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Abstract

This paper introduces a new bias reducing method for kernel hazard es-
timation. The method is called global polynomial adjustment (GPA). It is
a global correction which is applicable to any kernel hazard estimator. The
estimator works well from a theoretical point of view as it asymptotically
reduces bias with unchanged variance. A simulation study investigates the
finite-sample properties of GPA. The method is tested on local constant and
local linear estimators. From the simulation experiment we conclude that
the global estimator improves the goodness-of-fit. An especially encouraging
result is that the bias-correction works well for small samples, where tradi-
tional bias reduction methods have a tendency to fail.

Key words: Kernel estimation; hazard function; local linear estimation;
boundary kernels; polynomial correction.

Resumen

En este artículo se introduce un nuevo método de correción del sesgo para
la estimación núcleo de la función de riesgo. El método, denominado ajuste
polinomial global (APG), consiste en una corrección global que es aplicable a
cualquier tipo de estimador núcleo de la función de riesgo. Se comprueba que
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APG posee buenas propiedades asintóticas y que consigue reducir el sesgo sin
incrementar la varianza. Se realizan estudios de simulación para evaluar las
propiedades del APG en muestras finitas. Dichos estudios muestran un buen
comportamiento en la práctica del APG. Esto es especialmente alentador
dado que para muestras finitas los métodos tradicionales de reducción del
sesgo tienden a tener un comportamiento bastante pobre.

Palabras clave: Estimación kernel; funciones de riesgo; estimación local
lineal; kernels de frontera, corrección polinomial.

—————————-

1. Introduction

In this paper we introduce a polynomial correction to a kernel hazard estimator
based on standard survival data formulated via counting processes. The global
correction attempts to obtain the best of both the two dominating non-parametric
estimation worlds: kernel estimation and spline estimation. One clear advantage of
kernel estimators is their analytical tractability whereas many practitioners seem
to prefer polynomial based methods since they often give a good performance.

In this paper we start with an arbitrary kernel hazard pilot estimator, α̃, and
correct it multiplicatively by a global polynomial. The parameters of the polyno-
mial are chosen in such a way that the empirical moments of the counting process
fit the resulting estimator up to some chosen order, r, of the adjusting polynomial.
The resulting estimator is called global polynomial adjustment (GPA).

Such a polynomial adjustment is known from density estimation, see Efron
& Tibshirani (1996). They do however use an exponential transformation of the
data. This procedure requires more computations, but it does have the advantage
of preserving positivity.

For the last decades there has been a lot of research aimed at finding new
ways of reducing bias of basic kernel smoothers. See Jones & Signorini (1997)
for an overview and a comparative simulation study in the case of kernel density.
Recently there is a huge development in the case of filtered data, see e.g. Nielsen,
Tanggaard & Jones (2009), Gámiz Pérez, Martínez Miranda & Nielsen (2013b) and
Spreeuw, Nielsen & Jarner (2013). The case of kernel hazard estimation is studied
in Nielsen & Tanggaard (2001). A multivariate study is given in Gámiz Pérez,
Janys, Martínez Miranda & Nielsen (2013a). However, none of these papers use
the GPA technique introduced in this paper but rather stop with local adjustments.
This is where our paper starts. We show that easy applicable global adjustments,
here the GPA, can improve these estimates significantly.

In this paper, we consider as pilot estimators the estimators considered in
Nielsen & Tanggaard (2001) who introduced the concepts of local constant and
local linear kernel hazard estimators and rephrased the well known estimator of
Ramlau-Hansen (1983) in this framework. Nielsen & Tanggaard (2001) also refor-
mulated the traditional multiplicative bias correction method of Jones, Linton &
Nielsen (1995) and Nielsen (1998) as the result of minimising a loss function and
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Global Polynomial Kernel Hazard Estimation 3

introduced a local additive bias correction method based on the same minimisa-
tion.

The GPA method could be considered as a semiparametric approach to non-
parametric estimation along the lines of Copas (1995), Eguchi & Copas (1998),
Hjort & Glad (1995), Hjort & Jones (1996) and Loader (1996). However, as the
asymptotic theory points out, then our type of semiparametric estimation is indeed
quite different from the more common semiparametric estimation techniques. It
is seen from the asymptotic theory that our estimator very often has a better
asymptotic bias than if a GPA correction had not been applied. This holds even
in situations, where the true underlying hazard is far from the used parametric
model: a polynomial in our case. This is different from these other semiparametric
models, where the estimation method only works if the used parametric model is
close to the true underlying hazard, see for example Hjort & Jones (1996).

The theory and the simulation experiment in Nielsen & Tanggaard (2001)
demonstrated that the local bias reduction methods are effective. Nevertheless, it
turns out that the global polynomial correction of this paper is so good, that it
is only of minor importance to use local bias adjustment in addition to the global
adjustment. The step from local constant estimation to local linear estimation
is, however, still important even when our global adjustment is used as a final
step. In particular, we note that the global correction method gives a substantial
improvement for small data sets where traditional bias reducing methods typically
do not work. A feature of the traditional bias reducing methods is that they seem
to work for data sets where there is no need for further precision, namely large
samples, whereas they do not work well for small data sets. This is not the case
for the global polynomial correction method as it works very well for both small
and large data sets.

The simulation study shows that the usual conclusion holds for global poly-
nomial adjustment, namely that it is better not to use too much bias correction
when the data sets are small. It is preferable to use the more sophisticated bias
correcting methods for large data sets. However, inspection of the simulation re-
sults suggests that applied researchers can do uniformly well by simply taking the
local linear estimator as pilot estimator and make a global correction along the
lines of this paper.

This paper proceeds as follows. In section 2 we introduce the general principle
of globally correcting a pilot kernel hazard estimator. In section 3 we give the
asymptotic properties of the GPA method and in section 4 we give an extensive
simulation evaluating the performance of 5 different pilot estimators.

2. Global hazard estimators in a counting process

setting

We observe n individuals i = 1, .., n. Let Ni count observed failures for the
i’th individual in the time interval [0, T ]. We assume that Ni is a one-dimensional
counting process with respect to an increasing, right continuous, complete filtration
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Ft, t ∈ [0, T ], i.e. one that obeys les conditions habituelles, see Andersen, Borgan,
Gill, & Keiding (1993, p.60). We model the random intensity as

λi(t) = α(t)Yi(t)

with no restriction on the functional form of α(•). Here, Yi is a predictable process
taking values in {0, 1}, indicating (by the value 1) when the i’th individual is under
risk. We assume that (N1,Y1), .., (Nn,Yn) are iid for the n individuals.

We consider any preliminary estimator, α̃, of α, and we define the r’th order
global polynomial correction based on adjusting the empirical counting process
moments to this estimator.

Let r be a positive integer and let M̂ = (M̂0, . . . , M̂r−1)
′, where

M̂j =

n∑

i=1

∫ T

0

sjdNi(s), j = 0, . . . , r − 1

is the j’th empirical counting process moment. We construct the global polynomial
estimator, α̂r, by adjusting the original estimator by a multiplicative polynomial
correction such that

α̂r(s) = ψr(s)α̃(s), s ∈ [0, T ],

where

ψr(s) =

r−1∑

k=0

ĉks
k.

The parameter vector ĉ = (ĉ0, . . . , ĉr−1)
′ is chosen such that the first r counting

process moments are correct, i.e.

M̂j =
∑n

i=1

∫ T

0
sjα̂r(s)Yi(s)ds

=
∑r−1

k=0 ĉk
∑n

i=1

∫ T

0
sj+kα̃(s)Yi(s)ds

=
∑r−1

k=0 ĉkĤk,j ,

where
Ĥ = (Ĥk,j)

is the r times r matrix with

Ĥk,j =

n∑

i=1

∫ T

0

sj+kα̃(s)Yi(s)ds

for k, j ∈ {0, . . . , r − 1}. The final global polynomial corrected estimator is there-
fore

α̂r(s) =

{
r−1∑

k=0

ĉks
k

}
α̃(s),
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Global Polynomial Kernel Hazard Estimation 5

where the estimator ĉ = (ĉ0, . . . , ĉr−1)
′ is given via

ĉ = Ĥ
−1

M̂

This estimator clearly depends on an invertible Ĥ.

Remark

One could have chosen to multiply an exponential function of a polynomial
instead of a polynomial itself. This would have the attraction of preserving pos-
itivity, but it would also have the disadvantage of requiring more complicated
numerical computations.

3. Asymptotic theory of the global polynomial es-

timators

The general approach in non-parametric kernel estimation is to divide the esti-
mation error into a stable part and a variable part. Under the standard conditions
in that smoothing theory (cf. e.g. Nielsen & Tanggaard (2001) for the local linear
estimator) it is easy to verify that the asymptotic properties of the variable part,
and thus the asymptotic variance, will remain unchanged from the global adjust-
ment. The bias will, however, change. While the order of magnitude of the bias
is unchanged, the leading term of the bias will be substantially reduced.

Let’s assume that before the global polynomial adjustment, the bias of the
estimator has the form

Bias(t) = g(t)bx + oP (b
x),

where b is a chosen bandwidth and g(t) is a function of the hazard argument, t.
For the estimators we will consider in the next chapters, we will have x = 2 for the
local constant and the local linear estimators, and x = 4 for the multiplicative bias
corrected estimator, and x = 6 for the two times multiplicatively bias corrected
estimator and the additively bias corrected estimator. After a global polynomial
adjustment it is a straightforward exercise to show that under the conditions of
the theorems in Nielsen & Tanggaard (2001) the bias will be adjusted to

Bias(t) = g(t)bx + oP (b
x),

where x is unchanged and g is replaced by

g(s) = g(s)

r−1∑

k=0

cks
k.

The coefficients, c0, . . . , cr−1, are chosen so that

∫ T

0

skg(s)α(s)γ(s)ds = 0

for k ∈ {0, . . . , r − 1} where γ(s) is the deterministic limit of n−1Y (n)(s). Hence
g(s) is a polynomial down-weight of g(s) towards 0. The larger r is, the heavier the
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down-weight will typically be. Therefore, the global polynomial method reduces
the leading term of the bias without changing the variance.

Accordingly the global polynomial kernel hazard estimation approach has good
theoretical properties and appears to be promising method for applied research.
In practice one must expect that r should be rather small when the observed data
set is small, whereas it takes a relative large data set to allow for the increased
complexity in the estimation step introduced by large r’s in the global polyno-
mial regression. This conjecture is supported by the study of the small sample
properties in the next section.

4. A simulation study

In this section we conduct a Monte Carlo simulation study of several hazard
estimators and the global polynomial adjustment of these estimators. We follow
Nielsen & Tanggaard (2001) and consider five different kernel hazard estimators:
α̂1(local constant), α̂2 (local linear), α̂3 (multiplicatively bias corrected local lin-
ear), α̂4 (double multiplicatively bias corrected local linear), α̂5 (additively bias
corrected local linear). More precisely, these estimators are defined as follows.
For a kernel K and a bandwidth b let

al(t) =

n∑

i=1

∫ T

0

Kb(t− s)(t− s)jW (s)Yi(s)ds, l = 0, 1, 2,

where Kb(u) = b−1K(u/b). The local constant estimator with the weighting W (s)
is

α̂1(t) =
n∑

i=1

∫ T

0

K̃t,b(t− s)dNi(s),

where

K̃t,b(t− s) =
Kb(t− s)

a0(t)
W (s).

The local linear estimator with weighting W (s) equals

α̂2(t) =

n∑

i=1

∫ T

0

Kt,b(t− s)dNi(s),

with

Kt,b(t− s) =
a2(t)Kb(t− s)− a1(t)Kb(t− s)(t− s)

a0(t)a2(t)− {a1(t)}
2 W (s).

The multiplicatively bias corrected estimator of the local linear estimator is
defined as

α̂3(t) = α̂2(t)ĝM (t),

where the local linear estimator of the multiplicative error, gM (t) = α(t)/α̂2 (t),

given by
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ĝM (t) =

n∑

i=1

∫ T

0

Kt,b(t− s){α̂2(s)}
−1dNi(s),

is constructed with the weighting function

W̃ (s) = {α̂2(s)}
2
W (s).

We also consider the two times multiplicatively bias corrected estimator, α̂4, which
is constructed by bias correcting α̂3.

The additively bias corrected estimator is based on a preliminary bias estima-
tor, B̂t, which is constructed by bootstrapping the bias (see Nielsen & Tanggaard
(2001)). The result is

B̂t =

∫ T

0

Kt,b(t− s) {α̂2(t)− α̂2(s)} ds.

Now

ĝA(t) =
n∑

i=1

∫ T

0

Kt,b(t− s)dÑi(s),

and

dÑi(s) = B̂−1
s dNi(s)− B̂−1

s α̂1(s)Yi(s)ds,

where Kt,b is constructed with the weighting function

W (s) = B̂2
s .

We call

α̂5(t) = α̂2(t) + ĝA(t)B̂t

the local linear additively bias corrected estimator.

In simulation studies we use the weighting W (s) = 1 and we consider global
corrections of order, r = 0, . . . , 8 (note that r = 0 amonunts to no correction). All
estimators are based on the kernel function

K(x) = (1− x2)6,

where we have left out the normalization constant. As in Nielsen (1998) and
Nielsen & Tanggaard (2001) we use as the true hazard one of the four functions:

γ1(t) = B(t, 2, 2),

γ2(t) = B(t, 4, 4),

γ3(t) = 0.6 ∗ [B(t, 0.5, 0.5) +B(t, 7, 7)] ,

γ4(t) = 0.6 ∗ [B(t, 0.5, 0.5) +B(t, 4, 2) +B(t, 2, 4)] ,
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where B(t, α, β) is for t ∈ (0, 1) the value of the Beta-density with parameters,
α, β (see Nielsen (1998) for a graph of the four functions).

Each simulation run is constructed as follows. First, we define a discrete grid on
the interval (0, 1) with grid length, δM = 1/(M+1), as {tm : tm = mδM ,m = 1, . . . ,M} .
Then for a sample of n individuals, failures at time tm are generated from the bi-
nomial distribution, Binomial

[
Y (n)(tm), γj(tm)δM

]
. We tried several values of M

but we report only the results for M = 500. Higher values of M do not seem to
alter the conclusions.

To evaluate the simulations we use the following global measure of estimation
error

err(α̂b) = n−1
n∑

i=1

∫ 1

0

[α̂b(s)− γk(s)]
2
Yi(s)ds.

Our simulation study is based on the best possible bandwidth and in the global
polynomial fit also the best possible, r with 1 ≤ r ≤ 9. Comparisons are there-
fore made in a best-case scenario, which separates choice of estimator from the
bandwidth and polynomial degree selection problems.

This means that for each simulation run where GPA is applied, we choose the
best two dimensional parameter, (b, r), having the lowest possible value of err(α̂b).
The lower bound on the estimation error is unattainable in practice. This parallels
the type of simulation study carried out in Jones, Linton & Nielsen (1995), Jones
& Signorini (1997), Nielsen (1998), Jones, Signorini & Hjort (1999) and Nielsen &
Tanggaard (2001).

Table 1-5 summarise the simulation results for the five different pilot estima-
tors, receptively, with samples of size n = 50, n = 150, n = 500 and n = 1000.

The left panel shows the minimum estimation error with no global adjustments.
The numbers are averages over 250 simulation runs of err(α̂b). The right panel
shows the values if the GPA is applied.

We can conclude that the GPA improves the goodness-of-fit for all estimators
and all sample sizes. Furthermore, the GPA works relatively better on the local
constant and the local linear estimators, that is when no local bias correction is
applied. It also seems to work better for small data sets. This is different to
classical local bias corrections (See α̂3, α̂4, α̂5 with no GPA) which seem not to be
advisable for small data sets.

Furthermore, we can see that the optimal r increases with the size of the data
set which indicates that large data sets allow for more complexity in the estimation
step.

In general, the simulation results support the asymptotic theory. We observe
that when GPA is applied, a greater bandwidth is chosen than without GPA.
The asymptotic theory tells that for a fixed bandwidth, GPA reduces the bias.
Therefore, a greater bandwidth (which adds bias and reduces variance) re-balances
bias and variance so that the global estimation error is minimised.
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Without GPA With GPA

Model 100× err b 100× err b r Sample size

γ1 6.22 0.46 4.19 0.89 2.71 50

γ2 6.34 0.34 4.00 0.58 3.07 50

γ3 14.12 0.36 12.12 0.60 3.31 50

γ4 8.38 0.97 8.09 0.97 0.62 50

γ1 2.76 0.32 1.59 0.91 3.18 150

γ2 2.78 0.28 1.62 0.58 3.40 150

γ3 8.65 0.23 6.47 0.64 4.66 150

γ4 4.93 0.88 4.81 0.89 0.85 150

γ1 1.11 0.24 0.55 0.91 3.72 500

γ2 1.00 0.22 0.50 0.58 3.90 500

γ3 5.19 0.12 3.68 0.61 5.22 500

γ4 3.68 0.66 3.59 0.70 2.00 500

γ1 0.66 0.20 0.30 0.92 4.34 1000

γ2 0.57 0.19 0.26 0.63 4.48 1000

γ3 3.82 0.07 2.99 0.50 5.31 1000

γ4 3.27 0.44 3.13 0.44 3.50 1000
Table 1: The local constant estimator α̂1

The estimation error is measured as the average over 250 simulation runs. The

minimisation is done with respect to the bandwidth, b, in the left panel and with

respect to the bandwidth and the polynomial degree, (b, r), in the right panel.

5. Conclusion

In this paper, we have introduced the so-called global polynomial adjustment
(GPA) for the bias reduction of kernel hazard estimators. The theoretical proper-
ties of the GPA as well as a simulation study, using several different pilot kernel
hazard estimators, suggest that the GPA is very promising. Therefore, it is worth
exploring the extension of the global estimation principle of this paper to the local
likelihood estimation principle (see, e.g. Otneim, Karlsen & Tjøstheim (2013))
and to the cases where variable bandwidth and variable kernel are considered (see
Nielsen (2003) and Koul & Song (2013)). Also, other parametric shapes than global
polynomials could have been used, for example the Gumbel distribution of Sali-
nas, Pérez, González & Vaquera (2012) or multivariate structures as in Martínez-
Flórez, Moreno-Arenas & Vergara-Cardozo (2013) or Lemonte, Martínez-Florez &
Moreno-Arenas (2015). In the latter case, one could for example adjust the marker
dependent hazard estimators of Nielsen & Linton (1995) or Nielsen (1998) accord-
ing to relevant global moments. The practical choice of polynomial correction r
is of course important. We are currently investigating to adapt cross-validation
and Do-validation to global polynomial kernel hazard estimation. This would in-
volve generalising the cross-validation and do-validation procedures given in Gámiz
Pérez et al. (2013b) to also include picking the order of the adjusting polynomial.
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Without GPA With GPA

Model 100× err b 100× err b r Sample size

γ1 4.64 0.59 3.60 0.86 1.79 50

γ2 5.16 0.43 3.70 0.70 2.37 50

γ3 15.05 0.40 12.59 0.53 3.86 50

γ4 12.79 0.89 11.95 0.94 1.13 50

γ1 1.75 0.49 1.20 0.78 1.87 150

γ2 2.34 0.34 1.50 0.67 2.77 150

γ3 7.97 0.24 6.12 0.45 4.54 150

γ4 6.13 0.83 5.86 0.85 1.30 150

γ1 0.64 0.38 0.39 0.65 1.97 500

γ2 0.89 0.25 0.49 0.61 3.12 500

γ3 4.00 0.15 3.18 0.36 4.26 500

γ4 3.75 0.57 3.63 0.57 2.08 500

γ1 0.36 0.33 0.21 0.56 2.08 1000

γ2 0.52 0.22 0.25 0.60 3.32 1000

γ3 2.78 0.10 2.41 0.24 3.89 1000

γ4 2.93 0.28 2.81 0.26 2.60 1000
Table 2: The local linear estimator α̂2

The estimation error is measured as the average over 250 simulation runs. The

minimisation is done with respect to the bandwidth, b, in the left panel and with

respect to the bandwidth and the polynomial degree, (b, r), in the right panel.

This again would secure that a classical variance/bias trade-off ensures that r is
not being picked too big (overfitting) or too small (not taking advantage of the
global correction trick).
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Without GPA With GPA

Model 100× err b 100× err b r Sample size

γ1 5.34 0.91 4.50 0.95 2.00 50

γ2 5.66 0.74 4.20 0.89 2.22 50

γ3 15.36 0.53 12.81 0.62 3.94 50

γ4 14.30 0.93 13.56 0.95 1.38 50

γ1 1.92 0.85 1.55 0.91 2.18 150

γ2 2.28 0.61 1.61 0.87 2.48 150

γ3 7.61 0.36 6.00 0.52 4.22 150

γ4 6.67 0.89 6.47 0.89 1.61 150

γ1 0.63 0.73 0.50 0.79 2.43 500

γ2 0.72 0.50 0.49 0.83 2.54 500

γ3 3.63 0.24 3.01 0.42 3.84 500

γ4 3.85 0.63 3.74 0.58 2.52 500

γ1 0.33 0.66 0.26 0.71 2.67 1000

γ2 0.38 0.45 0.24 0.81 2.77 1000

γ3 2.50 0.17 2.24 0.28 3.54 1000

γ4 2.91 0.32 2.80 0.30 2.94 1000
Table 3: The multiplicatively bias corrected estimator α̂3

The estimation error is measured as the average over 250 simulation runs. The

minimisation is done with respect to the bandwidth, b, in the left panel and with

respect to the bandwidth and the polynomial degree, (b, r), in the right panel.
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Without GPA With GPA

Model 100× err b 100× err b r Sample size

γ1 6.02 0.95 4.90 0.96 2.25 50

γ2 5.92 0.88 4.32 0.94 2.08 50

γ3 15.65 0.59 12.79 0.66 3.95 50

γ4 15.46 0.94 14.46 0.95 1.64 50

γ1 2.14 0.91 1.72 0.93 2.31 150

γ2 2.33 0.78 1.63 0.91 2.31 150

γ3 7.44 0.43 5.91 0.57 4.16 150

γ4 7.05 0.90 6.79 0.88 2.04 150

γ1 0.69 0.81 0.54 0.82 2.61 500

γ2 0.71 0.67 0.49 0.88 2.44 500

γ3 3.48 0.30 2.91 0.46 3.82 500

γ4 3.91 0.62 3.78 0.58 2.98 500

γ1 0.36 0.74 0.28 0.75 2.94 1000

γ2 0.37 0.62 0.25 0.85 2.65 1000

γ3 2.37 0.21 2.14 0.31 3.43 1000

γ4 2.89 0.32 2.78 0.30 3.21 1000
Table 4: The two times multiplicatively bias corrected estimator α̂4

The estimation error is measured as the average over 250 simulation runs. The

minimisation is done with respect to the bandwidth, b, in the left panel and with

respect to the bandwidth and the polynomial degree, (b, r), in the right panel.
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Without GPA With GPA

Model 100× err b 100× err b r Sample size

γ1 6.11 0.87 5.20 0.88 1.36 50

γ2 6.77 0.73 4.46 0.82 2.03 50

γ3 17.50 0.73 13.30 0.84 3.36 50

γ4 19.48 0.90 16.96 0.90 2.03 50

γ1 2.18 0.88 1.85 0.92 1.57 150

γ2 2.71 0.61 1.71 0.79 2.22 150

γ3 7.91 0.57 6.02 0.80 4.15 150

γ4 8.06 0.85 7.24 0.84 2.16 150

γ1 0.67 0.83 0.55 0.90 1.98 500

γ2 0.85 0.54 0.49 0.76 2.70 500

γ3 3.72 0.34 2.96 0.64 4.82 500

γ4 3.91 0.68 3.50 0.63 3.57 500

γ1 0.34 0.78 0.27 0.87 2.38 1000

γ2 0.46 0.51 0.24 0.76 2.90 1000

γ3 2.47 0.23 2.10 0.39 4.64 1000

γ4 2.71 0.48 2.41 0.45 4.24 1000
Table 5: The additively bias corrected estimator α̂5

The estimation error is measured as the average over 250 simulation runs. The

minimisation is done with respect to the bandwidth, b, in the left panel and with

respect to the bandwidth and the polynomial degree, (b, r), in the right panel.
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