
joints. Nos2 and Ptgs2 were significantly suppressed in both Ccl2~7/~
and Cer27/~ joints (Nos2 data not available for Ccr277), whereas
Has1/2, Mmp3 and Arg2 were super-induced in Ccl27/~ joints.
Mmp3 and I11b were also super-induced in Cer2/- joints. Taken
together, the Ccl2/Ccr2 knockout animals generally have reduced
Nos2, arginase 1, Inhba, Mmp3 and Ptgs2 after joint destabilisation
but also showed evidence of increased inflammatory markers
especially at the later time point.

Table I
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Chondropathy scores in Ccl2~/~ and Ccr2~/~ mice are similar to WT
controls

To determine whether changes in inflammatory gene expres-
sion seen in Ccl2™/~ and Ccr2™/~ mice impacted on the degree of
cartilage degradation following joint destabilisation, histological
assessment of the joints of these mice was performed at 8, 12 and
20 weeks post DMM. The experiment was initially powered to
detect a 50% change in disease, but numbers were subsequently
added to increase the power to detect a 20% change in disease.
Consequently, two sets of experiments were done involving
different operators within the Vincent group, so the results are
shown in two colours indicating the separate data sets [Fig. 1(B)].
Results show a significant difference (disease reduction; P < 0.05) in
the Ccl2~/~ joints at 20 weeks post DMM compared with WT joints.
Ccl2~/~ and Cer2~/~ animals exhibited lower average scores at 12
weeks post DMM but these did not reach statistical significance.
There were no significant differences in chondropathy scores at 8
weeks. Miller and Malfait corroborated the above results in a
separate experiment from their lab (one surgeon); showing a non-
significant trend towards decreased disease in Ccr2~/~ mice 16
weeks post DMM surgery [Fig. 1(C)].

There was no significant difference in histology scores in the
sham-operated joints across genotypes (data not shown). Although
there was a moderately wide distribution of scores in WT animals
at all three time points post DMM there was neither a significant
drift in disease severity over time, or change with operator (ANOVA,
P > 0.05, for 8, 12 and 20 weeks post DMM in WT mice).

Onset of pain-related behaviour following DMM surgery is
significantly delayed in Ccl2™/~ and Ccr2™/~ mice

Pain-related behaviour was assessed twice weekly for the first
week, then weekly by incapacitance testing, a measure of changes in
hind paw weight distribution'®, Male WT mice developed signifi-
cant pain-related behaviour at 11 weeks post DMM (dropping below
the 70% threshold of weight borne through the operated compared
with non-operated side) [Fig. 2(A)]. Both Ccl27!~ and Ccr2/~ mice

Fold changes of gene expression at 6 h and 7 days post DMM in WT and Ccl2/~ and Ccr2 7/~ mice over their naive counterparts. C; values were normalised to the levels of RPS18.

Adamts — a disintegrin and metalloproteinase with thrombospondin motif

6h 7 Days

WT/naive Ccl27/~/naive Ccr27/~/naive WT/naive Ccl27/~/naive Cer27/~/naive

FC + sd Pvalue FC =+ sd Pvalue FC+sd Pvalue FC +sd Pvalue FC+sd Pvalue FCx+sd P value
Adamts4  3.90 + 0.46 0.012 342 + 0.54 0.003 1.30 + 0.22 ns 1.87 + 0.38 ns 1.42 + 0.03 0.048 0.49 +0.18 ns
Adamts5 1.50 + 0.22 ns 2.96 + 0.64 ns 133 +0.23 ns 1.57 + 0.37 ns 2.26 + 0.76 ns 1.15 + 0.06 ns
Argl 84.23 + 7.03 <0.001 1.12 + 0.69 ns 41.46 + 6.25 0.008 3.14 +1.82 ns 237 £1.19 ns 9.67 + 0.57 <0.001
Arg2 1.05 + 0.01 ns 39.49 + 1097 ns 28.73 + 6.61 0.033 1.15+0.16 ns 46.98 + 346 <0.001 5.70 +1.73 ns
Ccl2 13141 + 1894 0.005 20.90 + 1.12  <0.001
Ccr2 2.24 + 045 ns 1.70 + 0.19 ns 141 + 045 ns 0.62 +0.21 ns
Cd14 5.16 £ 1.25 0.041 3.66 + 1.33 ns 9.21 + 1.67 0.028 1.89 + 0.88 ns 4.89 + 1.27 ns 446 +0.56  0.009
Cd68 2.14 + 0.09 ns 1.04 + 0.08 ns 0.26 + 0.09 ns 135+030 ns 1.32 £ 0.51 ns 039+0.09 ns
Has1 3.73 + 046 0.012 543 +0.26 <0.001 17.50 + 1.32 <0.001 0.57+050 ns 9.23 +0.93 0.003 18.08 + 1.22  <0.001
Has2 2.04 + 0.06 0.007 1.86 + 0.47 ns 2.70 + 0.97 ns 2.35+0.58 ns 939+ 139  0.009 2.09 +0.43 ns
Il1a 1.21 £ 0.10 ns 1.23 £ 0.10 ns 5.48 + 1.40 ns 1.02 + 0.02 ns 0.64 +£0.11 ns 295 +0.99 ns
I11b 517 +0.28 <0.001 3.65 +0.27 0.004 6.65 + 1.42 0.037 192+036 ns 5.65 + 1.58 ns 12.13 £+ 0.80 <0.001
I1r1 3.65 + 0.68 0.038 5.05 + 2.56 ns 3.31 +2.03 ns 1.31 + 0.07 ns 2.62 +0.48 ns 3.23 +£0.87 ns
116 16.84 + 2.89 0.012 4.25 + 0.64 0.025 0.99 + 0.58 ns 1.45 + 0.65 ns
Inhba 2.73 + 0.09 0.012 0.05 + 0.03 ns 1.60 + 0.26 ns 0.70 + 0.45 ns 0.52 + 0.03 ns 1.06 + 0.30 ns
Mmp13  0.42 + 0.07 0.004 0.72 + 0.22 ns 0.67 = 0.15 ns 0.61 + 0.41 ns 2.47 + 0.60 ns 0.75 £ 0.12 ns
Mmp3 6.01 + 0.00 <0.001 2.16 +0.19 0.013 1.21 £ 0.23 ns 2.01 +0.01 ns 35.78 +3.19 0.001 21.82 +2.98 0.005
Nos2 14.73 + 3.23 0.021 0.50 + 0.03 ns 8.18 +1.28 0.015 0.75 £ 0.27 ns
Ptges 1.44 + 031 ns 0.76 + 0.05 ns 1.01 + 0.00 ns 1.25 + 044 ns 0.85 +0.10 ns 1.29 + 0.07 ns
Ptgs2 14.04 + 2.44 0.012 0.81 + 0.05 ns 0.65 + 0.03 ns 9.04 + 1.82 0.039 0.46 + 0.07 ns 158 +0.29 ns
Timp1 4.90 + 0.44 0.003 0.70 + 0.22 ns 4.23 + 1.40 ns 1.24 + 0.27 ns 1.44 + 0.22 ns 3.62 +0.95 ns
Tsg6 31.19 + 0.22 <0.001 3341+294 0.001 53.36 + 1599 ns 4527 +2.03 <0.001 46.00 +3.15 <0.001 11.40+437 ns
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Table II
Ratio of gene expression changes for the Ccl2 ™/~ or Ccr2~/~ mice over the changes in the WT mice at 6 h and 7 days post DMM. C; values were normalised to the levels of RPS18
6h 7 Days
Cel2™/~/WT Cer27/~/WT Cel2™/~/WT Cer2/=/WT
Ratio + sd P value Ratio + sd P value Ratio + sd P value Ratio + sd P value
Adamts4 0.88 +0.17 ns 0.33 + 0.07 0.015 0.76 + 0.16 ns 0.26 + 0.11 ns
Adamts5 1.98 + 0.52 ns 0.89 + 0.20 ns 1.44 + 0.59 ns 0.73 £ 0.18 ns
Argl 0.01 £ 0.01 <0.001 0.49 + 0.09 0.022 0.75 + 0.59 ns 3.08 + 1.79 ns
Arg2 37.75 + 10.50 0.0473 27.47 + 6.33 0.028 40.99 + 6.47 <0.001 4.98 + 1.66 ns
Ccl2
Cecr2 0.76 + 0.17 ns 0.44 + 0.20 ns
Cd14 0.71 £ 0.31 ns 1.78 + 0.54 ns 259 +1.38 ns 236 +1.13 ns
Cd68 0.49 + 0.04 0.002 0.12 + 0.04 <0.001 0.98 +0.43 ns 0.29 + 0.09 ns
Has1 1.46 + 0.19 ns 4.69 + 0.67 0.001 16.34 + 14.52 0.003 32.00 + 28.34 <0.001
Has2 091 +0.23 ns 1.33 + 048 ns 399 +1.15 0.025 0.89 + 0.29 ns
I1a 1.02 + 0.12 ns 4.54 + 1.22 ns 0.63 +£0.11 ns 2.90 +0.98 ns
1I1b 0.71 £ 0.07 0.04 1.29 £ 0.28 ns 2.94 + 0.99 ns 6.32 + 1.27 <0.001
11r1 1.38 +0.75 ns 0.91 + 0.58 ns 2.01 +£0.38 ns 247 + 0.68 ns
116 0.25 + 0.06 0.03 1.46 + 1.08 ns
Inhba 0.02 + 0.01 <0.001 0.59 + 0.10 0.028 0.75 £ 0.48 ns 1.52 + 1.06 ns
Mmp13 1.74 + 0.60 ns 1.60 + 0.45 ns 4.05 + 291 ns 1.23 + 0.85 ns
Mmp3 0.36 + 0.03 <0.001 0.20 + 0.04 <0.001 17.84 + 1.59 0.001 10.88 + 1.49 0.006
Nos2 0.03 + 0.01 0.027 0.09 + 0.04 0.013
Ptges 0.53 +0.12 0.036 0.70 + 0.15 ns 0.68 + 0.25 ns 1.03 + 0.36 ns
Ptgs2 0.06 + 0.01 0.014 0.05 + 0.01 0.012 0.05 + 0.01 0.025 0.18 + 0.05 0.037
Timp1 0.14 + 0.05 0.003 0.86 + 0.30 ns 1.16 = 0.31 ns 2.91 + 0.99 ns
Tsgb 1.07 + 0.10 ns 1.71 + 0.51 ns 1.02 + 0.08 ns 0.25 +0.10 0.005
A
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Fig. 1. Chondropathy scores are not substantially different in WT, Ccl2~/~ and Ccr2~/~ mice. 10 weeks old, male WT (C57B/6]), Ccl2~/~ and Ccr2/~ mice underwent DMM. Joints
were harvested at 8, 12, 16 and 20 weeks post DMM for histological analysis and scored according to modified OARSI grading systems (each group using subtly different scores).
Chondropathy scores (Vincent group) were pooled from several experiments performed over 4 years (A). Pink — experimental data acquired pre-2013; grey — experimental data
acquired post-2013. Representative histology is shown (B). Histological scores using the same Ccr2~/~ strain but performed in a different laboratory (Malfait) are shown (C). Data
was analysed by analysis of variance (ANOVA) with Bonferroni post hoc testing, *P < 0.05. All other results non-significant.

developed pain-related behaviour later; occurring at 16 and 17
weeks post DMM respectively [Fig. 2(A) and (B)]. Sham-operated
Ccl2~/~ and Ccr2~/~ mice had normal weight bearing distribution
beyond the immediate post-operative period. All mice displayed
early post-operative pain-related behaviour (3—5 days) similarly.

Discussion

The CCL2/CCR2 axis is the principal monocyte chemo-attractant
pathway in humans and mice. Ccl2 is one of the most strongly

regulated genes in whole joint extracts of mice after joint desta-
bilisation and persists in the joint beyond 7 days. The RNA extracted
from whole joint extracts is largely attributable to the subchondral
bone, with relatively small amounts coming from synovium,
articular cartilage and meniscus?’. Nonetheless, Ccl2 is also strongly
regulated in the articular cartilage in response to mechanical
injury'>!“. Its roles in the joint are therefore likely to be varied;
affecting both recruitment of monocytes and other leucocytes
following destabilisation injury as well as having non-
immunological roles. CCR2 is not significantly regulated upon
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Fig. 2. Onset of pain-related behaviour is delayed in Ccl2~/~ and Ccr2~/~ mice post
DMM. 10 weeks old, male WT (C57BI/6]), Ccl2~/~ and Ccr2/~ mice underwent DMM or
sham surgery. Pain-related behaviour was assessed twice weekly for the first week,
then weekly by Linton Incapacitance testing. Statistical significance (ANOVA) was
determined by comparing the difference between destabilised and sham-operated
responses for Ccl2~/~ and Ccr2~/~ mice. Pain-related behaviour in WT mice is shown
along side.

joint injury but is expressed by many tissues of the joint including
chondrocytes (Vincent unpublished data).

OA is not a classical inflammatory arthritis; inflammation is
regarded as episodic and moderate, and it is debated whether sy-
novitis contributes to the production of the pathogenic proteases
(ADAMTS 5 and collagenases) that characterise disease. It is
nonetheless the case that most patients with severe radiographic
changes also show evidence of synovitis by magnetic resonance
imaging (MRI), and synovitis probably contributes to pain in these
individuals®® 3. Our results show that deletion of CCL2 and to
some extent CCR2, affects some of the inflammatory response to
joint destabilisation. Even though levels of Cd68, a macrophage
marker, were not significantly raised at 6 h post DMM in WT ani-
mals, there was nonetheless a significant suppression of Cd68 in
Ccl27!= and Cer2/~ joints at this time point. Cd14, another
macrophage marker, was elevated significantly in WT mice and was
suppressed in Ccl2/~ and Ccr27/~ joints, albeit not significantly.
Such changes might have been more evident had we measured
joint changes at 3 days post DMM, a time at which macrophage
levels typically peak after tissue injury'. It might also have been
more evident had we performed a fluorescence-activated cell

sorting (FACS) type analysis on extracts of synovium/capsule using
methods described by others®’. Nonetheless, our results are
consistent with unpublished observations that post-operative sy-
novitis, assessed by histology (following destabilisation or sham
surgery), peaks at around 24 h post-surgery (predominantly
neutrophilic at this stage) and is largely resolved by 7—10 days.

At 6 h post DMM, we were able to document a >90% reduction
in Nos2, Ptgs2, Inhba and arginase 1 in Ccl2~/~ joints, and a more
modest but significant suppression of several other genes
including 116, Mmp3 and Timp1l. A similar profile was seen in
Cer2~/~ joints although the data set for these genes was incom-
plete. Conversely, several inflammatory genes, including Has1/2,
Arg2 and Mmp3 showed increased joint expression at 7 days post
DMM in the knockout joints. Arg1 has many putative functions; its
principal role is in protein excretion through the degradation of
arginine in the liver, part of the urea cycle. It is also expressed in
several other tissues including macrophages where it in part de-
fines the ‘M2’ phenotype®>. In macrophages, metabolism of argi-
nine by arginase limits the availability of arginine for nitric oxide
synthesis and generates ornithine, which can promote polyamine
and proline synthesis. Thus high levels of Argl may indicate
accumulation of a subset of macrophages principally involved in
resolution of inflammation and promotion of repair**>°. Inter-
estingly, we observed a reciprocal increase in Arg2 levels in both
the knockout mice when Argl was suppressed. Unlike Arg1, Arg2
is located principally in mitochondria where it also likely plays a
key role in modulating nitric oxide and proline synthesis. It has a
more restricted tissue distribution and has no deleterious
phenotype upon constitutive deletion®®. Shifts in cellular meta-
bolism have recently been implicated in changing macrophage
phenotype®’ and it is interesting to speculate that deletion of Ccl2
or Ccr2 is leading to a shift in metabolic status of the cells of the
joint.

116, Mmp3, Inhba, Timp1 and Ptgs2 are all well characterised
inflammatory response genes with putative roles in OA pathogen-
esis. Several of these have been examined in knockout studies
in vivo. For example, the Ptgs 1/2 double knockout mouse did not
have altered chondropathy scores following DMM?, whereas IL6
has a conflicting role in disease; both an increase in disease with
age has been observed as well as decreased disease in experimental
OA (induced by DMM) in IL6 knockout mice®’. Mmp3 knockout
mice develop a small increase in disease following surgical desta-
bilisation® indicating a neutral or mildly protective role in the joint.
Inhibin A is a TGFb family member and is regulated by injury in the
joint and cartilage in an FGF2-dependent manner'4. The marked
suppression of Inhba in Ccl2™/~ and Ccr27I- joints post DMM may
be largely due to its role in circulating leucocytes where it has
macrophage polarizing as well as other immunoregulatory roles>s,
As inflammation is evidently important for promoting tissue repair
responses as well as matrix breakdown, the interpretation of the
influence of the CCL2/CCR2 axis on joint inflammation post injury
makes disease prediction very challenging.

Irrespective of the balance and type of inflammation present in
the joints of Ccl2~/~ and Ccr27/~ mice, there was no consistent
difference in the chondropathy score between these mice at three
different time points post DMM. As we amassed significant
numbers of animals in these studies, we were able to determine
retrospectively that, given the standard deviation, we were pow-
ered to detect a difference of 20% between means. Our failure to do
so, makes it unlikely that CCL2 or CCR2 has a clinically relevant
role in structural OA development. We also included data obtained
from a different laboratory in which very similar results, a small
non-significant reduction in disease, were obtained. The studies
performed in the Vincent lab were by different operators and took
place over a long period. When considering these results together,
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we found that there was a higher than expected spread of disease
scores in WT mice, although this did not appear to be due to drift
of disease severity over time or due to differences between op-
erators. The results, nonetheless, highlight the importance of be-
ing careful to power in vivo studies appropriately to overcome this
variation.

Our joint structure results were limited to cartilage degradation
scores and excluded detailed bone analysis. Osteophytes were
present in both Ccl2/~ and Ccr2™/~ joints post DMM (data not
shown). In Ccr2~/~ animals from the Malfait study, there was no
significant change in presence or size of osteophyte between
knockout and WT groups (data not shown). It would have been
valuable to do a quantitative analysis of synovitis in the different
genotypes, with immunostaining for specific leucocyte markers.
Validated measures of synovitis in murine OA have largely been
performed on sagittal joint sections, where the reflection of the
synovium can be visualised reliably in the anterior and posterior
fossae®?. Visualisation of the synovium from coronal sessions is less
reliable and was not performed.

In agreement with previously published studies, we found that
although chondropathy scores were not affected by Ccr2 deletion,
there was a change in the course of pain-related behaviour
following DMM. Measuring pain-related behaviour at the joint by
incapacitance testing, we were able to demonstrate a 4—5 weeks
delay in the onset of pain-related behaviour in both Ccl2~/~ and
Ccr2~!~ mice. Miller et al. previously reported that Ccr2~/~ mice
developed transient mechanical allodynia, but failed to exhibit
reduced activity (assessed by LABORAS) at 8 and 16 weeks post
DMM injury compared with WT animals'®. This raises the question
as to whether reduced activity might have become apparent had
they extended the study beyond this time. Their results are
consistent with transient inflammatory changes occurring in the
dorsal root ganglia at 8 weeks post DMM, perhaps involving acti-
vated macrophages. Taken together with our recent data, that point
towards direct induction of pain-sensitising molecules by me-
chanically injured joint tissues themselves?’, these results suggest
that transient regulation of CCL2/CCR2 in the dorsal root ganglion
(and perhaps joint), precedes development of pain possibly by
increasing the sensitivity of joint tissues to mechanical injury.
Antagonising this pathway may have clinical benefits for OA pain
but is unlikely to modify structural disease.
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