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Abstract

Panel estimators can provide consistent measures of a long-run average parameter even

if the individual regressions are spurious. However, the t-test on this parameter is fraught

with problems because the limit distribution of the test statistic is nonstandard and rather

complicated, particularly in panels with mixed (non)stationary errors. A sieve bootstrap

framework is suggested to approximate the distribution of the t -statistic. An extensive Monte

Carlo study demonstrates that the bootstrap is quite useful in this context.
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1 Introduction

Most of the macroeconomic or �nancial variables researchers encounter are stochastic trend non-

stationary (integrated of order one or I(1) for short) and the theoretical long run relationships that

arise among them from arbitrage or market e¢ciency conditions have often proven rather elusive.

The error term in the empirical regressions used to characterize such relationships, albeit truly

stationary, can be observationally I(1) in �nite samples. This may stem, �rst, from threshold or

Markov cointegration due to transaction costs, lumpy costs of adjustment or major events such as

changes in technology, government policy or the presence of bubbles in prices which can interrupt

temporarily the adjustment towards an underlying long run equilibrium (Balke and Fomby, 1997;

Chortareas et al., 2003; Psaradakis et al., 2004). Second, data aggregation over time or across

individuals can induce highly persistent disequilibria as Taylor (2001) demonstrates in the context

of spot exchange rate and relative prices. Third, long lags in the response of, say, energy demand

to prices or wages to in�ation can also result in seemingly nonstationary disequilibria. Against

this background, the challenge is to extract the signal, that is, consistently estimate the long run

(average) association between the variables and to test whether it satis�es speci�c theoretical re-

strictions. Making reliable inferences about these theoretical relationships is important both for

forecasting and policy-making purposes.

The econometrics literature has recently established that one advantage of panels versus single

time series is that the danger of nonsense regression through lack of cointegration is mitigated.

In this context, Pesaran and Smith (1995) show that a cross-section regression for time averaged

data produces consistent long run measures. Kao (1999) and Phillips and Moon (1999) develop

multi-index asymptotic theory to demonstrate that the Least Squares Dummy Variable (LSDV)

and Pooled OLS (POLS) estimators are gaussian and
p
N -consistent for a long run average e¤ect.

One important message of this literature is that long run relations are not exclusively associated

with cointegrating regressions. For instance, purchasing power parity (PPP) or the long run

relation between spot exchange rates and relative prices has been traditionally associated with

mean-reverting real exchange rates. However, recent studies argue that it is possible to reconcile

PPP and nonstationary real exchange rates because the equilibrium real exchange rate may be a

moving function of unobserved I(1) factors (Coakley et al., 2004a).
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The problem we seek to tackle is that the usual (or HAC robust) POLS and LSDV standard

errors lead to severely distorted t-tests in the context of I(1)-error regressions. This problem will

also occur in iid or autocorrelated I(0)-error panels when the true (cointegrating) coe¢cients are

heterogeneous. More importantly, in heterogeneous panels with a mix of I(0)- and I(1)-error equa-

tions the asymptotic distribution of the LSDV and POLS estimators will depend in a complicated

manner upon a nuisance parameter, the fraction of I(1)-error equations.

Our study has two aims. First, it seeks to extend the existing work on nonstationary panels

by proposing a bootstrap �solution� to the aforementioned inference problems. We make use of

the sieve bootstrap which can be regarded as a nonparametric procedure. The basic idea of this

bootstrap method is to approximate the error process by an AR model of order increasing with the

sample size. The sieve bootstrap has been successfully employed to test for an autoregressive unit

root (Psaradakis, 2001, 2003; Chang, 2004), to resample from cointegrating regressions (Chang

et al., 2006), to conduct inference with VAR models (Inoue and Kilian, 2002a) and to construct

prediction intervals for nonlinear time series using neural networks (Giordano et al., 2007). We

develop two resampling algorithms that build both on the �xed regressor bootstrap of Hansen (2000)

and on the restricted residuals approach of Nankervis and Savin (1996). One scheme is based on

residual pretesting and constructs bootstrap samples that have the I(1) property by construction

whereas the other scheme applies the sieve bootstrap method directly to the residuals � we call

them, respectively, the pretesting sieve bootstrap (PSB) and the direct sieve bootstrap (DSB).

Second, the paper investigates via Monte Carlo simulation the e¤ectiveness of the bootstrap

in controlling the null rejection probability of the usual t-test and its power properties. We con-

sider regression models driven by both AR and MA innovations and allow for heterogeneity across

units. Unit root innovations with a negative MA component are also included � this data gen-

erating process (DGP) has attracted considerable attention in the literature because it produces

observationally iid sequences (Psaradakis, 2003; Chang, 2004). The Monte Carlo design covers

also: (i) probability distributions typical of economic data, (ii) near unit root or mixed I(0), I(1)

innovations, (iii) threshold unit root behavior, and (iv) cross-section dependence.

Several interesting �ndings emerge. First, asymptotic t-tests on the average slope coe¢cient

yield rejection rates of about 75% (at a nominal level of 5%) in simple homogeneous-slope panels

when just one individual error term is unit root persistent and the remaining N -1 errors are white

3



noise. These large size distortions apply to more general nonstationary panel settings and are shown

to worsen as the time dimension (T ) increases. Second, the sieve bootstrap-t method proposed

is shown to facilitate robust inference in a variety of settings which include iid or autocorrelated

I(0)-error panels, I(1)-error panels and panels comprising a mix of I(0) and I(1) errors. The sieve

bootstrap t-tests remain correctly sized in panel regressions with asymmetric, highly leptokurtic

innovations, I(1) errors with a negative MA component, and cross-section dependence. In the

problematic case of near-I(1) errors that may result from a threshold cointegrating mechanism, the

DSB scheme is shown to work better than the PSB algorithm. Moreover, the unit root pretesting

(PSB) e¤ects some power loss in the t-tests. Hence, the practical recommendation that emerges

from this study is to employ the DSB testing approach.

The paper is structured as follows. Section 2 outlines the model and assumptions. Section 3

discusses the asymptotic properties of the panel estimators under study. Section 4 describes the

bootstrap techniques and Section 5 analyses the simulation �ndings. A �nal section concludes.

2 Panel model and assumptions

Let data be generated for N cross-section individuals (or units) and T time periods according to

yit = �i + �ixit + uit; i = 1; :::; N; t = 1; :::; T; (1)

xit = xi;t�1 + eit; uit = �iui;t�1 + �it; (2)

�it =  i(L)"it; "it � iid(0; �2";i); (3)

where L is the lag operator and  i(z) =
P

1

j=0  i;jz
j with  i;0 := 1. The assumptions made are:

(A1) The individual error process eit is strictly stationary for all i.

(A2) Statistical independence of the processes eit and �is for all t and s.

(A3) The coe¢cients �i and �i are constant over time but may di¤er randomly over units, that

is, �i � iid(�; �2�), �i � iid(�; �2�); and (�i; �i)
0 are distributed independently of xit and uit:

(A4) The innovation sequence f"itg satis�es E["it] = 0; E["2it] = �2";i > 0 and E["
4
it] <1:

(A5) The sequence f i;jg satis�es j
P

1

j=0  i;j j > 0;
P

1

j=1 jj i;j j <1 and  i(z) 6= 0 for jzj � 1:

If j�ij < 1 for all i; we have a cointegrating panel. If j�ij = 1 for all i; there is one unit root in

uit and we have a non-cointegrating, I(1)-error panel which is just a univariate (single-regressor)

version of the setup in Phillips and Moon (1999; Sections 4 and 6). Assumption (A1) ensures that
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xit is an I(1) process. The exogeneity assumption (A2) allows us to build on the limit theory for

pooled estimators of I(0)- or I(1)-error panel regressions developed by Phillips and Moon (1999)

and Kao (1999). We allow for quite general temporal dependence in �it through (3) which builds

on Wold�s decomposition theorem � every weakly stationary, purely non-deterministic stochastic

process can be written as a linear �lter of uncorrelated random variables. Assumptions (A4) and

(A5) are su¢ciently general to accommodate weakly dependent processes of practical relevance

such as the invertible ARMA with iid innovations where j i;j j decays at rate O(�j) as j !1 for

� 2 (0; 1): Thus the process �it admits an AR(1) representation which can be approximated by

�it = �i;1�i;t�1 + :::+ �i;pi�i;t�pi + "
pi
it ; (4)

where "piit = "it +
P

1

j=pi+1
�i;j�i;t�j . It follows that

P
1

j=pi+1
�i;j = o(p�1i ) from assumption (A5)

and so if pi increases with T; the error in �nite approximation of �it can be made arbitrarily small.

In sum, the regression errors uit are allowed to be heterogeneous across units in the I(0) or I(1)

sense. Further stationary AR (or MA) dependence is also possible: Cross-section heteroskedasticity

is allowed and, since V ar(uit) = �i0 + tV ar(�it) when �i = 1; the presence of a unit root implies

time-series heteroskedasticity also. The regression disturbances may be contemporaneously cor-

related across units, cov(uit; ujt) 6= 0. To simplify the exposition, the initial discussion abstracts

from cross-section dependence but this issue is revisited in the simulations below.

The static equation (1) typi�es the empirical framework of many cross-country studies of PPP,

the Feldstein-Horioka puzzle or economic growth, inter alios: In the context of PPP, nominal

exchange rates (yit) are regressed against price di¤erentials (xit). One goal is to test for a unit

long-run average price elasticity irrespective of the stationarity properties of the individual residual

sequences. The main idea is to accommodate innovations that are observationally I(1) due to

Balassa-Samuelson productivity e¤ects and other real shocks, or stemming from measurement

error, transaction costs and other market imperfections such as limits to arbitrage (Taylor, 2001;

Coakley et al., 2004a). Several recent Feldstein-Horioka studies acknowledge protracted current

account imbalances due to productivity and demographic shocks, so it seems important to account

for observationally I(1) disturbances in country saving-investment regressions so as to measure

global average e¤ects (Taylor, 1998; Herbertsson and Zoega, 2000; Coakley et al., 2004b). Likewise,

in growth studies output is regressed against the stock of physical capital and/or education, and
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the error term captures technical progress. The individual equations are not long run equilibrium

relations if technology is I(1), but the average capital (or education) elasticity E(�i) is still of

interest for economists: As Temple (1999, p.126) puts it �[ ] given that the purpose of cross-country

empirical work is often to arrive at generalizations about growth, the averages are important�.

Pesaran and Smith (1995) and Phillips and Moon (1999) were the �rst to note that an average

or mean e¤ect can be consistently estimated in panel equations with individual I(1) errors. By

drawing an analogy with classical regression, Phillips and Moon (1999) de�ne the long run average

regression coe¢cient � � E(
yixi)=E(
xixi) where 
yixi and 
xixi are, respectively, the long run

covariance of Zit = (yit; xit)
0 and long run variance of xit. Phillips and Moon (1999) and Kao

(1999) prove theoretically that this mean e¤ect � is consistently measured through the POLS and

LSDV estimators (�̂) when the individual errors uit are I(0) or I(1). They further demonstrate

that �̂ converges to the normal distribution both in I(0)- and I(1)-error panels.

But there remain some inference problems. Suppose the goal is to test a hypothesis on the long

run average, H0 : � = �0 and H1 : � 6= �0; using the t-statistic, �̂ = (�̂ � �0)=s�̂ where �̂ is

�̂
POLS

=

PN
i=1

PT
t=1(yit � y)(xit � �x)PN

i=1

PT
t=1(xit � �x)2

; (5a)

or

�̂
LSDV

=

PN
i=1

PT
t=1(yit � yi)(xit � xi)PN

i=1

PT
t=1(xit � xi)2

, (5b)

with y = (NT )�1
PN

i=1

PT
t=1 yit and likewise for x: The standard error s�̂ is obtained from

s2
�̂
POLS =

PN
i=1

PT
t=1 û

2
it=(NT � 2)PN

i=1

PT
t=1(xit � �x)2

; (6a)

and

s2
�̂
LSDV =

PN
i=1

PT
t=1 û

2
it=(NT �N � 1)

PN
i=1

PT
t=1(xit � xi)2

; (6b)

if the regression disturbances are spherical, uit � iid(0; �2), or from an appropriate robust co-

variance matrix estimator in more general settings, e.g. heteroskedasticity and autocorrelation

(HAC) Newey-West style corrections. However, this testing exercise is fraught with di¢culties if

(at least one of) the individual regression errors is I(1). The key issue is that the conventional

formulae (s2
�̂
) or HAC robust corrections dramatically underestimate the true dispersion of �̂ in

the I(1)-error case. Kao�s (1999) simulations in a I(1)-error setup like ours, equations (1)-(2), but

simpli�ed to abstract from heteroskedasticity and further stationary autocorrelations reveals that:
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a) the true dispersion of the LSDV estimator �̂ is una¤ected by T; in line with the
p
N -consistency

property of �̂, b) the theoretical standard error s�̂ falls rapidly with T . As a result, the true

dispersion of the t-statistic grows signi�cantly with T and so the t-statistic does not converge to

any meaningful distribution. Moreover, when the true DGP is a heterogeneous-slope panel, even

if uit � iid there is an additional error component re�ected in the residuals which is I(1) and

heteroskedastic, (�i� �)xit, because the LSDV and POLS estimators impose common slopes. For

a practical analysis of the role of heterogeneity, see Fuertes and Kalotychou (2006).

Asymptotic covariance matrices for I(1)-error panels are derived in Phillips and Moon (1999)

using multi-index asymptotics but they are quite cumbersome to estimate and this may partially

explain the absence of applications in the literature as yet. They require kernel estimates of

the long run covariance matrices for each i; and so their small sample properties are sensitive to

bandwidth choice � kernel estimators can be substantially biased in small and moderately sized

samples, yielding tests with �nite sample properties that are very di¤erent from those predicted

in large-sample theory. Moreover, inference based on these asymptotic covariance matrices will be

problematic for mixed panels: if all error terms are I(0), the convergence rate of the POLS (LSDV)

estimator is T
p
N; if all error terms are I(1) the convergence rate is

p
N: Hence, the appropriate

normalization constant needed to derive the asymptotic covariance matrix is model dependent (it

depends on a nuisance parameter, the fraction of I(1) errors) and di¢cult to obtain.

3 Sieve bootstrap tests

This section presents bootstrap procedures for inference on the long run average coe¢cient. Section

3.1 discusses the construction of pseudodata while Section 3.2 deals with the bootstrap p-values.

3.1 Generating bootstrap panel samples

Our approach is in the spirit of the sieve bootstrap proposed by Bühlmann (1997) which relies on the

approximation of an in�nite-dimensional, nonparametric model by a sequence of �nite-dimensional

parametric models such that the dimension increases with the sample size. Accordingly, the tem-

poral dependence in the data is removed by an AR(pi(T )) approximation, a so-called sieve, where

pi(T ) ! 1 and pi(T ) = o(T ) as T ! 1. Bühlmann demonstrates the asymptotic validity of

the sieve bootstrap for a general class of nonlinear estimators. This is also proven by Psaradakis
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(2001, 2004) and Chang (2004) for unit root tests, Chang et al. (2006) for cointegrating coe¢-

cients, and Inoue and Kilian (2002a) for smooth functions of VAR slope parameters and innovation

variances. Due to observational equivalence, apart from the linear class of stochastic processes,

the sieve bootstrap procedure may also be successful in cases where the series at hand is nonlinear

but satis�es an �-mixing condition, an issue which is explored in Section 4 below.

Two di¤erent algorithms are suggested, called the pretesting sieve bootstrap (PSB) and the

direct sieve bootstrap (DSB), which share three aspects. First, they build on the �xed regressor

bootstrap approach of Hansen (2000) which amounts to treating the regressor as �xed in resampling,

that is, x�it � xit. Second, they build on the idea of restricted regression in resampling (Nankervis

and Savin, 1996; Li and Maddala, 1997) and so the scheme y�it = �̂+�0x
�

it+u
�

it or y
�

it = �̂i+�0x
�

it+

u�it is employed. Here �̂ (�̂i) is the constrained POLS (LSDV) estimator of the intercept term,

and u�it are the bootstrap innovations obtained by resampling (as detailed below) the restricted

regression residuals. The latter are given by ûit = yit � (�̂ + �0xit) for POLS and by ûit =

yit � (�̂i + �0xit) for LSDV. Third, the sieve order pi is chosen through the Akaike Information

Criterion (AIC) or Schwarz Bayesian Criterion (SBC) alongside a sequential 0.05-level testing

down approach. Thus the sieve order pi is the integer that minimizes log �̂
2
~T
+2pi= ~T with AIC and

log �̂2~T+2pi log
~T= ~T with SBC, where �̂2~T =

~T�1
PT

t=pi+1
"̂2it is the residual variance and

~T = T�pi
is the number of observations used in estimating the sieve.

Pretesting sieve bootstrap (PSB) algorithm

This approach to resampling the regression errors, uit; deals separately with their unit root non-

stationary properties and with the remaining stationary dependence. To preserve the former, the

order of integration of the error term for each panel member, uit � I(di); di 2 f0; 1g; is built into

the bootstrap errors by construction � the presence of one unit root may be known a priori (from

an existing theory or consensus empirical evidence) or otherwise pretested. To establish results

of practical relevance, in the simulations the order of integration is identi�ed by subjecting each

individual residual sequence {ûit} to the ADF test using MacKinnon (1996) one-sided critical val-

ues. The augmentation order is selected by a 0.05-level testing down procedure from kmax = 10:

Accordingly, �̂it � ûit in the I(0) case and �̂it � �ûit in the I(1) case.

Next a �nite AR(pi) approximation or sieve, as given in (4), is consistently estimated by
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single-equation OLS for each residual sequence f�̂itg thereby allowing heterogeneity in individual

autocorrelation structures and variances (cross-section heteroskedasticity) such that �2";i 6= �2";j .

Since the individual-speci�c means of the POLS (or LSDV) residuals, N�1
P

i �̂it; are not nec-

essarily zero, an intercept is included in the sieve. Alternatively, if T is moderate and the panel

members are believed to be (near) homogeneous, e¢ciency gains can be obtained by employing a

single sieve, i.e. by �tting an AR model to the pooled NT � 1 residual vector �̂. The bootstrap

residuals u�it are constructed using any of two resampling tools, called b1 and b2; respectively.

In the b1 version; B stationary sequences f��itgBj=1 are generated recursively for each i using

��it = �̂0i + �̂1i�
�

i;t�1 + :::+ �̂pi�
�

i;t�pi + "
�

it; "
�

it � iidN(0; �̂2";i); (7)

starting from some random initial values V �0 = (��i0; �
�

i1; :::; �
�

i;pi�1
)
0

, where �̂2";i is the squared

standard error of the sieve. Since using the same V �0 in every bootstrap loop may alter the

stationarity properties of �̂it; we follow the block initialization approach of Stine (1987) and divide

the sequence f�̂itg into T � pi + 1 overlapping blocks of length pi. A block is randomly selected

(with replacement) for V �0 in each bootstrap. Bootstrap residuals u�it are constructed with d̂i

unit roots imposed, �d̂iu�it = ��it: Rewriting the latter using partial sums or stochastic trends, for

instance, for d̂i = 1 we generate u
�

it = u�i0 +
Pt

k=1 �
�

ik with u
�

i0 = 0:

In b2; the residual sequence {u
�

it} is constructed from {��it} in the same manner. However, one

important di¤erence is that the pseudo-innovations "�it are drawn with replacement from the sieve

residuals for each unit i; after adjusting for location and scale, that is, from

~"it =

s
T

T � p̂i
("̂it � T�1

TX

t=1

"̂it);

rather than assuming a gaussian distribution. The PSB test is denoted ��b1 or �
�

b2
; respectively.

Direct sieve bootstrap (DSB) algorithm

This approach applies the sieve approximation directly to ûit rather than to the transformed

residuals �̂it � �di ûit, di 2 f0; 1g: Accordingly, B sequences fu�itgBj=1 are obtained for each i using

u�it = ̂0i + ̂1iu
�

i;t�1 + :::+ ̂piu
�

i;t�pi + "
�

it;

assuming "�it � iidN(0; �̂2";i) as in the b1 scheme above, or drawing "
�

it with replacement from the

sieve residuals as in b2: The DSB test is denoted ~�
�

b1
or ~��b2 , respectively, in each scheme.
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This algorithm is motivated by the �ndings in Inoue and Kilian (2002b) regarding how to

bootstrap persistent processes of unknown order of integration. They demonstrate that the stan-

dard bootstrap algorithm for unrestricted autoregressions is asymptotically valid for many I(1)

processes. These include the important cases for applied work of a (near) random walk process

with drift and high-order autoregressive (near) unit root processes with or without drift. In our

context, the pooled LSDV (or POLS) residuals have zero mean by construction which is not the case

for the individual residual sequences, fûitgTt=1. Thus in e¤ect, the appropriate sieve for {ûitgTt=1
has a non-zero intercept. For the validity of the DSB scheme, it is required that (̂0i; ̂1i; :::; ̂pi)

0

is consistent. It is well known that OLS satis�es the latter when uit is stationary (Brockwell and

Davies, 1991) and in the unit root case (West, 1988).

3.2 Bootstrap inference

In the spirit of the bootstrap-t method (see the monograph by Efron and Tibshirani, 1993; Ch.

12), for each of B bootstrap panel samples f(y�it; x�it)gBj=1 we calculate the bootstrap t-statistic

�̂� = (�̂
� � �̂)=s�

�̂
where �̂

�

and s�
�̂
are, respectively, the bootstrap POLS (LSDV) slope estimate

and its HAC robust standard error. The theoretical p-value of a two-tailed test is de�ned as

p
�̂
� P�

0
(j�j > j�̂j) where �̂ is the usual t-statistic computed from the observed sample and P�

0
(�)

indicates probability under the null. This p-value is estimated as p̂�
�̂
� 1

B

PB
j=1 I(j�̂�j j > j�̂j) where

f�̂�1; :::; �̂�Bg is the sequence of bootstrap t-statistics and I(�) is an indicator function. The null

hypothesis is rejected if the bootstrap p-value, p̂�
�̂
; falls below the nominal level �:

We consider a second method (an earlier use of the bootstrap) which makes use of the fact

that, in the present context, the distribution of �̂ is known to be asymptotically normal. The

bootstrap estimator ~s�
�̂
=
q
B�1

PB
j=1(�̂

�

j � ��
�

)2 is used to approximate the standard error of �̂;

where f�̂�1; �̂
�

2; :::; �̂
�

Bg is the sequence of long run average coe¢cients (with mean ��
�

) estimated

for each of the bootstrap samples. The bootstrap-studentized t statistic (denoted ~��) obtained by

substituting ~s�
�̂
for s�̂ in �̂ is used to make inferences on the basis of the N(0,1) quantiles.
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4 Finite sample properties

4.1 Simulation design

The �nite sample behaviour of the sieve bootstrap t-tests on the long run average coe¢cient is

now analyzed by means of Monte Carlo experiments. The following DGP is used

yit = �i + �ixit + uit; i = 1; 2; :::; N; t = 1; 2; :::; T; (8)

�xit = eit; eit = �iei;t�1 + �it;

uit = �iui;t�1 + �it;

where �it obeys any of the stationary processes

(AR) �it = �i�i;t�1 + "it, (MA) �it = "it +  i"i;t�1; (9)

for j�ij < 1: The innovations are generated according to

("it; �it)
0 � iidN

" 
0

0

!

,

 
1 '�2

'�2 �2

!#

;

where the signal-noise ratio is given by �2 and the endogeneity by ': We set ' = 0 so that uit

and xis are independent for all t; s: The initial set of simulations rules out contemporaneous cross-

section dependence and is calibrated to match the sample dimensions and signal-noise ratio of

the post Bretton-Woods monthly OECD spot exchange rate (y) and price di¤erential (x) panel

in Coakley and Fuertes (2001) � �2 = 0:2; N = 15; T = 300: The �rst T0 = 50 observations are

dropped for each i. The intercept is �i � iidU(�0:5; 0:5) and �i = 0 for the LSDV and POLS

simulations, respectively. All computations are programmed in GAUSS.

We set �i = 0 for all i to simulate a cointegrating panel. For the I(1)-error panel, we set

�i = 1 for all i: Mixed I(0), I(1) panels are obtained by setting �i = 0 for a �xed fraction

of individuals i = 1; 2; :::; [�N ] and �i = 1 elsewhere. A wide spectrum of cases is considered,

� = f0:05; 0:2; 0:5; 0:8; 0:95g. We set �i = 0:5 to introduce temporal dependence in �xit also.

The baseline �it �iid case is considered by setting �i = 0 ( i = 0): Next we allow for AR

processes, �i 2 f0:5; 0:9g; and MA processes,  i 2 f0:5; 0:9g: Cross-section heteroskedasticity in

�it is introduced through random coe¢cients �i � iidU(0:3; 0:5);  i � iidU(0:3; 0:5); �rst, and �i �

iidU(0:2; 0:9),  i � iidU(0:2; 0:9); second, to consider di¤erent degrees of heterogeneity. Negatively

correlated MA errors are introduced through  i 2 f�0:5;�0:8g and  i � iidU(�0:9;�0:2): The
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case  i = �0:8 has attracted considerable attention in the unit root testing literature (for instance,

see Psaradakis, 2001).

The assumption that the regression disturbances uit are gaussian is relaxed by drawing "it

from pdfs that have been shown to be empirically relevant in business and economics. These

include a Student�s t with �ve degrees of freedom (D1 = t5), a shifted chi-squared (D2 =

�25 � 5) and, following Nankervis and Savin (1996), the highly leptokurtic mixture of normals

D3 = 0:8N(0; 1)&0:2N(0; 16): D1 captures fat tails whereas D2 characterizes asymmetry and

leptokurtosis. All distributions are rescaled to have unit variance.

Finally, the panel setup is generalised to accommodate threshold cointegration which is a

plausible rationale for observationally I(1) errors. We generalize (5) as follows

uit =

8
><

>:

+c+ �i(ui;t�1 � c) + �it if ui;t�1 > c;

ui;t�1 + �it if c � ui;t�1 � �c;
�c+ �i(ui;t�1 � c) + �it if ui;t�1 < �c;

(10)

with �it � iidN(0; 1): This model allows for discontinuous adjustment to equilibrium, namely,

a �band of inaction� around zero. For large positive (negative) disequilibria uit, there is mean

reversion towards c (-c). The idea is that only when uit exceeds a critical threshold; do the bene�ts

of adjustment exceed its costs and hence, economic agents act to move the system back towards

equilibrium. Balke and Fomby (1997) simulate (10) using �i = 0:4 and c = f3; 5; 10g to represent

geometrically ergodic processes satisfying ��mixing conditions. The resulting sequence {uitgTt=1
is observationally equivalent to an AR1 series with unconditional �rst-order autocorrelations of

0.90, 0.96 and 0.99, respectively. We use the same �i and the wider range c 2 f1; 2; 3; :::; 12g.

The hypothesis of interest is H0 : � = �0. All tests are based on the t statistic using the

HAC Newey-West covariance matrix with truncation lag L = b4
�
T
100

�2=9c: The experiments deal

with two methods of inference. One uses the standard normal distribution (�). The other is a

sieve bootstrap in its gaussian (��b1) or semi-parametric (�
�

b2
) form: Unless otherwise noted, the

bootstrap tests are based on the AIC in selecting the sieve lag order pi 2 f0; 1; :::; ~pT g where

0 signi�es the iid case. The maximum sieve order considered is ~pT = 10 which corresponds to

Buhlmann�s (1997) criteria, ~pT = ba log10 T c, with a = 4:

Each of the Monte Carlo replications follows the steps: (i) Generate Zit = (yit; xit)
0 data using

(5)-(9); (ii) Test for H0 : � = �0 at the 5% signi�cance level, and record R = 1 if rejection and 0

otherwise; (iii) Repeat the above two steps M times; (iv) Compute the rejection frequency of the
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test, R=M . M = 1; 000 Monte Carlo replications and B = 500 bootstrap repetitions are used.

4.2 Simulation results

Finite sample performance in terms of size (or level) is studied �rst. We start with homogeneous-

slope panels, �i = 1:Next, we allow for heterogeneity, �i � iidU(0:7; 1:3): The hypothesized value is

�0 = 1: To allow for some random variation, a con�dence interval for the Type-I error probability

estimate �̂ is formed using the (binomial) standard error estimator ��̂ =
p
�(1� �)=M: For

� = 0:05 and M = 1; 000 this gives the two-standard error con�dence interval (0.036, 0.064).

Figure 1 displays the empirical distribution function (EDF) of the LSDV t�statistic over 1,000

Monte Carlo replications, alongside that of a standard normal. The plots correspond to panel

DGPs where �i � iidU(�0:5; 0:5); �i = 1, and �i = 0:5: Plots A and B pertain to cointegrating

(�i = 0) regressions with iid errors (�i = 0) and AR1 errors (�i = 0:9), respectively. Plots C and D

correspond, respectively, to a non-cointegrating panel (�i = 1) and a mixed I(0)-, I(1)-error panel

� �i = 0 in 80% of the units and �i = 1 elsewhere � with �i = 0:9 in both.

[Figure 1 around here]

Plot A corroborates that standard asymptotic inference is valid in cointegrating panel regressions

with iid errors. But when the error sequences are all I(0) but strongly autocorrelated, all I(1)

or a mix the sampling variability of the t-statistic is well above that of the standard normal.

However, its distribution remains symmetric. The EDF of the LSDV estimator �̂ for the same four

DGPs alongside a normal EDF with the same variance (Appendix Figure A1) lends support to the

extant panel theory. The distribution of �̂ is centered on the true value of unity and approximately

normal except for the mixed I(0)- and I(1)-error panel where it shows signi�cant leptokurtosis. The

Appendix material for the paper is available at www.cass.city.ac.uk/faculty/a.fuertes.

Homogeneous slope coe¢cients

Table 1 reports the empirical size of the t-tests based on the LSDV estimator in homogeneous-slope

panels. The results for the POLS estimator are quite similar (see Appendix Table A1).

[Table 1 around here]
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In the iid-error case, inference based in the N(0,1) quantiles is reliable as one would expect and so

� is correctly sized. Reassuringly, the same is true of the bootstrap-t approach (��b1 and �
�

b2
) with

empirical sizes that clearly lie within the two standard error con�dence limits. The rejection rates

from the PSB and DSB methods are similar so, to preserve space, the table reports the former

only. But the main issue is whether correct rejection probabilities are attained with I(0)-errors

that are autocorrelated and possibly cross-sectionally heteroskedastic, and in I(1)-error panels.

As Table 1 shows, the test � is still correctly sized in cointegrating panels with either homoge-

neous or heterogeneous AR (MA) dependence in uit: But a large degree of autocorrelation e¤ects

signi�cantly oversized tests � for �i = 0:9 and �i � U(0:2; 0:9) the rejection rate jumps to 34.9%

and 16.4%, respectively. Reassuringly, the empirical signi�cance level of the bootstrap tests is

reasonably close to the nominal level, despite two potential pitfalls of our resampling approach.

One is that we resample uit and, hence, do not explicitly incorporate the information that xit is

I(1). Another is that we do not correct for sieve order and parameter uncertainty. For small T

samples, the AR estimates from OLS are downward biased, particularly for strongly autocorrelated

(persistent) series, so the bootstrap may not be as e¤ective. However, the accuracy of the sieve

can be substantially improved using �nite-sample bias corrections such as the median-unbiased

AR estimation approach of Andrews and Chen (1994). This issue is addressed below.

The right-hand side of Table 1 reports the empirical level of t-tests for I(1)-error regressions.

The simulations con�rm the theoretical result that conventional asymptotic inference (�) leads to

unacceptably large size distortions of about 68% for the panel dimensions under study. By contrast,

the sieve bootstrap tests attain essentially the correct level. Other intercept or slope parameter

speci�cations give also qualitatively similar results. For instance, using �i = 0; �i = �i = 0 in

(5) so that yit and xit are now two independent random walks, and testing for H0 : � = 0 gives

rejection probabilities of 65.8% (�) and 4.5% (��b2). Hence, sieve bootstrap-t tests will not suggest

a signi�cant long run relationship when it actually does not exist.

Regarding the issue of pooled or individual resampling, Table 1 illustrates that both approaches

(reported in normal and italic font, respectively) give the correct level for T = 300. One exception

is the AR case for �i = 0:9 where the pooled resampling generally works better. This may be

because, by pooling the residuals �̂it, a larger sample is e¤ectively used in the sieve approximation

and so the downward bias problem (for �i near 1) is mitigated.
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The alternative bootstrap-studentized t approach yields correctly sized bootstrap tests in I(0)-

error panels as long as the autocorrelation in the errors is not strong � for �i > 0:9 the bootstrap

tests are somewhat distorted both for pooled and individual resampling. Likewise, there are some

distortions in the context of I(1) errors. Detailed results are given in Appendix Tables A2(a,b).

This suggests that computing the bootstrap version of the (improperly studentized) t-statistic �̂

for each bootstrap sample is more e¤ective than calculating the bootstrap standard error of �̂ in

order to studentize �̂: Hence, we focus on the bootstrap-t approach hereafter.

Heterogeneous slope coe¢cients

In the context of I(1)-error panels with heterogeneous slopes �i; the �rst-order di¤erenced residuals

measure �it+(�i��)�xit where �it is an AR1 or MA1 process with innovations "it � iidN(0; 1):

The AR1 process (�i � �)�xit is orthogonal to "it and has variance (�i � �)2 �2. The residual

sequence f�ûitg for each i = 1; :::; N is therefore a realization from AR1 or ARMA(1,1) processes

with heterogeneous coe¢cients and cross-section heteroskedasticity. The DGPs considered are like

those in Table 1 but allowing �i � U(0:7; 1:3): The empirical size of the asymptotic and bootstrap

tests is, respectively, 72% and 5.6% on average for the di¤erent DGPs considered � results are

reported in Table A3 in the Appendix. Hence, the sieve bootstrap tests generally attain the correct

nominal size in heterogeneous-slope I(1) panels also.

Non-gaussian disturbances

The empirical level of the tests when the regression errors are non-gaussian I(1) is reported in

Table 2. For the panel dimensions under consideration (N = 15; T = 300); the bootstrap tests

still perform quite well for skewed and/or leptokurtic errors. Additional simulations for T = 150

ceteris paribus produce qualitatively similar results:

[Table 2 around here]

For T = 60; the bootstrap tests deteriorate slightly because the sieve approximation is less accu-

rate, but they still clearly outperform the asymptotic test �: For instance, for �i = 0:9 using D1

(Student�s t with 5 d.f.) errors the rejection rate of the LSDV t-test is 36.3% (�) and 3.6% (��b2)

when the errors are I(0), and 76.3% (�) and 6.7% (��b2) when the errors are I(1). For D3 (normal

15



mixture) errors, the corresponding �gures are 34.5% (�); 3.5% (��b2) and 78.1% (�); 6.6% ( ��b2),

respectively. The results for I(0)-error panels are quite similar (see Appendix Table A4).

Mixed I(0), I(1) errors

Table 3 pertains to panels where a fraction � of equations is cointegrating (�i = 0) and the

remainder are non-cointegrating (�i = 1). As noted earlier, heterogeneous slopes induce I(1) errors

in all equations irrespective of �i; so �i = 1 is adopted for these simulations. We consider � =

f0:05; 0:20; 0:50; 0:80; 0:95g alongside the AR and MA parameters �i = f0; 0:5; 0:9g and  i = 0:5.

[Table 3 around here]

One remarkable result in the iid-error panel case (�i = 0) is the size distortion of the conventional

t-test (�) at around 70% for all �. Of particular interest is its large size distortion that appears for

� = 0:95; when virtually all the equations (14 out of 15) are cointegrating. This contrasts sharply

with the correct size of � at 5.7% (POLS) and 4.6% (LSDV) in the counterpart case (Table 1)

where all equations are cointegrating, � = 1. As Table 3 illustrates, correct inferences can still be

made through a sieve-bootstrap when the panel errors are a mix of I(1) and I(0) processes.

Negatively correlated MA errors

We now consider the problematic case where the noise in (5) has a negatively correlated MA1

component  i = f�0:5;�0:8g. To conserve space we focus on the LSDV estimator and compare

the � and ��b2 tests. We consider as fraction of I(1) errors � = f0:00; 0:20; 0:50; 0:80; 0:95g and

explore the e¤ects that the choice of the sieve order p̂i has on the �
�

b2
test. On one hand, we �x the

latter at p̂i = f1; 3; 5; 8; ~pT g with ~pT = b4 log10 T ]. On the other, we select p̂i among f0; 1; 2; :::; ~pT g

using either either the AIC, SBC or a sequential 0.05-level testing down approach.

The true sampling variability of �̂ is underestimated by the HAC formulae when the noise (of

at least one equation) is I(1), irrespective of the MA dependence and so the asymptotic test � is

severely oversized at around 68%. For � = 0:5 and  i = �0:5; the empirical size of ��b2 with sieve

order choice as indicated in parenthesis is 4.2%(1); 5.4%(8); 6.1%(~pT ), 6.3%(AIC), 5.5%(SBC), and

5.7%(t-test); for  i = �0:8; the results are 2.0%(1); 4.6%(8); 5.4%(~pT ), 5.3%(AIC), 3.7%(SBC)

and 4.7%(t-test): Unsurprisingly, for  i = �0:8 the PSB test appears rather conservative for small

p̂i. However, it improves as the sieve order increases in the allowed range f1; 2; :::; ~pT g. Sieve
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orders 8 � pi � p̂T = 10 su¢ce to ensure correctly sized tests. The other speci�cations give similar

results as detailed in Appendix Table A5. By contrast, the DSB test tends to overreject for small

pi. But again the distortions vanish as pi increases, although larger sieve orders (10 < pi < 15)

are generally needed for the DSB scheme to attain the correct level.

Choice of sieve order and sample size e¤ects

The foregoing analysis does not reveal systematic di¤erences between the AIC and SBC for the

choice of sieve order with one exception, the former criterion seems to be preferred over the latter in

the context of large negative MA roots. This is in agreement with Kilian (1998) who examines these

criteria in the context of bootstrapping (V)AR models and �nds that the adverse consequences

of over-parameterizing an AR model for bootstrapping purposes may be less severe than those of

under-parameterizing it. The testing-down approach performs similarly to the AIC.

We analyse panels with N �xed at 15 and T = f60; 80; 100; :::; 350g; and T �xed at 150 with

N = f10; 12; 15; :::; 45g. The focus is on the challenging mixed I(1)-, I(0)-error panels (� = 0:5)

with heterogeneous dependence of AR1 type, �i � iidU(0:2; 0:9); or negative MA1 type,  i �

iidU(�0:9;�0:2); all other speci�cations are as in Table 3. The results in Appendix Figure A2

suggest that the error in null rejection probability of the bootstrap test is essentially insigni�cant

for all these (N;T ) combinations. For the test �, the size distortions worsen with T as expected.

Near unit roots and threshold unit root e¤ects

So far we have used �i = 0 or �i = 1. The null rejection probability of the tests is now examined

for various degrees of autocorrelation (0 � �i � 1) in the regression errors. For near unit roots,

the error uit is observationally equivalent to an I(1) process in �nite samples but, since �i < 1; the

�rst-order di¤erencing of uit will result in a non-invertible MA term that will make it hard for the

sieve bootstrap to work. The plots in Figure 2 are for N = 15; T = 300, �i = 0;  i = 0 and �i = 1:

[Figure 2 around here]

The performance of the test � worsens dramatically as �i increases. In stark contrast, the bootstrap

(PSB) test ��b2 does a reasonably good job, especially for the exact I(1) case and when �i � 0:9:

However, the plots show that for 0:9 < �i < 1 the test �
�

b2
is too conservative. This is because the
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order of integration di is estimated using the ADF test whose power falls dramatically as the AR

root approaches unity. The over-di¤erencing of uit makes it hard for the sieve bootstrap to work.

This pitfall of the PSB scheme can be mitigated by using, instead of the ADF test, a more

powerful unit root test for which there are a number of good candidates (see Maddala and Kim,

1998). It turns out that applying the sieve approximation directly (DSB scheme) to the individual

residual sequences {ûitg without di¤erencing works quite well. Figure 2 shows that the DSB

approach (~��b2) does a reasonably good job in correcting the size distortions of conventional t-tests

for near I(1)-error panels. Interestingly, the bootstrap test based on the LSDV estimator (that

exploits the within variation in the data) appears superior to that based on the POLS estimator

(that gives equal weight to the within and between variation) for �i � 0:97: The foregoing analysis

thus suggests that the DSB approach is more reliable than the PSB approach.

We now revisit the notion that (behavioral) threshold e¤ects can make regression errors appear

nonstationary in �nite samples. Figure 3 reports results for homogeneous cointegrating regressions

(�i = 1) with threshold dynamics in the error term according to the equation (10) so that �i

switches between 0.4 and 1 over time. The reported results pertain to the DSB approach. For

the POLS estimator, we also deploy a slightly modi�ed bootstrap (denoted ~��MU
b2

) where the sieve

approximation is based on the median-unbiased correction of Andrews and Chen (1994).

[Figure 3 around here]

As the width of the band-of-inaction increases with c, the asymptotic test � becomes dramatically

oversized. The bootstrap test ~��b2 eliminates the size distortions. For large c � 7; when the

threshold AR1 series uit becomes observationally equivalent to a linear AR1 series with �i � 0:98,

�nite-sample bias corrections notably improve the performance of the POLS-based bootstrap test.

Cross-section dependence

The Monte Carlo design includes now panels with cross-correlated errors. Two distinct setups are

considered. One is an unobserved-factor residual model (DGP1) which has been widely used in

recent years (see inter alios Pesaran, 2005; Coakley et al., 2004a, 2005). The regression distur-

bances contain an I(1) common e¤ect, ft = ft�1 + "ft , "ft � iidN(0; 1); and an individual-speci�c
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(idiosyncratic) error �it with stationary AR (or MA) dependence as in (9). In particular, we adopt

uit = ift + �it; (11)

�it = �i�it + "it; (12)

and the innovations "it follow a multivariate normal distribution with mean zero and covariance

matrix E("t"
0

t) = IN where IN is the identity matrix. We set i = 1 and i � iidU(0:5; 1:5)

to allow, respectively, for homogeneous and heterogeneous factor loadings. The latter amounts to

heterogeneous cross-section correlations. In the second setup (DGP2), the errors are generated

according to uit = ui;t�1 + �it with �it = �i�it + "it and a non-diagonal covariance matrix

E("t"
0

t) = 
" =

2

666
4

1 ! ... !

! 1 ... !

: : : :

! ! ... 1

3

777
5
;

as in O�Connell (1998), Coakley et al. (2004a) and Chang (2004). Two levels of homogeneous

cross-correlation are used, ! = f0:6; 0:9g: For �it we consider �i = 0; �i � iidU(0:2; 0:5); and �i �

iidU(0:7; 0:9). All other speci�cations are as in the experiments of Table 1. The simulations are for

N;T = f(15; 300); (20; 40)g which typify monthly and annual macroeconomic panels, respectively.

In order to control for the cross-section dependence, one can apply LSDV (or POLS) to an aug-

mented regression where the cross-sectional averages �yt and �xt are included as additional regressors

to proxy the unobserved common e¤ect � this is the factor-augmented approach, also known as

the common correlated e¤ects (CCE) estimator, proposed by Pesaran (2005) and further analysed

by Kapetanios et al.(2006). The rationale is as follows. Let yit = �
0
xit+uit; uit = �

0

ift+�it where

the idiosyncratic innovations �it are I(0) but possibly autocorrelated, and the unobserved common

factors ft are I(d), d 2 f0; 1g. Averaging over units gives �yt��0�xt = ��0ift+��t; and the observables

�yt and �xt together are shown to form a su¢cient basis for the consistent (large N) estimation of

ft. Accordingly, we construct two t-statistics, one is based on the baseline regression (1) and the

other on the factor-augmented counterpart. For each of these two statistics, we conduct inferences

based on the standard normal quantiles (� and �F ; respectively) and the DSB distribution (~�
�

b2;C

and ~��b2;F ). The bootstrap approach
~��b2;C is as explained in Section 3.1, with a slight modi�ca-

tion so that the cross-correlation structure is preserved. We now resample rows from the centered

and scaled T � N residual matrix ~"it, namely, each draw is a 1 � N vector "�t = ("�1t; :::; "
�

Nt)
0
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as in Chang (2004) and Cerrato and Sarantis (2007). The factor-augmented bootstrap approach

(��b2;F ) does not require the latter because it deals with the cross-section dependence by estimat-

ing � through the factor-augmented regression. So it only departs from the approach described in

Section 3.1 in that the bootstrap samples are now obtained through the �augmented� resampling

scheme y�it = �̂i + �0x
�

it + �̂1�y
�

t + �̂2�x
�

t + v�it (instead of y
�

it = �̂i + �0xit + u�it), where �̂i; �̂1; �̂2

are the constrained LSDV parameter estimates obtained from the observed data and x�it � xit;

�y�t � yit and �x
�

t � xit are �xed across replications. In both cases, ~�
�

b2;C
and ~��b2;F , the direct sieve

bootstrap approximation (DSB) is based on the median-unbiased approach of Andrews and Chen

(1994) which is particularly important for the small-T panel case.

Table 4 reports the rejection frequencies of the di¤erent t-tests, all of them based on the LSDV

estimator �̂ and HAC Newey-West covariance matrix.

[Table 4 around here]

The test � is seriously oversized both in DGP1 and DGP2, as expected. The test �F works quite

well in DGP1 (albeit with some small-sample size distortions) with two exceptions. One is when

the idiosyncratic component �it is strongly autocorrelated. The other is when the factor loadings

are heterogeneous in which case the LSDV residuals measure (�i)ft+�it which is I(1) and so the

robust HAC standard errors underestimate the true residual autocorrelation. The latter problem

can be easily avoided by utilizing the modi�ed factor-augmented LSDV estimator proposed by

Pesaran (2005) which allows for heterogeneity in the slope coe¢cients of �yt and �xt so that the

residuals measure the idiosyncratic error �it as in the homogeneous loadings case. But the test �F

does not work well in DGP2 where the cross-section dependence does not stem from a common

factor. Reassuringly, the two bootstrap tests essentially attain the correct nominal size.

Power analysis

So far the hypothesized �0 has been chosen to match the true long run average e¤ect � � E(�i) in

the Monte Carlo DGP. To construct power curves, the discrepancy �0 � � is allowed to vary in a

range which is set relative to the noise-to-signal ratio in the DGP, namely, �0�� = ���2"=�2� ; with

� varying between �0:3 and 0:3 at intervals of 0:02. For the test �; which su¤ers from large size

distortions, we construct an unadjusted power curve (rejection frequency at the nominal 0.05 level)

and an adjusted power curve (rejection rate at the �true� 0.05 level). The �true� 0.05 levels used

20



are the empirical critical values taken from the corresponding size experiment. The power of the

bootstrap tests has not been size-adjusted because the previous analysis suggests that there is no

need to do so and it would have doubled the already high computational costs of these experiments.

We focus on panels with a mixture of I(1) and I(0) errors (� = 0:5), and further AR1 dependence

�i = 0:5; all other speci�cations are as in the size experiments reported in Table 3. Cross-section

dependence is introduced as in DGP2 above with ! = 0:6: The power curves are virtually symmetric

around �0 � � = 0 so Figure 4 plots the rejection frequencies for �0 � � > 0 only.

[Figure 4 around here]

The DSB test (~��b2) has essentially the same power as the size-adjusted asymptotic � test which

is in line with theoretical results on the power of the bootstrap (see Horowitz, 2000). The curve

labelled ~��b2;200 corresponds to a computationally cheaper test based on B = 200 (instead of 500)

replications. The results indicate that there is a price to pay in terms of power by reducing the

number of bootstrap samples. Unsurprisingly also, the unit root pretesting required in the PSB

scheme (��b2) e¤ects some power loss.

5 Concluding remarks

Recent theoretical studies have shown that panel estimators can provide consistent measures of a

long run average e¤ect in the presence of unit root disturbances. This is quite relevant in empirical

applications because strongly autocorrelated disequilibrium errors can be observationally unit root

persistent in �nite samples. Regression residuals with nonstationary properties can stem from

periodically collapsing price bubbles or other behavioural e¤ects, transaction costs, lumpy costs of

adjustment or changes in government policy inter alios

This paper aims to �ll two gaps in the literature. First, a bootstrap framework is provided

to facilitate inference in nonstationary panel regressions under weak assumptions about the dis-

turbances. This is important since, for instance, macroeconomic panel regressions with a mix of

observationally I(1) and I(0) errors are very common in practice and the non-standard statistical

theory depends on a nuisance parameter, the fraction of I(1) error processes. It is shown that

asymptotic t-tests for the long run average parameter in homogeneous I(0)-error panels yield re-

jection rates of about 75% at a nominal level of 5% when just one individual error term is I(1) and
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the remaining errors are white noise. To circumvent these problems, we propose a sieve bootstrap

method and consider two residual resampling schemes. One is a unit-root pretesting approach that

constructs pseudo-innovations with the I(1) property by construction. The other approach applies

the sieve approximation directly to the residuals.

Secondly, an extensive Monte Carlo analysis is provided. Panel data generating processes

with I(0) errors, I(1) errors or a mix of both are used. In the context of gaussian errors, it

is shown that the �nite sample distribution of the LSDV estimator is essentially normal in the

former two cases but not in the latter. To accommodate realistic settings in our experiments, we

also include asymmetric and highly leptokurtic error distributions, near-I(1) innovations generated

from both a linear AR mechanism and a threshold AR process, I(1) innovations with a negative MA

component, and cross-section dependence. Our �ndings suggest that the sieve bootstrap method

yields correctly sized t-tests under a wide range of scenarios. It turns out that bootstrapping

an improperly studentized t-statistic gives more robust results than bootstrapping the long run

coe¢cient of interest. The pretesting-based bootstrap shows some size distortions in the near-I(1)

error case due to overdi¤erencing of the residuals and generally is inferior in terms of power.

The direct sieve bootstrap (together with median-unbiased corrections for the sieve approxi-

mation in small T panels) provides correctly sized t-tests for long run average e¤ects in a variety

of settings where the asymptotic tests are oversized. The power of the bootstrap test is reasonably

good and comparable to that of the level-adjusted asymptotic test. Alternative bootstrap methods

and re�nements of the proposed approach warrant further research.
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    A) DGP with I(0)-errors, θi = 0              B) DGP with I(0)-errors, θi =  0.9   
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Fig. 1. Empirical distribution function of t-statistics (LSDV estimator) 
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    Fig. 2. Empirical size for various degrees of error persistence  



 
 
 

 
  A) POLS estimator 
 

         
 
 

      
  B) LSDV estimator 

       
  

 
 
 
 

Fig. 3. Empirical size and threshold cointegration  



        
 
 

 
 

Fig. 4. Power curves. 5% level tests. Γ and size-adjΓ denote, respectively, the 

unadjusted and level adjusted asymptotic t-tests. 
*~
2b

Γ and 
*

,

~
2002b

Γ  are DSB t-tests 

based on B=500 and B=200 bootstrap repetitions, respectively. 
*

2b
Γ is the PSB test 

based on B=500 bootstrap repetitions. 



Table 1
Empirical size: homogeneous-slope panel, LSDV estimator

I(0) errors: ρi = 0 I(1) errors: ρi = 1
(AR) (MA) Γ Γ∗b1 Γ∗b2 Γ Γ∗b1 Γ∗b2
θi ψi AIC SBC AIC SBC AIC SBC AIC SBC

0.0 – 4.6 4.6 4.9 4.9 4.6 66.3 6.1 5.1 5.6 5.4

5.6 5.5 5.4 5.9 5.0 7.0 5.5 6.9

0.5 – 8.9 5.6 6.4 5.7 5.9 68.6 5.8 5.0 6.2 5.0

5.0 5.1 4.8 5.1 5.4 5.2 5.4 4.9

0.9 – 34.9 4.2 4.7 4.1 5.2 70.5 6.2 5.1 6.4 5.9

3.2 3.2 3.5 3.0 5.0 5.3 4.4 5.6

– 0.5 5.8 5.1 6.4 5.2 6.9 69.1 4.7 5.3 5.4 5.4

5.1 5.9 4.6 6.2 4.8 4.3 5.2 4.4

– 0.9 5.7 4.9 7.0 5.4 7.0 69.9 4.8 5.4 4.9 5.4

5.9 4.1 5.5 4.2 4.9 5.8 5.2 5.3

U(0.3,0.5) – 7.5 4.6 6.3 4.1 5.8 65.6 5.5 5.0 5.1 4.8

4.7 5.1 3.8 5.7 4.7 5.6 5.6 6.1

U(0.2,0.9) – 16.4 6.6 9.0 6.5 8.7 67.9 4.6 4.3 4.6 5.0

4.7 5.1 4.9 5.0 5.8 4.5 5.7 4.8

– U(0.3,0.5) 5.9 5.3 6.0 5.6 5.7 69.9 4.1 6.0 4.5 5.7

6.1 6.6 5.9 6.3 6.1 5.8 6.4 6.2

– U(0.2,0.9) 6.2 4.9 6.4 5.3 6.6 70.1 3.8 4.8 3.8 4.5

5.6 6.2 5.7 6.2 5.9 4.2 6.0 4.9

5% level tests. Γ is based on N(0,1) quantiles. Γ∗b1 (Γ
∗
b2
) is the gaussian (nonparametric) bootstrap

test. di is estimated from ûit using the ADF test. The first and second row entries pertain to the

sampling schemes where eq. (4) is estimated for ν̂it ≡ ∆d̂i ûit by pooled OLS and individual OLS,
resp. The sieve order is selected using AIC or SBC with p̃T = b4 log10 T c. N =15, T =300.



Table 2
Empirical size: non Gaussian I(1)-error panel

POLS LSDV

(AR) (MA) pdf Γ Γ∗b1 Γ∗b2 Γ Γ∗b1 Γ∗b2
θi ψi AIC SBC AIC SBC AIC SBC AIC SBC

0.5 – D1 69.8 6.4 5.3 6.6 5.3 68.5 5.6 5.5 5.5 5.1

D2 70.1 5.2 6.1 5.3 6.2 68.2 6.1 4.6 5.8 4.6

D3 68.9 6.0 5.1 5.6 5.6 68.6 6.1 5.2 6.1 5.2

0.9 – D1 70.7 6.8 5.9 7.4 5.6 69.1 6.3 5.9 6.3 6.0

D2 67.1 5.4 6.8 5.8 6.5 67.3 6.1 4.3 5.9 4.0

D3 71.3 5.3 4.2 5.5 4.6 70.8 6.1 6.1 6.4 6.3

– 0.5 D1 69.9 5.3 6.1 6.1 6.7 66.8 5.1 5.6 5.3 6.1

D2 67.9 7.5 4.3 7.3 4.4 64.9 5.3 4.8 5.8 4.7

D3 69.6 5.9 7.3 6.1 7.3 66.1 6.8 6.3 6.8 6.2

– 0.9 D1 72.8 5.9 5.4 6.2 5.4 70.7 5.3 4.6 4.9 4.7

D2 69.4 5.8 6.6 5.2 6.7 66.3 5.6 5.1 4.8 5.1

D3 69.6 6.1 5.5 6.4 5.7 68.6 5.4 4.7 5.4 4.6

U(0.3,0.5) – D1 71.6 5.7 5.0 5.9 5.7 70.0 6.1 5.4 6.1 5.0

D2 69.9 5.6 6.2 5.7 6.0 68.3 4.2 4.9 4.7 4.4

D3 71.8 5.8 4.8 6.6 4.5 71.2 4.9 6.1 4.7 6.0

U(0.2,0.9) – D1 74.8 5.5 6.7 5.4 6.5 69.7 5.0 5.4 5.3 5.1

D2 75.1 4.6 5.5 4.8 5.1 71.5 5.3 4.6 5.1 5.4

D3 74.3 5.4 6.1 5.8 6.3 71.1 4.6 4.6 5.1 4.4

– U(0.3,0.5) D1 70.8 4.3 5.2 4.8 5.2 68.1 5.2 5.8 5.4 6.1

D2 70.1 5.5 4.7 6.0 5.4 69.7 3.0 5.7 3.2 5.9

D3 69.8 4.7 5.2 4.1 5.6 68.2 6.4 6.3 5.9 5.8

– U(0.2,0.9) D1 69.6 4.7 4.7 4.3 4.8 67.9 5.2 6.1 6.0 6.0

D2 70.2 5.1 4.2 5.7 4.3 68.8 6.5 5.3 6.9 5.0

D3 71.7 5.5 6.0 5.5 5.9 67.3 5.3 4.6 5.8 5.0

For Γ∗b1 and Γ
∗
b2
eq. (4) is fitted by single-equation OLS. D1, D2 and D3 are a t5, a shifted χ

2
5 and a

normal mixture 0.8N(0,1)&N(0,16), respectively. βi = 1 for all i. N =15 and T =300.



Table 3
Empirical size: mixed I(1)-, I(0)-error panel

POLS LSDV

(AR) (MA) Γ Γ∗b1 Γ∗b2 Γ Γ∗b1 Γ∗b2
λI(0) θi ψi AIC SBC AIC SBC AIC SBC AIC SBC

0.05 0.0 – 68.4 7.2 5.8 6.7 5.9 66.7 4.8 4.2 4.5 4.7

0.5 – 72.6 5.4 5.8 5.2 6.0 70.0 4.7 5.5 5.0 5.8

0.9 – 70.7 5.2 6.7 6.0 6.5 68.6 5.4 5.1 5.2 5.9

– 0.5 69.9 5.0 6.4 4.7 6.3 68.2 6.1 5.5 6.4 5.2

0.20 0.0 – 72.9 7.1 6.2 6.9 6.1 69.1 4.7 5.4 5.8 5.8

0.5 – 71.8 6.0 5.0 6.1 4.8 69.0 6.1 5.2 6.3 5.0

0.9 – 75.2 6.1 6.2 6.1 6.5 71.2 6.2 5.4 5.6 6.1

– 0.5 73.5 4.9 5.0 4.3 5.2 70.6 5.7 6.2 5.9 6.3

0.50 0.0 – 72.1 5.7 6.7 5.8 7.0 69.3 5.3 4.2 5.6 4.5

0.5 – 76.3 6.2 4.7 5.9 4.7 72.7 4.8 5.7 4.8 5.8

0.9 – 73.7 6.3 6.3 6.5 5.9 71.0 6.8 7.0 6.7 7.0

– 0.5 69.1 6.2 6.2 6.5 6.5 66.2 4.9 6.1 4.6 6.2

0.80 0.0 – 78.6 7.3 7.5 6.8 8.2 71.6 4.8 6.5 5.2 5.8

0.5 – 73.5 7.4 6.1 7.0 6.4 69.9 5.4 5.5 5.3 5.8

0.9 – 73.4 8.5 7.1 8.2 7.4 71.2 6.4 6.0 5.9 6.0

– 0.5 76.7 6.3 6.6 6.6 6.9 72.1 5.6 4.9 5.6 5.0

0.95 0.0 – 75.4 7.7 8.0 8.5 8.6 69.0 6.1 5.3 6.2 6.2

0.5 – 73.7 9.3 7.6 9.8 7.0 67.2 6.9 6.5 6.8 7.1

0.9 – 80.1 5.5 6.2 5.5 6.1 75.2 5.1 5.5 5.1 5.3

– 0.5 78.8 4.0 7.1 4.1 7.4 71.5 7.6 5.0 7.5 5.2

λI(0) is the fraction of I(0)-error equations, ρi = 0 for i=1,...,bNλI(0)c and ρi = 1 elsewhere.
b·c denotes the closest integer. For Γ∗b1 and Γ

∗
b2
eq. (4) is estimated individually by OLS for

each i=1,2,...,N. The sieve order is chosen using AIC or SBC with p̃T = b4 log10 T c.



Table 4
Empirical size: non-stationary error panel with cross-section dependence

A. Unobserved factor structure (DGP1)

factor
loadings

(AR) N = 15, T = 300 N = 20, T = 40

γi θi Γ ΓF Γ̃∗b2,C Γ̃∗b2,F Γ ΓF Γ̃∗b2,C Γ̃∗b2,F
1 0 57.6 6.0 4.6 5.2 22.7 8.6 6.1 5.4

U(0.3,0.5) 58.2 9.4 4.8 4.5 23.4 10.6 4.6 5.0
U(0.7,0.9) 54.2 23.6 4.5 5.0 23.8 21.2 4.0 4.9

U(0.5,1.5) 0 54.9 56.9 4.0 4.2 23.3 21.7 6.4 4.4
U(0.3,0.5) 54.3 53.9 5.0 6.1 21.7 18.7 5.1 5.3
U(0.7,0.9) 55.2 50.2 6.5 4.8 24.7 25.1 4.7 6.2

B. Non-spherical idiosyncratic disturbances (DGP2)

pairwise
correlation

(AR) N = 15, T = 300 N = 20, T = 40

ω θi Γ ΓF Γ̃∗b2,C Γ̃∗b2,F Γ ΓF Γ̃∗b2,C Γ̃∗b2,F
0.6 0 59.2 66.4 5.4 6.1 26.7 32.7 6.7 5.4

U(0.3,0.5) 58.2 67.3 6.4 5.0 28.6 34.4 5.3 6.9
U(0.7,0.9) 60.2 66.2 4.9 4.8 32.9 36.2 6.2 5.0

0.9 0 64.8 64.9 6.3 5.7 31.8 32.5 4.2 4.9
U(0.3,0.5) 64.1 66.8 5.1 6.2 31.4 33.8 3.9 5.9
U(0.7,0.9) 65.6 65.7 6.2 4.5 33.0 37.2 4.8 5.6

Results based on LSDV estimation of (1) or its factor-augmented version, denoted F. The test

Γ̃∗b2,C controls for cross-section dependence by resampling N × 1 vectors (ε̃∗1t, ε̃
∗
2t, ..., ε̃

∗
Nt)

0

from the centered and scaled residual matrix ε̃. Γ∗b2,F is the factor-augmented bootstrap test.


