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The IASB Insurance Project for life insurance

contracts: impact on reserving methods and solvency
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Abstract

In this communication, we review the fair value - based accounting framework
promoted by the IASB Insurance Project for the case of a life insurance com-
pany. In particular, for the case of a simple participating contract with minimum
guarantee, we show that the fair valuation process allows for the identification
of a suitable safety loading to hedge against default risk; furthermore, we show
that, when compared with the “traditional” accounting system based on the con-
struction of mathematical reserves, the fair value approach offers a more sound
reporting framework in terms of covering of the liability, implementation costs,
volatility of assets and liabilities and solvency capital requirements.

Keywords: Black-Scholes option pricing formula, fair value, Lévy processes,
mathematical reserves, participating contracts, shortfall probability, solvency re-
quirements.
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1 Introduction

In response to an increasingly difficult economic climate, in which the financial stability
of the insurance industry has been affected by events such as the crash in the equity
markets in 2001 and 2002, a steady fall in bonds yields, as well as increased longevity,
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the focus of regulators on accounting rules, capital adequacy and solvency requirements
for insurance companies has increased.

In particular, the three common themes behind the activity of many regulatory
bodies around the world are a comprehensive financial reporting framework for the
appropriate assessment of the specific risks that insurance companies are running; the
standardization of approaches between countries and industries, where sensible; and an
improved transparency and comparability of accounting information. To this purpose,
the International Accounting Standards Board (IASB) in Europe and the Financial
Accounting Standards Board (FASB) in the US have been working over the last few
years towards the proposal of a model for the valuation of assets and liabilities which
produces comparable, reliable and market consistent measurements. As such, the focus
of this model has to be on the “economic” value of the insurance companies business.
This theme has been followed by IASB and FASB with the proposal of a “fair value”
accounting system for all assets and liabilities, where “fair value” means “the amount
for which an asset could be exchanged, or a liability settled, between knowledgeable,
willing parties in an arm’s length transaction” (IASB, 2004).

In Europe, phase 1 of the IASB Insurance Project has been completed with the is-
suance of the new International Financial Reporting Standard (IFRS) 4 in March 2004,
which establishes the changes in accounting rules as of January 2005. It is not our aim
to describe here the technicalities of the new IFRS 4 (for a comprehensive exposition
of its main features, we refer for example to FitchRatings, (2004)). However, we note
that phase 1 requires significantly increased disclosure of accounting information, but
only relatively limited changes to the accounting methodology, as the majority of the
liabilities that have to be recorded at fair value are those originated by derivatives em-
bedded in insurance contracts, such as life products offering a guarantee of minimum
equity returns on surrender or maturity. The changes to the treatment of the assets
side of the balance sheet is, instead, the direct result of the implementation of IAS
39, under which investments have to be classified as “available for sale” or “held for
trading”, and hence marked to market, unless the insurer is able to demonstrate the
intent to forego future profit opportunities generated by these financial instruments
(in which case investments can be classified as “held to maturity” and consequently
reported at amortized historic cost). Hence, these changes are to be considered as the
basis for the transition period leading up to the proper fair value accounting frame-
work, which will be implemented in phase 2 (expected at the time of writing) to be
completed by 2009-2010. We note, however, that the regulatory bodies in the UK,
the Netherlands and Switzerland have introduced, or are in the process of introducing
from January 2006, accounting rules based on the full mark-to-market of assets and
liabilities, to be accompanied by the assessment of risk capital on a number of relevant
adverse scenarios. In particular, the Swiss Solvency Tests (FOPI, (2004)) developed by
the Swiss Federal Office of Private Insurance, and the Twin Peaks/Individual Capital
Adequacy Standard implemented by the Financial Service Authority in the UK (FSA,
(2004)) are designed to offer compatibility with regulatory demands on other market
players like banks.

In the financial literature, the topic of market consistent valuation of life insurance
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products is well known and goes back to the work of Brennan and Schwartz (1976) on
unit-linked policies. Since then, a wide range of contributions have followed, specifi-
cally on the issue of the fair valuation of the different contract typologies available in
the insurance markets around the world (for a comprehensive review of these studies,
we refer for example to Jørgensen (2004) and the references therein). However, it is
recognized that the adoption of the fair value approach in the financial reporting sys-
tem may have a significant impact on the design of some life insurance products; the
premia charged to policyholders; the methodologies for the construction of reserves;
and, more generally, the solvency profiles of companies.

In light of these considerations, the purpose of this paper is to analyze in detail
some of these aspects by means of a simple participating contract with a minimum
guarantee. In particular, we focus on three important issues. Firstly, we discuss how
the fair valuation principle can be used to identify the extra premium that needs to
be charged as a solvency loading to cover the insurance company’s default option.
Secondly, we note that no specific recommendation has yet been made by IASB as
to which stochastic model is the most appropriate as the target accounting model.
Hence, we adopt the standard Black-Scholes framework as a benchmark and, following
the guidelines of IASB, we also propose a methodology for the analysis of the model risk
and the parameter risk arising from this approach. Finally, we explore some possible
alternative schemes for the construction of the mathematical reserves, and consider the
advantages of adopting the fair value approach for solvency assessment purposes. Our
focus on this last aspect is because of the ongoing EU Solvency II review of insurance
firm’s capital requirements, which is expected to come into effect at the same time as
phase 2 of the IASB Insurance Project.

The paper is organized as follows. In section 2, we describe the design of the simple
life insurance policy, the approach to fair valuation that we are considering in this
paper and how it leads to a fair premium for the contract. In section 3, we introduce
a possible methodology for the analysis of the model error and the parameter error
components of the Market Value Margin, as requested by the IASB. In sections 4 and
5, we provide a comparative, quantitative study of the performance of the fair valuation
method. In particular, we propose a range of deterministic reserving methods (static
and dynamic) for comparison with the fair value of the liability in section 4. In section
5, we then introduce the concept of Risk Bearing Capital and use this as a means of
assessing the solvency of the insurance company. Section 6 provides some concluding
comments.

2 The participating contract and market consistent

valuation

In this section, we consider a participating contract with a minimum guarantee and a
simple mechanism for the calculation of the reversionary bonus. Following the general
recommendation from the IASB accounting project, we then calculate the fair value of
this contract using a stochastic model to represent the market dynamics of the fund
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backing the policy. In particular, we choose as valuation framework the traditional
Black and Scholes (1973) model; we also focus on the implication of the fair valuation
process on the insurer’s solvency and on the definition of the contract premium. In the
remaining parts of this paper, we ignore lapses, mortality and any further benefit that
the policyholder may receive from the participating contract, such as death benefits or
a terminal bonus.

2.1 The general framework

Consider as given a filtered probability space
(

Ω,F , {Ft}t≥0 , P
)

, and let us assume that
the financial market is frictionless with continuous trading (i.e. there are no taxes, no
transaction costs, no restrictions on borrowing or short sales and all securities are
perfectly divisible). Furthermore, let r ∈ R

++ be the continuously compounded risk-
free rate of interest.

The policyholder enters the contract at time 0 paying an initial single premium1 P0,
which is invested, together with paid-in-capital, E0, by the insurance company in an
equity fund, A. This is assumed to follow the traditional geometric Brownian motion

dA (t) = µA (t) dt + σA (t) dW (t) , (1)

under the real objective probability P. The parameters µ ∈ R and σ ∈ R
++ represent

respectively the expected rate of growth (i.e. the expected rate of return) and the
volatility of the fund.

In return, the policyholder has an account, P , which accumulates annually at rate
rP (t), so that

P (t) = P (t − 1) (1 + rP (t)) t = 1, 2, ..., T, (2)

with

P (0) = P0 = θA (0) ;

rP (t) = max {rG, βrA (t)} ,

where rA denotes some smoothed return on the reference portfolio. The parameter
β represents the participation rate of the policyholder in the returns generated by
the reference portfolio, whilst rG denotes the fixed guaranteed rate. The parameter
θ represents instead the proportion of the initial reference portfolio financed by the
policyholder. Ballotta et al. (2006) refer to θ as the cost allocation parameter or
leverage coefficient.

We assume that the policyholder receives the benefit only at maturity, T ; however, if
at maturity, the insurance company is not capable of paying the full amount P (T ), then
the policyholder seizes the assets available. At the expiration date, T , the policyholder
will also receive a terminal bonus based on a percentage, γ, of the final surplus earned
by the insurance company:

γR (T ) = γ
(

θ (A (T ) − P (T ))+)

;

1We show in the next sections that in order to prevent arbitrage opportunities from arising, the
premium actually charged has to be readjusted to include default risk.
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the parameter γ represents the terminal bonus rate.
Hence, the liability, L, of the insurance company at maturity is

L (T ) =







A (T ) if A (T ) < P (T )

P (T ) if P (T ) < A (T ) <
P (T )

θ

P (T ) + γR (T ) if A (T ) >
P (T )

θ
.

,

or, equivalently
L (T ) = P (T ) + γR (T ) − D (T ) , (3)

where
D (T ) = (P (T ) − A (T ))+

is the payoff of the so-called default option.
From standard contingent claim theory, it follows that the market value at time

t ∈ [0, T ] of the participating contract, C, is

VC (t) = Ê
[

e−r(T−t) (P (T ) + γR (T ) − D (T ))
∣

∣ Ft

]

(4)

= Ê
[

e−r(T−t)P (T )
∣

∣ Ft

]

+ γÊ
[

e−r(T−t)R (T )
∣

∣ Ft

]

− Ê
[

e−r(T−t)D (T )
∣

∣ Ft

]

= VP (0) + γVR (0) − VD (0) ,

where Ê denotes the expectation under the risk-neutral probability measure P̂, and Ft

is the information flow up to (and including) time t.2 Under these circumstances, the
premium P0 charged is fair to the policyholder if the following equation is satisfied

P0 = VC (0) = VP (0) + γVR (0) − VD (0) . (5)

As far as the equityholders are concerned, their claim at maturity (under the as-
sumption of limited liability) is:

E (T ) =







0 if A (T ) < P (T )

A (T ) − P (T ) if P (T ) < A (T ) <
P (T )

θ

A (T ) − P (T ) − γR (T ) if A (T ) >
P (T )

θ
,

or

E (T ) = (A (T ) − P (T ))+ − γR (T )

= A (T ) − P (T ) + D (T ) − γR (T ) ;

therefore, the fair contribution to the company’s capital should satisfy the following

VE (0) = E0 = (1 − θ) A(0), (6)

which implies that the fair value condition is the same for both classes of stakeholders,
since equation (5) and (6) are equivalent.

2Note that we implicitly assume the existence of the risk-neutral probability measure P̂ (which,
given the specification of the market is unique). In other words, we assume that the participating
policy is attainable and therefore the replicating portfolio exists. This is consistent with the spirit of
FASB recognition of the Level 3 fair value estimates for insurance liabilities with complex contingencies
and embedded options elements (FASB, 2004).
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2.2 The specifics of the contract and fair valuation

In order to implement a market consistent valuation framework, we need to fully specify
the accumulation rate in equation (2). In particular, we assume that

rA (t) =

(

A (t) − A (t − 1)

A (t − 1)

)

.

This accumulation mechanism is a special case (for n = 1) of the more general smooth-
ing scheme analyzed by Ballotta et al. (2006); in their contribution, Ballotta et al.
(2006) consider the problem of finding a fair set of design parameters for the participat-
ing contract, and then they analyze the interactions between each of these parameters,
as well as the behaviour of the full set when the market conditions change. In this
paper, however, our focus is on the impact of fair valuation on the company’s solvency
profile, and therefore, for ease of exposition of the main results, we have chosen this
simplified mechanism. Based on the same reasoning, we assume in the remainder of
this paper that θ = 1, i.e. the reference portfolio is fully funded by policyholders;
further, we focus only on the guaranteed part of the benefit at maturity, P (T ), and
assume that the terminal bonus feature is not included in the contract’s design; in
other words from now on, we fix γ = 0.

We note that, under this set of assumptions, equation (5) reduces to

P0 = VP (0) − VD (0) , (7)

whilst the value of the equityholders claim is zero, since E0 = 0.3

Given our set of assumptions, and the features of the policy design, a closed-form
analytical formula for the value of the policy reserve VP (t) can be obtained. The same,
however, does not apply for the value of the default option, VD (t), due to the recursive
nature of P (see equation (2)) and the fact that P is highly dependent on the path
followed by the reference fund A. Therefore, the market price of the default option will
be approximated by numerical procedures.

In more detail, from equation (2), it follows that the benefit at maturity can be
rewritten as

P (T ) = P0

t
∏

k=1

(1 + rP (k))
T

∏

k=t+1

(1 + rP (k)) = P (t)
T

∏

k=t+1

(1 + rP (k)) .

Moreover,

rP (t) = max

{

rG, β

(

A (t) − A (t − 1)

A (t − 1)

)}

= rG +

(

β

(

A (t) − A (t − 1)

A (t − 1)

)

− rG

)+

,

which implies that, in distribution,

rP (t)
D
= rG +

(

β

(

e

�
µ−σ

2

2

�
+σW ′

1 − 1

)

− rG

)+

under P,

3We refer to Ballotta et al. (2006) for a fuller treatment of the more general case when θ < 1 and
γ > 0.
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and

rP (t)
D
= rG +

(

β

(

e

�
r−σ

2

2

�
+σŴ1 − 1

)

− rG

)+

under P̂,

where W ′
1 is an independent copy of the P-Brownian motion, and Ŵ is a standard

one-dimensional Brownian motion under the risk neutral probability measure P̂.
This implies that the annual rate of return rP (t) generates a sequence of independent
random variables ∀t ∈ [0, T ]. Therefore, the market value of the policy reserve is

VP (t) = P (t) Ê

[

e−r(T−t)

T
∏

k=t+1

(1 + rP (k))

∣

∣

∣

∣

∣

Ft

]

= P (t)
T

∏

k=t+1

Ê

{

e−r

[

1 + rG +

(

β

(

e

�
r−σ

2

2

�
+σŴ1 − 1

)

− rG

)+
]}

= P (t)
[

e−r (1 + rG) + βN (d1) − e−r (β + rG) N (d2)
]T−t

(8)

where

d1 =
ln β

β+rG

+
(

r + σ2

2

)

σ
; d2 = d1 − σ.

The pricing equation (8) follows as an application of the Black-Scholes option formula
(see also Bacinello, 2001, Ballotta, 2005, and Miltersen and Persson, 2003, for similar
results).

2.3 Default probability and the premium for the participating

contract

Based on the valuation formula (8), in this section, we implement a scenario generation
procedure in order to analyze the evolution of the market value of the participating
contract and the reference fund over the lifetime of the policy. Since these quantities
represent the liabilities and the assets in the balance sheet of the insurer, this study
will allow us to understand the consequences of the market based accounting standards
on the solvency profile of the life insurance.

The numerical procedure is organized in the following steps:

1. using the P-dynamic of the underlying asset A, we generate possible trajectories
of the reference fund from the starting date of the policy till time t ∈ (0, T ]. Each
trajectory consists of 1 observation per month.

2. Then, we calculate the annual returns on the reference fund A to obtain the
amount accumulated by the policy till time t, P (t).

3. The output from step 2 is used to calculate VP (t) according to equation (8).
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Fair value of the participating contract

P0 VC (0) VP (0) VD (0)
100 100 222.73 122.73

Relative solvency loading coefficient δ = 1.2273

Table 1: The fair value of the participating contract with minimum guarantee for the bench-
mark set of parameters. The Monte Carlo simulation for the price of the default option is
based on 10,000 paths; the antithetic variate technique and the control variate method are
used for variance reduction purposes.

4. Finally, we use the output from step 1 and 2 to compute the market value of the
default option, VD (t), using Monte Carlo techniques. The Monte Carlo experi-
ment is based on 10,000 paths; antithetic variate methods and the control variate
procedure are implemented in order to reduce the error of the estimates.

Unless otherwise stated, the initial single premium is P0 = 100 and the base set of
parameters used for our numerical example is as follows:

µ = 10% p.a.; σ = 15% p.a.; β = 80%; rG = 4% p.a.; r = 4.5% p.a.; T = 20 years.

The no arbitrage values of the contract and its components corresponding to the
above set of parameters are shown in Table 1; we note that, for the given set of
parameters, the premium charged to the policyholders satisfies the fair condition given
in equation (7), which is consistent with the no arbitrage principle.

A possible scenario resulting from this numerical experiment is illustrated in Figure
1.(a). In this plot, we show the evolution of the reference fund A, the fair value of the
benefit VP , the value of the default option VD, and the total value of the contract VC .
We note that the assets of the life insurance company are not enough to guarantee the
payment of the full benefit promised at maturity; consequently, the curves representing
the assets’ price and the total value of the contract coincide (see equation (4)). The
default probability arising from this model, calculated on the basis of 100,000 scenarios,
is in fact 74.42% (see Table 2).

On one hand, such a high default probability is a consequence of the mechanism
adopted for the accumulation of the benefit in the sense that the reversionary bonus
scheme does not offer an adequate smoothing of the fund’s returns; on the other hand,
however, equation (7) shows that the policy reserve is not the only component affecting
the value of the participating contract, as we need also to take account of the fact that
the insurance company’s liability is limited by the market value of the reference fund.
This feature is captured by the payoff of the so-called default option D. Consequently,
VD is, as Ballotta et al. (2006) observe, an estimate of the market loss that the
policyholder incurs if a shortfall occurs. However, equation (7) also implies that

P0 + VD (0) = VP (0) .

Hence, as already observed by Ballotta (2005), the value VD of the default option can
be considered as the extra premium that the insurer has to charge the policyholder
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Probability of default at maturity

GBM model P (P (T ) > A (T )) = 74.42% P (P (T ) > Atot (T )) = 6.97%
GLP model P (P (T ) > S (T )) = 81.71% P (P (T ) > Stot (T )) = 12.74%

Table 2: Default probability at maturity under the geometric Brownian motion framework
presented in section 2.1 and the Lévy process framework introduced in section 3.1. Calcu-
lations have been performed for the benchmark set of parameters under the real probability
measure, on the basis of 100,000 simulations.

for no arbitrage opportunities to arise. Without receiving this extra amount, in fact,
the insurer would be offering the guaranteed benefits too cheaply, as the solvency risk
attached to the contract would be ignored.

Based on these considerations, we redefine the overall premium paid by the policy-
holder at inception of the contract to be P ′

0 = P0 + VD (0), where P0 is the part of the
premium on which the benefit will be based, and VD is instead the part of the premium
that the policyholder has to pay in order to be “insured” against a possible default of
the insurance company. In this sense, the fair value of the default option associated to
the participating contract, VD (0), could be regarded as a solvency, or safety, loading
to the premium. If we write VD (0) = δP0, then P ′

0 = (1 + δ) P0, with δ representing a
relative solvency loading coefficient (Daykin et al. (1994)). If this additional premium
is invested for example in the market to purchase another share of the reference port-
folio, at time t = 0, the value of the fund backing the policy is A (0) = P0, whilst the
total value of the assets available to the insurer is Atot (0) = P ′

0 = P0 + VD (0). Both A

and Atot evolve as described in equation (1).
The dynamics of each component of the contract resulting from this readjustment

and corresponding to the scenario presented in Figure 1.(a), are illustrated in Figure
1.(b). If the insurance company invests the additional premium in the same fund
backing the policy, the default option moves out of the money, whilst the value of
the contract converges to the value of the promised benefits. The probability of a
shortfall occurring at maturity is 6.97% as reported in Table 2 (on the basis of 100,000
scenarios). Panels (a) and (c) of Figure 2 show the corresponding shortfall distribution
for both situations, i.e. when the premium for the default option is ignored (panel (a)),
and when instead it is charged and invested in the fund (panel (c)). The reduction in
the right-tail of the distribution in the latter case is evident.

We observe that in the case study analyzed in this paper, the insurance company is
“passive” in terms of risk management, i.e. it does not implement any hedging strategy.
The results discussed, however, show that if a suitable solvency loading is charged, the
reduction in the default probability is such that a carefully designed hedging strategy
can successfully reduce the default risk further, so that the contract is fully honoured,
even if the smoothing mechanism is as weak as the one used in this note. By charging
VD, in fact, the insurer would have enough funds to acquire a hedging portfolio which
fully covers all of the risks incorporated in the contract.
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Figure 1: Scenario generation: a possible evolution of the reference fund and the fair value
of the participating contract, the benefits and the default option. Panels (a)-(b) show one
possible scenario under the geometric Brownian motion paradigm presented in section 2.1.
Panels (c)-(d) and (e)-(f) illustrate two possible scenarios under the Lévy process paradigm
discussed in section 3.1. The scenario generation has been obtained for the benchmark set of
parameters under the real probability measure P.
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3 Market value margin

The valuation model presented in the previous section, and therefore also the results
discussed in section 2.3, relies on a number of assumptions (most notably, the assump-
tion that the equity assets follow a log-normal distribution4), and the specification of
a number of external variables, like the expected return of the assets or their volatility,
that can move significantly over the lifetime of the contract. It is widely acknowledged
that it is difficult to classify accurately the distribution of market prices and to assess
the probability of extreme events, especially falls, concerning stock prices. This implies
that, as discussed in Ballotta (2005), there are biases in the fair value measurements
originating from the model developed in the previous section.

The aim of this section of the paper is to examine the impact of this type of
uncertainty, affecting the fair valuation of insurance liabilities, on the expected cash
flows and the solvency profile of the insurer. We note that the IASB intends to take into
account these elements of risk, the so-called model risk and parameter risk, during phase
2 of the implementation of the accounting standards project, by requiring insurance
companies to calculate a Market Value Margin (see, for example, FitchRatings, 2004)
as a buffer to reflect the risks and uncertainties that are inherent in insurance contracts.

3.1 The model error

As previously mentioned, the calculations of fair values presented in section 2 are
dependent on the assumption of normal distributed log-returns. However, it is well
known that, in the real financial market, this is not the case, as the dynamic of the
assets is not continuous but appears to consist of jumps only. A recent analysis offered
by Carr et al. (2002), in fact, shows that, in general, market prices lack a diffusion
component, as if it were diversified away, implying that the Brownian motion-based
representation of the equity fund proposed in section 2.1 might not be realistic. Hence,
in this section, we analyze the impact of the biases in the fair value-based estimates of
the liability implied by the participating contract described in section 2.1-2.2, due to
a misspecification of the distribution of the underlying fund. In particular, we assume
that the “true” equity asset, which we denote by S, as opposed to the equivalent
quantity A that the insurance company assumes to be log-normal, is in reality driven
by a geometric Lévy process. The amount P (t) accumulated by the policyholder’s
account till time t will be determined by the evolution of S over the same period of
time. Hence, the error in the model will affect the value of the policy reserve, VP (t),
and the value of the default option, VD (t), to the extent to which P (t) is affected. The
cost of the time value of the guarantees and the options to be exercised over (t, T ] is
instead calculated according to the original model.

4We observe that, although this assumption is not supported by empirical evidence, it forms the
basis of the RiskMetrics (Mina and Xiao, (2001)) model, which is recommended by the Swiss Solvency
Test (FOPI, 2004) as a standard asset model.
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Quantity Process Parameters

A Equation (1) µ = 10% σ = 15%
S Equation (9) µX = −0.0537; σX = 0.07; λ = 0.68;

a = 0.1254; γ = 0.1312.

Table 3: Base set of parameters for the full model (Bakshi et al. (1997)).

For simplicity, we use a Lévy process with jumps of finite activity, i.e.

dS (t) =

(

a +
γ2

2
+

∫

R

zν (dz)

)

S (t−) dt + γS (t−) dW (t)

+S (t−)

∫

R

z (N (dz, dt) − ν (dz) dt) , (9)

where N is an homogeneous Poisson process, ν is the P-Lévy measure specified as
ν (dx) = λfX (dx), fX (dx) is the density function of the random variables X modelling
the size of the jumps in the Lévy process, and Z = eX − 1 is the proportion of the
stock jump. Furthermore, we assume that the jump size is normally distributed, that
is X ∼ N (µX , σ2

X). Finally, for the numerical experiment, we use the parameters as
in Bakshi et al. (1997), i.e.

µX = −0.0537; σX = 0.07; λ = 0.68.

In order to produce a sensible comparison, we need to ensure that the expected rate of
return on the equity and the instantaneous volatility of its driving process are kept equal
for both A and S. Specifically, the instantaneous variance of the log-returns resulting
from the dynamics of A and S respectively is σ2 and γ2 + λ (µ2

X + σ2
X). Hence, given

the set of parameters used, γ = 0.1312. The expected return on the assets is instead
described by the drift of the corresponding stochastic differential equations, i.e. µ and

a + γ2

2
+ λ

(

eµX+
σ
2

X

2 − 1

)

for A and S respectively. Therefore, a = 0.1254. The full

base set of parameters is given in Table 3.
We make again the distinction between the fund backing the policy for which S (0) =

P0, and the total of the assets available to the insurer, for which Stot (0) = P ′
0 =

P0 + VD (0). Both S and Stot evolve as described in equation (9). The results from
this model are summarized by the two possible scenarios illustrated in panels (c) - (f)
of Figure 1. Both plots show that the introduction in the dynamic of the assets of a
jump component increases the default option premium, and therefore the severity of
the shortfall risk as measured by the shortfall probability (which is 81.71%, as shown
in Table 2). However, if the additional premium VD (0) is paid by the policyholder and
invested by the insurer in the fund S, the default option moves out of the money and
the shortfall probability reduces to 12.74%. The corresponding shortfall distributions
are shown in Figure 2.(b) and Figure 2.(d). Also in these cases, we can observe the
reduction in the right-tail of the distribution.

Finally, we observe that the default probabilities generated by the Lévy process-
based model are higher than the ones generated under the standard Black-Scholes
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Figure 2: Shortfall distribution, P(D(T ) > 0), for the benchmark set of parameters under
the real probability measure, based on 100,000 scenarios.
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Figure 3: Parameter error: impact on the shortfall probability of changes in the expected
rate of return and volatility of the equity portfolio backing the policy.
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framework. This is due to the fact that the latter ignores the possibility that mar-
ket prices can jump downwards, which would lead to a deterioration in the financial
stability of the insurers (see Ballotta, 2005, for further details).

3.2 The parameter error

In this section, we show how the probability of default changes under both market
paradigms considered in the paper when the expected return on assets, µ, and their
volatility, σ, are allowed to change. Results are shown in Figure 3. In panel (a), we
observe that the higher the expected return on assets, the lower the probability of
default under both market paradigms. This is expected, since policyholders benefit
from a rise in the expected returns on the reference fund which is moderated by the
participation rate β. Hence, the assets grow more than the corresponding liability,
ensuring a reduced default risk.

In panel (b), we show the sensitivity of the default probability to the reference port-
folio’s volatility; we observe that by increasing the volatility, the shortfall probability
becomes higher under both market models considered in this paper. In fact, more
volatile prices mean a higher probability of substantial variations in the value of the
assets; however, the policyholder’s benefits are only affected by upwards movements
of the reference fund because of the presence of the minimum guarantee, rG (in the
definition of rP (t)). We also note that the gap between the default probabilities ob-
tained under the two market paradigms tends to increase as σ increases, which is due
to the additional instability in asset prices generated by the presence of jumps in the
Lévy-based model.

4 Analysis of reserving methods

The introduction of a full fair value reporting system is considered a controversial issue
by many insurance company representatives. From a survey carried out by Dickinson
and Liedtke (2004) involving 40 leading international insurance and reinsurance com-
panies, it emerges that one of the most critical issues is the so called “artificial volatility
problem” (see Jørgensen (2004) as well for a discussion of this specific issue). Accord-
ing to the survey’s results, the respondents agree that the adoption of the fair value
approach in preparing balance sheets will result in more volatile reported assets and
liability values, and consequently more volatile reported earnings and cost of capital.
The implication of this fact is that it would then be more difficult to provide earnings
forecasts or forward-looking information to the investment community.

Given these criticisms, in this section, we consider a number of alternative methods
for the calculation of the “deterministic” reserves which are then compared against
the fair value of the liability imposed by the participating contract, i.e. VP (t). This
comparison is aimed at analyzing the adequacy of the reserves in terms of covering
the liabilities, their cost of implementation and their impact on the volatility of the
balance sheet. Any resulting solvency issue is, instead, discussed in section 5.
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We follow established actuarial theory and practice for the determination of “de-
terministic” reserves (Fisher and Young (1971), Booth et al. (2005)), based on the
equivalence principle. Thus, we define the reserves as the present value of the future
benefits (net of the present value of the future premia paid by the policyholder, which
we do not consider as our contract has a single premium paid at inception). Hence the
value of the deterministic reserve at time t ∈ [0, T ] is

VR (t) = PR (T ) e−r(T−t),

where PR (T ) is a “fictitious” policyholder account which provides the insurer with a
best estimate of the benefit due at maturity. For the discount rate, we use the risk free
rate of interest, r, since this can be considered as the lower bound for any prudential
discount rate chosen by the life insurance company. The alternative methods for the
construction of the reserves, discussed below, differ depending on the rule which we
use to calculate PR (T ).

Static method Here we assume that the life insurance company adopts a passive
reserving strategy, so that

PR (T ) = P0 (1 + rR)T
,

where rR = 8.5%. The choice of this value is justified on the basis of a prudential
estimate of the asset returns that will be credited to the policyholder account. In
fact, we are assuming that the asset has an expected rate of return µ = 10% and
that the participation rate of the policyholder in the asset performance is β = 80%.
By assuming a constant accumulation rate, we are considering the simplest case of
smoothing over the whole lifetime of the contract. The results are presented in Figures
4 and 5, in which we show the probability that, at the end of each year, the value
of the reserves is below the fair value of the liability, i.e. VP (t), for the cases of the
geometric Brownian motion and Lévy process paradigms respectively. The plots show
that P (VR (t) < VP (t)) is consistently high over the term of the contract. However,
since VP (T ) = P (T ), the probability that the static reserve is less than the amount
of the benefit due at expiration is above 90% under both market paradigms, which
indicates that the rate used to calculate the best estimate of the liabilities is not
sensitive enough to the dynamics of the effective liabilities.

Dynamic method In this case, we assume that the life insurance company
adopts an active risk management strategy, so that the rate at which the “fictitious”
account PR (T ) accumulates is readjusted every n years, in order to take into account
the performance of the reference fund and the accumulated liability P . In the following
analysis, we consider the cases n = 1, 3, 4, 5. We assume that the readjustment occurs
at the reset dates tk, k = n, 2n, ...,

[

T
n

]

, where [x] denotes the smallest integer not less
than x. Then, for t ∈ [0, tn)

PR (T ) = P0 (1 + rR)T

rR = 8.5%.
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Hence, for the first n years of the contract, the reserves are identical to the static case.
For t ≥ tn instead, we have

PR (T ) = P (tk) (1 + rR (tk))
T−tk ,

where P (tk) is the value of the benefit cumulated till the reset date tk, and rR (tk) is
related to the dynamics of the portfolio backing the policy and the value of the benefits.
We consider below four possible alternative definitions of rR (tk). This list is not meant
to be exhaustive but to serve as an illustration only. Firstly, let

µ̄n (tk) =
1

n

n
∑

k=1

Atot (tk) − Atot (tk−1)

Atot (tk−1)
;

µ̄(P )
n (tk) =

1

n

n
∑

k=1

P (tk) − P (tk−1)

P (tk−1)
,

i.e. the average at time tk respectively of the annual returns achieved by the reference
fund over the last n years, and of the annual rates at which the policyholder benefit
accumulated over the last n years. Then, the alternative definitions under consideration
are as follows.

1. As observed above, a rate of growth of the reserves fixed at 8.5% is not sufficient
to cover the liabilities generated by a participating contract written on an asset
with an expected annual rate of return of 10% and a 15% annual volatility. Hence,
we construct a new accumulation rate which uses the prudential estimate of 8.5%
as a floor, to which an addition is made in the case in which asset returns perform
better than expected. Therefore, we consider:

rR (tk) = max {rR, βµ̄n (tk)} ,

where rR = 8.5%, as given by the static method, and β is the participation rate.

2. An alternative to the previous methods could be the replication of the benefit’s
accumulation rate, so that:

rR (tk) = max {rG, βµ̄n (tk)} ,

where rG = 4% is the minimum guarantee and β is the participation rate.

3. Since the principal goal for the establishment of reserves is to enable the company
to build over time sufficient resources to pay the benefits to the policyholder when
due, an alternative approach would be to make the accumulation rate rR (tk)
dependent on the evolution of the benefit itself, rather than on the reference
fund. In this case, we consider:

rR (tk) = max
{

rG, µ̄(P )
n (tk)

}

,
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4. Finally, we propose an accumulation rate based on the extent to which the assets
perform above or below expectations. Let

sn (tk) = µ̄n (tk) − µ

be the spread at time tk between the average of the last n years’ returns on the
asset and its expected rate of return. Then we consider:

rR (tk) = rR + αsn (tk) ,

α =

{

β if sn (tk) > 0
b < β if sn (tk) < 0,

where β is the participation rate. Hence, we allow for a smoothing method that
weights differently upwards or downwards movements of the reference fund. This
asymmetric way of considering positive and negative movements in the asset
returns enables us to have at maturity the exact amount of resources to pay
the full benefit to the policyholder, without overcharging the company during
unfavourable periods. In the simulations, we assume b = 40% against a partici-
pation rate β = 80%.

Similarly to the analysis carried out for the static reserves, we plot in Figures 4-5
the probabilities that the reserves calculated on the basis of the proposed methods
are below VP (t). We observe that P (VR (t) < VP (t)) drops very quickly, especially
if the readjustment of the accumulation rate occurs every year. The “step-shape” of
the curves, though, suggests that the trajectory followed by the reserves might not
be smooth. An example is shown in Figures 6-7, where we illustrate the evolution
over the lifetime of the policy of the proposed dynamic reserves corresponding to the
specific scenarios presented in Figure 1.(b), (d) and (f) respectively. As expected, for
both market paradigms considered in this paper, the evolution of the reserves is very
unstable and volatile, due to a number of high peaks occurring over the term of the
contract. The reason for this behaviour comes from the definition of the fictitious
account PR(T ), which represents the projection to maturity of the expected liability.
This projection, in fact, is calculated using the information available at the reset dates,
tk, about the past performance of the asset returns. Hence, the value of the options still
to be exercised is calculated on the basis of the past n years’ returns and the realized
volatility over the same period, but, at the same time, ignoring the possible impact
of the future market dynamic. This is particularly evident when the readjustment of
the accumulation rate, rR(t), occurs every year, i.e. for n = 1. As n increases, the
smoothing effect becomes stronger and the peaks reduce in terms of both frequency and
magnitude. The fact that the annual amount of the dynamic reserves is often greater
than the fair value of the liability with a significant probability, means that, when
compared to VP (t), the proposed reserving schemes are, in a sense, more expensive for
the company to implement.
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Figure 4: P (VR (t) < VP (t)) corresponding to the benchmark set of parameters. The case of
the deterministic reserves under the geometric Brownian motion paradigm. The probabilities
are calculated under the real probability measure using 100,000 scenarios.
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Figure 5: P (VR (t) < VP (t)) corresponding to the benchmark set of parameters. The case of
the deterministic reserves under the Lévy process paradigm. The probabilities are calculated
under the real probability measure using 100,000 scenarios.
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Figure 6: Scenario generation: the case of the dynamic reserves under the geometric Brown-
ian motion paradigm. The trajectories of the market values are the same as in Figure 1.(b).
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Retrospective method Finally, we consider the retrospective reserve, which is
calculated as the current amount of the policy reserve, i.e. the current amount of the
accumulated benefits, P (t), at time t.

The evolution of the retrospective reserve corresponding to the scenarios considered,
is shown as well in Figures 6-7. We observe that P (t) is always below the estimated
value of the liabilities calculated using both the fair value approach and the dynamic
reserving schemes discussed above, and the market value of the assets. This is as
expected since, by construction, the retrospective reserve does not account for the full
cost of the time value of the options and guarantees included in the contract design
(see equation 8).

5 Solvency

The scenarios presented in section 4, and illustrated in Figures 6-7, show an additional
feature deserving a more detailed analysis. The specific trajectories considered, in fact,
suggest the possibility that the proposed dynamic reserves could be at a higher level
than the total of the assets available to the company. Based on these scenarios, it is
reasonable to expect periods in which the level of the reserves is above the total value
of the available assets, followed by periods in which the reserves drop below it. In terms
of portfolio management, this implies that the insurer needs to adopt a very aggressive
investment strategy in order to balance the high level of the reserves, followed by large
disinvestments when these move below the assets level. Hence, compared to the fair
value approach, estimating the value of the liabilities using a deterministic reserving
scheme, such as the ones proposed above, could prove more expensive in terms of the
cost of capital, with consequences for the solvency profile of the insurance company.

As mentioned in section 1, a new solvency regime, named “Solvency II”, is currently
discussed by the European Union with the aim of creating incentives to develop internal
models for measuring the risk situation within insurance companies. The aim of this
section is to analyze, in the light of the guidelines arising from the Solvency II project,
the capital requirements for an insurance company issuing a participating contract with
minimum guarantee such as the one described in the previous sections. We consider
here only the valuation paradigm based on the Lévy process model, with the premium
for the default option invested in the same equity portfolio backing the policy (similar
conclusions can be obtained for the geometric Brownian motion model as well; results
are available from the authors).

Solvency II follows the three-pillar approach used in Basel II, so that Pillar 1 com-
prises quantitative minimum requirements for equity capital provision; Pillar 2 deals
with supervisory review methods and the development of standards for sound internal
risk management; finally, Pillar 3 defines the requirements for disclosure obligations
and market transparency in order to ensure a high degree of market discipline. More
specifically, one of the focus areas of Solvency II is to develop a formula for the calcu-
lation of the target capital, i.e. the amount needed to ensure that the probability of
failure of the insurance company within a given period is very low. This formula should
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be based on the assessment of the future cashflows related to the policies in force and
assets held. The assessment should take into account all relevant risks, and should be
carried out by building on the IASB proposals and the latest IFRS. The time horizon
proposed is one year, whilst longer term elements should be taken into account in Pillar
2 (European Commission, 2004). Although a specific assumption for the most suitable
confidence level is still under discussion, the current practice in some countries such as
the Netherlands and the UK, suggests a 99.5% probability (i.e. the ruin probability
of 1/200), which, broadly speaking, implies that the insurance company should be at
least of investment grade quality (“BBB”) in terms of rating.

Hence, as the target capital depends on the annual ruin probability, i.e. the proba-
bility that the insurer will have not enough assets to cover the liabilities at the end of
the observation period, we consider as a relevant index for our analysis, the difference
between the market consistent value of the assets and the best estimate of the liabilities
generated by the contract. As the best estimate of the liability we use its fair value
as calculated in section 2.2, and the estimates produced by the deterministic reserving
methods introduced in section 4. In the language of the Swiss Solvency Test (FOPI,
2004), this index is called Risk Bearing Capital (RBC). For easy of exposition, we
express the RBC as a proportion of the estimated liability, i.e.

RBC =
Stot(t) − V (t)

V (t)
,

where V is the best estimate of the liability.
We note that a reserving method which leads to an artificially low value of the

liabilities will have a P (RBC > 0) with desirable characteristics. We comment on this
possibility in a later paragraph.

In Figure 8, we represent the probability that at the end of each year the RBC is
positive. These plots are accompanied by the analysis of the moments of the distri-
bution of the RBC in each year, shown in Figures 9-11. Figures 9 and 10 relate to
the four dynamic reserving methods described in section 5, and Figure 11 relates to
the static reserving method. We observe that the fair value approach not only gener-
ates the highest probability of being solvent (i.e. of having a positive RBC), but also
guarantees a stable RBC over the lifetime of the contract and, consequently, reduced
additional injections of capital from the shareholders. This also implies that the fair
value reporting system could prove helpful for the definition of an effective ALM policy.

In contrast, the probabilities of being solvent originated by any of the four dynamic
reserving methods discussed in section 4, deteriorate very quickly with time (especially
if the accumulation rate, rR(t), is readjusted every year). Moreover, the step-shape of
the curves suggests that the capital requirements for the insurance company would be
very different one year from the other in terms of magnitude. This emerges also from
the analysis of the moments of the distribution of the RBC. The irregular behaviour of
the RBC’s variance, in particular, represents for the insurance company a significant
problem for the development and implementation of an effective strategy of internal
risk management. Finally, in Figure 8 we note that the static reserving method leads
to the highest probability of solvency; however, this plot should be read together with
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Figure 8: P(RBC > 0) for the benchmark set of parameters under the real probability
measure. The distribution has been obtained using 100,000 scenarios. Each panel corresponds
to one of the dynamic reserving method described in section 4.
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Figure 9: The mean of the risk bearing capital distribution resulting from the numerical
experiment described in Figure 8. The risk bearing capital is calculated as (Stot − V )/V ,
where V is the best estimate of the liability provided by the four dynamic reserving schemes
described in section 4 and by the fair value VP (t).
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Figure 10: The variance of the risk bearing capital distribution resulting from the numerical
experiment described in Figure 8. We note the magnitude of this moment of the distribution
for the reserving scheme 4.
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Figure 11: Mean and variance of the risk bearing capital distribution when the best estimate
of the liability is given by the static reserve.
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Figure 5 discussed in section 4. This latter Figure, in fact, shows that the reason
for such a consistently high RBC is due to the fact that the static reserve consistently
underestimates the fair value of the liability, to the extent that the reserves accumulated
till maturity according to this method, fail to cover the actual amount of the benefits
in 92% of the cases. The very high variance of the RBC (in Figure 11) is instead due
to the fact that the static reserves are completely uncorrelated with the movements of
the assets (and hence the market volatility).

6 Concluding remarks

In this paper, we describe a fair valuation approach to setting the premium and reserves
for a simple, participating insurance policy, which includes in its design a minimum
guaranteed rate and a participation rate (analogous to a reversionary bonus).

The decomposition of the contract into its basic components, i.e. the policy reserve
and the default option, allowed by the fair value procedure, enables us to identify an
allowance for the default option in the premium (via a solvency loading). We also
demonstrate how such an allowance leads to a dramatic reduction in the probability
of default for the contract at maturity, for reasonable parameter values. This is also
relevant in terms of the risk management of the contract under consideration: the
probability of default for the case without a solvency loading is, in fact, too high for
any realistic hedging strategy to be effective.

An analysis of the model error and parameter error for the contract indicates the
sensitivity of the results to the underlying assumptions and point to the need for a
Market Value Margin. In order to represent model error, we use the idea that the
insurance company assumes that its invested assets are accumulating according to a
geometric Brownian motion process whereas, in fact, they are driven by a geometric
Lévy process.

An important conclusion of the analysis is that attempts to use deterministic re-
serving methods for such a typical contract (defined along traditional lines) lead to
undesirable results when compared with the fair valuation approach. These conclu-
sions are demonstrated in section 4 by our considering the probability that, at the
end of each year, the value of the reserves is below the fair value of the liability – a
probability that we find to be unacceptably high. These conclusions are also supported
by the analysis in section 5 which considers the moments of the Risk Bearing Capital
distribution and the probability that the Risk Bearing Capital is positive at the end of
each year, thereby demonstrating solvency.
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