
Palacios, M., García-Fanjul, J., Tuya, J. & Spanoudakis, G. (2015). Coverage Based Testing for

Service Level Agreements. IEEE Transactions on Services Computing, 8(2), pp. 299-313. doi:

10.1109/TSC.2014.2300486

City Research Online

Original citation: Palacios, M., García-Fanjul, J., Tuya, J. & Spanoudakis, G. (2015). Coverage

Based Testing for Service Level Agreements. IEEE Transactions on Services Computing, 8(2), pp.

299-313. doi: 10.1109/TSC.2014.2300486

Permanent City Research Online URL: http://openaccess.city.ac.uk/5728/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/76980541?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 1

Coverage-based testing for Service Level
Agreements

Marcos Palacios, José García-Fanjul, Javier Tuya, Member, IEEE, and George Spanoudakis,
Member, IEEE

Abstract —Service Level Agreements (SLAs) are typically used to specify rules regarding the consumption of services that are
agreed between the providers of the Service-Based Applications (SBAs) and their consumers. An SLA includes a list of terms
that contain the guarantees that must be fulfilled during the provisioning and consumption of the services. Since the violation of
such guarantees may lead to the application of potential penalties, it is important to assure that the SBA behaves as expected.
In this article, we propose a proactive approach to test SLA-aware SBAs by means of identifying test requirements, which
represent situations that are relevant to be tested. To address this issue, we define a four-valued logic that allows evaluating
both the individual guarantee terms and their logical relationships. Grounded in this logic, we devise a test criterion based on
the Modified Condition Decision Coverage (MCDC) in order to obtain a cost-effective set of test requirements from the structure
of the SLA. Furthermore by analyzing the syntax and semantics of the agreement, we define specific rules to avoid non-feasible
test requirements. The whole approach has been automated and applied over an eHealth case study.

Index Terms —Software Testing, Service Based Applications, Service Level Agreements, Coverage Criterion, MCDC.

—————————— ——————————

1 INTRODUCTION

ERVICE Level Agreements (SLAs) are used in the
scope of Service Oriented Architectures (SOA) as a

standard formalism to specify the conditions that regulate
the trading between the service providers and the con-
sumers. These contracts represent a set of guarantee terms
that contain the expected Quality of Service (QoS) that
must be delivered during the provision and consumption
of the services. Generally, the violation of a term of the
SLA leads to negative consequences for the stakeholders,
for example, the payment of penalty fees. Due to this, it is
important that both providers and consumers try their
utmost to avoid or minimize the SLA violations and their
corresponding consequences.

The detection of these SLA violations is typically per-
formed by observing the behavior of the Service Based
Application (SBA) at runtime, recollecting data from the
executions and making a decision about the evaluation of
the SLA. To do this, different monitoring techniques have
been proposed ([1], [2], [3]) and represent a good post-
mortem solution in the sense that the problems are detect-
ed after they have occurred in the operational environ-
ment. Such problems may be therefore analyzed and
solved so they are less likely to arise again. However, in
specific scenarios where an SLA violation may lead to
important consequences for the stakeholders it is not

recommendable to wait until the problems appear at
runtime. In these cases, the application of ante morten
approaches allows the providers to reduce or avoid the
number of SLA violations and, hence, minimize the pen-
alties associated to such violations.

Among the fit-for-purpose tasks involved within the
proactive detection of SLAs violations, testing has been
identified as a challenge in the context of SOA-based
research [4], [5], [6]. The objective of SLA-based testing is,
on the one hand, to guarantee that the SBA satisfies the
conditions specified in the SLA and, on the other hand, to
assure that such SBA is able to behave properly even
when some of its constituent services violate the SLA. For
example, a service may not be able to fulfill the agreed
response time (perhaps because such service is down). As
the response time is a condition specified in the SLA, we
aim at identifying tests that exercise the situations where
the service does not answer or it spends too much time to
give the response. With these tests, we check that the
application provides appropriate mechanisms to handle
the unexpected behavior of the aforementioned service.
At this stage, the SLA-based testing aims at anticipating
as much as possible the detection of problems in the SBA
and thereby avoid the consequences derived when such
problems arise at runtime in the operational environment.

In a previous work we addressed the identification of
test requirements by analyzing the individual guarantee
terms of the SLA [7]. These test requirements represent
error-prone situations that are interesting to be tested. In
this article we provide a further step by means of consid-
ering the whole logical structure of the SLA. As the num-
ber of test requirements may become unmanageable if the
SLA is quite complex, we devise a coverage-based criteri-
on with the aim at obtaining a reduced but effective set of
test requirements.

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 MarcosPalacios is with the Department of Computer Science, University of
Oviedo. Campus Universitario de Gijón. 33204. Asturias. Spain. E-mail:
palaciosmarcos@uniovi.es. José García-Fanjul is with the Department of Computer Science, Universi-
ty of Oviedo. Campus Universitario de Gijón. 33204. Asturias. Spain. E-
mail: jgfanjul@uniovi.es. Javier Tuya is with the Department of Computer Science, University of
Oviedo. Campus Universitario de Gijón. 33204. Asturias. Spain. E-mail:
tuya@uniovi.es. George Spanoudakis is with the Department of Computing, School of
Informatics, City University London. EC1V OHB. London. E-mail:
G.E.Spanoudakis@city.ac.uk

S

2 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

The primary contributions of this article are:
1. Specification of a test criterion based on the MCDC

coverage criterion [8] that allows the identification
of test requirements by means of analyzing the in-
formation represented in both the guarantee terms
and their logical combinations. This criterion
makes use of a four-valued logic to evaluate SLAs,
which is also defined.

2. Definition of specific rules that contribute to avoid
the identification of non-feasible situations, con-
sidering the context of the SBA as well as the hier-
archical structure of the SLA.

3. Automation of the process that identifies the test
requirements using the aforementioned criterion.

4. Application of the criterion to a real and critical
eHealth scenario that was proposed in the context
of the PLASTIC European Framework [9] and
used by other authors to test SLAs [10], [11]. This
case study will also be used as a running example
along the article.

The structure of the article is as follows. Section 2 pro-
vides a background about SLAs and the main concepts
about software testing. Section 3 describes the logic to
evaluate the elements of the SLA. Section 4 defines the
criterion that allows obtaining test requirements from the
logical associations of terms contained in the SLA. Section
5 presents the results obtained through the application of
the approach in a real scenario. Section 6 outlines related
work. Finally, Section 7 provides some conclusions and
outlines the future work.

2 BACKGROUND
In this section we describe the most relevant charac-

teristics of SLAs, focusing on the WS-Agreement standard
language and we introduce relevant concepts that are
commonly used in the scope of software testing.

2.1 Service Level Agreements
Service Level Agreements (SLAs) are contracts that

specify the rules for the trading between the consumers
and the Service Based Applications (SBAs) providers.
Typically, these rules specify which the constituent ser-
vices of the SBA that will be regulated by the agreement
are, and how these services should be offered. Currently,
very important companies (including Google, Microsoft,
AT&T, Amazon or HP) use SLAs as a guarantee for their
clients to assure that their SBAs deliver the expected
Quality of Service (QoS). Although the existing SLAs in
the industrial domain [12] [13] seem to be quite simple
nowadays, they could become more complex by means of
establishing relationships between the terms or including
information regarding the functional and non-functional
features of the services as well as the penalties derived
from the violations of the agreed guarantees. In this arti-
cle we aim at testing service based applications when the
SLA that regulates their behavior is not simple.

In addition to typical tasks involved within the man-
agement of the SLAs, including negotiation [14], [15],
evaluation [16], optimization [17] [18] monitoring [1] or

testing [19], [20], the specification of the SLAs has been
widely studied over the last few years. In many occasions
the SLAs are specified in documents without any kind of
format or even using natural language. Unfortunately,
this lack of formalism when creating an SLA hinders the
automatic management of the agreement. In our case, the
testing of the SLAs requires using such documents as the
test basis so we need to somehow formalize the specifica-
tion of the SLA in order to automate as much as possible
the obtaining of tests.

Among the languages that have been published in or-
der to standardize the content of the SLAs, such as,
WSLA, WSLO, SLANG, WS-QoS or WS-Policy, it has
been WS-Agreement the one that has received more at-
tention regarding the SLA-based testing, at least from the
academic scope. WS-Agreement presents a generic syntax
that allows extrapolating its derived outcomes to any
other existing SLA specification language. In fact, WS-
Policy, which is gaining attraction from the industrial
space, shares the same notation as WS-Agreement to
represent the relationships between the guarantees. Thus,
in this work, we focus on the syntax and semantics of WS-
Agreement in order to test the conditions represented in
the SLA.

WS-Agreement at a glance

WS-Agreement [21] is an XML based language pro-
posed by the Open Grid Forum (OGF) that specifies a
protocol for the establishment of agreements between two
parties. This standard allows defining a hierarchical struc-
ture for the specification of an SLA. The specification of
an SLA using the WS-Agreement standard language is
composed of three main parts. These are:
• Name, i.e., the part specifying an optional name that

can be given to the agreement.
• Context, i.e., the part defining the parties involved in

the agreement and their role.
• Terms, i.e., the part expressing the negotiated and

agreed obligations of each party. These obligations
are specified using Service Description Terms (SDT),
Service Properties (SP) and Guarantee Terms (GT).

The most important information of the SLA is repre-
sented by means of the Guarantee Terms, which describe
the obligations that must be satisfied by a specific obligat-
ed party. A Guarantee Term (GT) contains the following
internal elements: (1) the Scope specifies the list of services
the term applies to, (2) the Qualifying Condition (QC)
represents a precondition or assertion that determines
whether the term is relevant and must be considered
during the evaluation process, (3) the Service Level Objec-
tive (SLO) specifies the guarantee that must be met.

In WS-Agreement, the terms of the SLA can be logi-
cally and hierarchically grouped by means of Compositor
elements. Specifically, there are three different types of
compositor elements, namely: All, OneOrMore and Exact-
lyOne. These element types are equivalent to the logical
AND, OR and XOR operators, respectively.

2.2 Software Testing
In the context of service computing, the testing of SLA-

PALACIOS ET AL.: COVERAGE-BASED TESTING FOR SERVICE LEVEL AGREEMENTS 3

aware SBAs has been posed as a challenging task [4], [5],
[6]. Generally, testing is an activity in which the Software
Under Test (SUT) is executed under specified conditions,
the results are observed or recorded, and an evaluation is
made of some aspect of the system [22]. The execution of
the SUT is usually performed through the design and
execution of test cases.

A test case is a set of inputs, execution conditions and
expected results developed for a particular objective [23].
The detection of faults is addressed by means of execut-
ing the SUT and comparing the observed results with the
expected results, determining whether the behaviour of
the software is correct or not. It is therefore imperative
that a good design of test cases should allow detecting the
highest possible number of faults. The generation and
execution of test cases is considered a proactive or ex ante
approach in the sense that it is able to detect problems in
the SUT before such problems occur in the operational
environment.

Monitoring is also a widely used testing technique that
passively observes real time executions with the aim of
detecting any deviation from the expected behaviour of
the software during its operation [24]. Monitoring based
approaches are considered reactive because problems are
detected ex post, after they have occurred and, thus, po-
tential further consequences cannot always be avoided.

Concerning these two main testing approaches, a test
requirement represents a specific feature or situation of
the SUT that must be satisfied or covered during testing
[25]. Test requirements are typically identified following a
specific test strategy, which might be based on different
factors such as risks, models of the system, expert advice
or heuristics. In this scope, the identification of test re-
quirements from logical conditions is not trivial, as the
number of combinations can be often huge. Testing all
combinations may be unmanageable if not impossible
altogether. Hence, it is necessary to decide the expected
coverage and, based on this, define test criteria in order to
provide a systematic way of selecting the best test re-
quirements.

In this article the SUT is any SBA, typically a web ser-
vice composition, in which the execution conditions of the
constituent services are specified in a SLA using the WS-
Agreement language. In our approach, we are dealing
with the controllability of the services, which is a well
known issue that limit the testability in SOA based sys-
tem, by means of proposing a proactive approach. This
means that the identification of test requirements allows
guiding the generation of test cases and such test cases
will be executed in a controlled environment so, in this
case, the services are under our control. On the other
hand, when the services are deployed in their operational
environment and are consequently out of our control, we
consider that the identified test requirements could also
be used to define a monitoring plan in order to apply a
reactive approach [26]. By observing the behavior at
runtime and analyzing the exercised test requirements, it
is possible to detect whether the SBA has evolved and
new tests need to be designed or the SLA has become
obsolete and need to be changed accordingly.

3 EVALUATION OF SLAS
The evaluation of an SLA requires analyzing the informa-
tion gathered from the monitors and/or testers, checking
the specification of the guarantee terms and, finally, mak-
ing a decision about the fulfilment of such terms. We have
outlined in Section 2 that an SLA specifies a set of terms
that govern the execution of the constituent services of
the SBA. Such guarantee terms can be hierarchically
structured by means of using specific compositor ele-
ments (All, OneOrMore, ExactlyOne).

In this context, we identify two different levels regard-
ing the evaluation of the SLAs.
• Level I: Individual Guarantee Terms.
• Level II: Composite Guarantee Terms defined by

compositor elements.
The first level involves making a decision about the

fulfilment of each individual guarantee term represented
in the SLA [20]. The second level involves considering
sets of Guarantee Terms logically grouped by the com-
positor elements and determining whether the composite
terms are fulfilled or not.

In this section we propose a logic that allows evaluat-
ing both individual guarantee terms and composite
terms, from a testing point of view, including all the po-
tential situations derived from the task of assuring
whether the SLA is being fulfilled or not.

3.1 Level I: Evaluating Individual Guarantee Terms
We firstly focus on each individual guarantee term in
order to address the evaluation of the SLA. The evalua-
tion of a guarantee term is usually performed in a di-
chotomic way, for example, depicting a two-way traffic
light indicator (green/red) that indicates whether the
term has been fulfilled or violated respectively. The use of
these two classical values is really useful when the behav-
iour of the SBA is monitored at runtime in order to decide
whether a problem has been detected, disregarding the
situation that has caused such problem. However and
from a testing point of view, we need to early identify the
different potential situations that may derive in problems
in the SBA.

Aligning this perspective with the syntax of WS-
Agreement, a Guarantee Term is specified by means of
the internal elements Scope, Qualifying Condition (QC)
and Service Level Objective (SLO). After taking this syn-
tax into account, a Guarantee Term can be evaluated as:
• Fulfilled (F) - if and only if the methods of the ser-

vices specified in the Scope have been executed, the
QC has been met and the SLO has been satisfied.

• Violated (V) - if and only if the methods of the ser-
vices specified in the Scope have been executed, the
QC has been met and the SLO has not been satisfied.

However, from a testing point of view, this two-valued
logic may not be enough to evaluate the potential situa-
tions derived from the guarantee term. For example,
situations where there are methods of the services associ-
ated to the scope of a guarantee term that have not been
executed. Considering such situations introduces the
need for an additional evaluation value, under which a
Guarantee Term is evaluated as:

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

• Not Determined (N) - if and only if there are meth-
ods of the services specified in the Scope of the guar-
antee term, which have not been executed.

Furthermore, analyzing the internal elements of a
Guarantee Term and its semantics according to WS-
Agreement, we have to consider another case. This case
arises when the Qualifying Condition of the term is not
met during the execution of services. In this case, the
Guarantee Term becomes irrelevant and it must not be
taken into account for the purpose of the evaluation of the
SLA so we say that a Guarantee Term is evaluated as:
• Inapplicable (I) - if and only if the methods of the

services specified in the Scope have been executed
but the Qualifying Condition has not been satisfied.

In other disciplines within the software engineering, it
has been necessary to extend the typical binary logic (true
/ false) to deal with similar situations. For example, in the
context of Database Management Systems (DBMS) the
interpretation of the missing information is considered by
means of a special third value (i.e., null), which has also
been broadly used in the scope of database applications
testing [27], [28], [29]. In our case, the use of these two
additional evaluation values (Not Determined and Inap-
plicable) could represent an analogous interpretation of
the treatment of the null value in DBMS and leads to a
four-valued logic to evaluate SLAs.

Hence, a Guarantee Term denoted by t can be evalu-
ated with four different evaluation values as output using
a function ev(t):
3.2 Level II: Evaluating Compositor Elements
After having provided a systematic way to evaluate the
individual guarantee terms, now we focus on the logical
combinations of the SLA Guarantee Terms. We have pre-
viously outlined that an SLA specified in WS-Agreement
represents a hierarchical structure of guarantee terms,
logically combined using the specific Compositor Ele-
ments All, OneOrMore and ExactlyOne. Thus, we need to
complete the logic basis that allows evaluating the indi-
vidual Guarantee Terms in order to unequivocally deter-
mine the evaluation value of these compositors. The use
of a four valued logic in our approach allows us, on the
one hand, to obtain the evaluation outcomes of the SLA
and, on the other hand, to guide the identification of the
test requirements by means of applying a coverage crite-
rion.

According to the semantics of each compositor, herein
we define the following logic to evaluate the SLA.

Evaluation of All Compositor

An All compositor element with multiple Guarantee
Terms is evaluated as follows:

Fulfilled if
Violated if

Not Determined if

Inapplicable if

The interpretation of this logic is that an All composi-
tor element with n guarantee terms is evaluated as Ful-
filled if at least one of its internal elements has been
evaluated as Fulfilled and the rest of such elements have
been evaluated as Fulfilled or Inapplicable. The same
compositor is evaluated as Violated when there is at least
one guarantee term that has been evaluated as Violated.
The All compositor is evaluated as Not Determined if
there is at least one guarantee term evaluated as Not De-
termined and none of its internal elements has been
evaluated as Violated. Finally, the All compositor is
evaluated as Inapplicable if all its internal guarantee
terms have been evaluated as Inapplicable

It is worth mentioning that a WS-Agreement always
specifies the content of the whole agreement under an All
external compositor element so the evaluation of the SLA
would be equivalent to the evaluation of such most exter-
nal All element.

Evaluation of OneOrMore Compositor

Likewise, an OneOrMore compositor element with mul-
tiple Guarantee Terms is evaluated as follows:

Fulfilled if

Violated if
Not Determined if

Inapplicable if

Evaluation of ExactlyOne Compositor

Finally, an ExactlyOne compositor element with multiple
Guarantee Terms is evaluated as follows:

Fulfilled if
Violated if

TABLE 1

COMPOSITOR ELEMENTS TRUTH TABLE

GT1 GT2 All OneOrMore ExactlyOne

F F F F V

F V V F F

F N N F N

F I F F F

V F V F F

V V V V V

V N V N N

V I V V V

N F N F N

N V V N N

N N N N N

N I N N N

I F F F F

I V V V V

I N N N N

I I I I I

PALACIOS ET AL.: COVERAGE-BASED TESTING FOR SERVICE LEVEL AGREEMENTS 5

Not Determined if

Inapplicable if

In order to illustrate the application of this logic, the
truth table of these three compositor elements with two
Guarantee Terms each one (GT1 and GT2) is represented
in Table 1. The first two columns contain all the potential
combinations of the evaluation values of both guarantee
terms. Each cell of the last three columns specifies the
final evaluation value of each compositor element when
its internal guarantee terms are evaluated with the values
represented in such row (for example, if GT1 is evaluated
as Fulfilled and GT2 is evaluated as Inapplicable, the All
compositor is evaluated as Fulfilled).

3.3 From Evaluation Values to Test Requirements
The aforementioned logic allows us to obtain the evalua-
tion values of both Guarantee Terms and Compositors
based on the information gathered from the execution of
the services. So from now on:

Definition 1. An evaluation value is the output provided
by the mechanism in charge of making a decision about the
fulfillment of a guarantee term or a compositor. There are four
different evaluation values: (F) Fulfilled, (V) Violated, (I) Inap-
plicable and (N) Not Determined.

These values are used as a cornerstone to identify the
test requirements that will be later covered with the test
cases. In a previous work we dealt with the identification
of test requirements by means of analyzing the informa-
tion contained in the individual guarantee terms [7]. In
this article, we are providing a further step in the sense
that we tackle the testing of the logical combinations of
the terms represented through the compositors.

At this stage, we introduce the definition of a test re-
quirement based on the evaluation values:

Definition 2. A test requirement represents a situation ex-
ercised when executing the SUT in which each Guarantee Term
has to take a predetermined and specific evaluation value.

The relation between a test requirement and its con-
stituent evaluation values is explained using an example
from the eHealth scenario, depicted in Fig. 1. In the left
part of the figure an All compositor element with two
guarantee terms is represented in WS-Agreement. From
the information contained in such compositor we try to
identify potential error-prone situations that could be
interesting to test. To address this task, we force the first
guarantee term (GT_Device1) to take the Inapplicable
evaluation value whereas the second guarantee term
(GT_Device2) is evaluated as Violated, then the All com-
positor will be evaluated as Violated. From these evalua-
tion values a test requirement is identified (bottom right
part of the figure). To be more specific, we are testing the
behaviour of the eHealth system when a doctor is manag-
ing an Emergency and one of the devices (device1) is not
queried (GT_Device1 = Inapplicable) whereas the other
service (device2) is not working properly according to the
SLA (GT_Device2= Violated). Despite of the violation of

one guarantee term, the service composition must be able
to continue its execution and provide a solution to the
patient’s incidence. If there was a problem when dealing
with an unexpected behaviour of one medical device as
described, the exercitation of the identified test require-
ment would allow us to uncover it before deploying the
eHealth system in the production environment.

4 COVERAGE-BASED TEST CRITERION
The process of testing SLA-aware SBAs can be improved
by identifying test requirements from the specification of
the SLAs using a criterion based on the principle of the
Modified Condition / Decision Coverage (MCDC) [8] that
allows obtaining a cost-effective set of test requirements,
representing situations that are interesting to exercise
regarding the SLA and the SBA. This set contains a re-
duced number of test requirements to be exercised in
order to uncover problems in the SBA.

Typically, MCDC is applied to a specification of the
SUT. In our case, the specification that says how the SUT
must behave is the SLA. In such SLA there are guarantee
terms that represent conditions that can be satisfied or
not. Hence, it is necessary to design tests that exercise
situations in which the guarantee terms are fulfilled and
situations in which not. Within this approach, these situa-
tions are obtained by means of the application of our
MCDC-based criterion.

4.1 Four -valued MCDC Test Criterion
Once the logic to evaluate the compositor elements of an
SLA has been defined, we obtain the test requirements by
combining the potential evaluation values of the terms
included in the compositors. Considering that each term
can be evaluated with four different values, the amount of
test requirements would grow exponentially with the
number of terms if we applied all the possible combina-
tions. Hence, our objective is to avoid the exponential
growth of test requirements in order to obtain a reduced
but cost-effective set of test requirements and we achieve
it by using MCDC.

Modified Condition Decision Coverage (MCDC), de-
fined in the RTCA/DO-178B standard [8], is a broadly
studied structural coverage criterion [31], [32]. It has also

Fig. 1. Relation between Evaluation Values & Test Requirement

<All>

 <GuaranteeTerm

 Name = “GT_Device1” Obligated = “ServiceProvider”
 <Scope

 serviceName = “WSMedicalDevice” method = “getMeasure”
 </Scope>

 <QualifyingCondition>

 idDevice = device_1

 </QualifyingCondition>

 <ServiceLevelObjective>

 responseTime <= 3 seconds

 </ServiceLevelObjective>

 </GuaranteeTerm>

 <GuaranteeTerm

 Name = “GT_Device2” Obligated = “ServiceProvider”
 <Scope

 serviceName = “WSMedicalDevice” method = “getMeasure”
 </Scope>

 <QualifyingCondition>

 idDevice = device_2

 </QualifyingCondition>

 <ServiceLevelObjective>

 responseTime <= 10 seconds

 </ServiceLevelObjective>

 </GuaranteeTerm>

</All>

Test Requirement

A doctor consults the measure

of the second medical device

while the first one is not

enquiried.

Evaluation Values

GT_Device1 is evaluated as

INAPPLICABLE

GT_Device2 is evaluated as

VIOLATED

Compositor All is evaluated as

VIOLATED

Such device provides a

response to the doctor in more

than 10 seconds.

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

been used for test suite reduction and prioritization [33]
because it provides a linear increase in the number of test
requirements [30]. MCDC is a criterion that falls between
condition/decision and multiple condition coverage [32].
This criterion has been shown to represent a good balance
of test-set size and fault detecting ability simultaneously
[34], [35]. MCDC is defined as a conjunction of the follow-
ing requirements:
• Every point of entry and exit in the program has

been invoked at least once.
• Every condition in a decision in the program has

taken all possible outcomes at least once.
• Every decision in the program has taken all possible

outcomes at least once.
• Each condition in a decision has been shown to in-

dependently affect the decision’s outcome (a condi-
tion is shown to independently affect a decision’s
outcome by varying just that condition while hold-
ing fixed all other possible conditions).

Consider the decision d = (a AND b) where a, b are
two boolean conditions. To satisfy MCDC criterion, we
need to generate three test cases (0,1) (1,1) (1,0) as de-
scribed in Fig. 2.

MCDC criterion is usually defined for a binary logic.
However, the application of MCDC when the logic allows
four different evaluation values is more complex. So, in
our approach:

Definition 3. A set of test requirements satisfies the
SLACDC (SLA Condition / Decision Coverage) criterion for a
combination of terms grouped within a compositor using the
four-valued logic if and only if:

1. Every guarantee term has taken all possible evaluation
values at least once.

2. The compositor has taken all possible evaluation values
as outcome at least once.

3. For each possible evaluation value of a guarantee term,
a variation from a specific evaluation value to a differ-
ent value has been shown to independently affect the
evaluation of the compositor (this is, when we switch
the evaluation value of the guarantee term while hold-
ing fixed the evaluation values of the rest of terms, the
outcome of the evaluation of the compositor varies).

As an example, consider an All compositor element
with two guarantee terms (GT1 and GT2) represented in
Fig. 3. To address the identification of test requirements,
we start from the situation where both guarantee terms
are evaluated as Fulfilled and, thus, the All compositor is
also evaluated as Fulfilled (row 1 in the figure). Then, we
set the second row obtaining the first pair (a), which al-
lows us to switch the evaluation value of GT1 from Ful-
filled to Violated and this change affects the evaluation
value of the compositor, which also changes from Ful-
filled to Violated. After this, we set the third row obtain-
ing a new pair (b), where the evaluation value of GT1

switches from Violated to Inapplicable and, consequently,
the evaluation value of the All compositor changes from
Violated to Fulfilled.

This process continues until we obtain six different
pairs (a to f) that fulfil the conditions (1) and (3) of
SLACDC criterion (Definition 3). However condition (2)
is not fulfilled because the All compositor has not been
evaluated as Inapplicable yet. In order to satisfy condition
(2) we identify a new test requirement (row 8) where both
guarantee terms are evaluated as Inapplicable and, thus,
the All compositor also takes the Inapplicable evaluation
value. At this stage, a final set of 8 test requirements (TR1-
TR8) is obtained (Fig. 3) that satisfy the criterion instead
of the 16 test requirements that would be obtained using a
complete combination.

4.2 Identification of Test Requirements
In this section we present in detail the algorithms that are
necessary to automate the elaboration of the test require-
ments regarding the logical combinations of terms ex-
pressed by means of the compositor elements. For each
compositor, we define the algorithm that obtains the test
requirements, and we illustrate the process with exam-
ples.

All Compositor

While testing the conditions specified in an All composi-
tor, we check how the variation of a guarantee term eval-
uation affects the evaluation of the compositor while the
rest of guarantee terms have been fulfilled. Hence, the
algorithm to obtain the set of test requirements for an All
compositor that groups n Guarantee Terms is as follows:

1. Initialize the set with an initial test requirement (TR1)
where all the guarantee terms are evaluated as Fulfilled.

2. For each GTi in the All_Compositor:
Add a new test requirement by means of switching the
evaluation value of GTi from Fulfilled (as it is in TR1)
to (Violated, Inapplicable, Not Determined) while the
evaluation of GTj with j ≠ i remains fixed to Fulfilled.

3. Add a new test requirement where all the guarantee terms
are evaluated as Inapplicable in order to get the Inapplica-
ble evaluation value in the All_Compositor.

As an example, we partially illustrate the identification
process of test requirements for an All compositor with 3
internal Guarantee Terms: ALL (GT1, GT2, GT3,).

Step1:
The set of test requirement is initialized with TR1

where all the terms are evaluated as Fulfilled.
Step2:
For each guarantee term we add three test require-

ments where the evaluation value of each guarantee term

Fig. 2. Example of application of MCDC

Fig. 3. MCDC for SLA GTs and Compositors with a four-valued logic

PALACIOS ET AL.: COVERAGE-BASED TESTING FOR SERVICE LEVEL AGREEMENTS 7

must be switched from Fulfilled to (Violated, Inapplica-
ble, Not Determined) while holding the rest of terms
fixed with Fulfilled. The set of test requirements identi-
fied in this step is represented in Table 2 (TR2-TR10).

Step3:
We identify a new test requirement where all the guar-

antee terms are evaluated with the Inapplicable value.
The final set of test requirements identified for this

compositor is represented in Table 2. The first column
labels each test requirement and the evaluations of the
individual guarantee terms (GT) and the compositor are
represented in the rest of the columns. The first row is
remarked because it corresponds to the initial test re-
quirement and the cells that represent the guarantee
terms that switch their evaluation values are grey shaded.

The application of SLACDC criterion provides a linear
number of combinations related to the number of condi-
tions. In general, the number of combinations that satis-
fies MCDC for a binary logical decision is (n+1) where n
is the number of conditions within the decision, there are
two possible truth values (true/false) for each condition
and the maximum number of combinations is 2*n [36]. In
our case and dealing with a four-valued logic for the
evaluation of the guarantee terms, the number of test
requirements obtained with SLACDC criterion remains
linear regarding the number of guarantee terms and
evaluation values and can be obtained according to the
following formula:

where n is the number of internal terms within the
compositor and v the number of evaluation values of each
guarantee term (in this case, v = 4). If we apply a com-
plete combination using the four-valued logic, the num-
ber of obtained test requirement would be 4^n

OneOrMore Compositor

The algorithm to obtain the set of test requirements from
an OneOrMore compositor is similar to the one for All
compositor, but in this case we want to exercise the varia-
tion of one term while the rest of guarantee terms have
been violated. Thus, the algorithm for the identification of
test requirements for an OneOrMore compositor is as
follows:
1. Initialize the set with an initial test requirement (TR1)

where all the guarantee terms are evaluated as Violated.
2. For each GTi in the OneOrMore_Compositor:

Add a new test requirement by means of switching the evalua-
tion value of GTi from Violated (as it is in TR1) to (Fulfilled,
Inapplicable, Not Determined) while the evaluation of GTj

with j ≠ i remains fixed to Violated.
3. Add a new test requirement where all the guarantee terms

are evaluated as Inapplicable in order to get the Inapplica-
ble evaluation value in the OneOrMore_Compositor.

We have omitted the explanation of the steps that per-
form the identification of test requirements for this com-
positor because the process is the same as for the All
compositor. As an example, the test requirements identi-
fied for an OneOrMore compositor with 3 guarantee
terms can be seen in the first rows of Table 3 (rows 1-11).

The number of test requirements for an OneOrMore
compositor is also given by the formula:

ExactlyOne Compositor

The identification of test requirements from an
ExactlyOne compositor varies a little regarding the two
aforementioned algorithms for compositors All and
OneOrMore. The reason is that two different scenarios
need to be considered for this compositor:

1. Test the combinations where the evaluation value
of the compositor varies due to the flip from none
term evaluated as fulfilled to only one term ful-
filled.

2. Test the combinations where the evaluation value
of the compositor varies to Violated because the
flip involves the fulfilment of more than only one
guarantee term.

The first scenario exercises the situation where all the
guarantee terms are initially evaluated as Violated and
we switch the evaluation value of each guarantee term to
(Fulfilled, Inapplicable and Not Determined). Hence, it
can be seen that this first scenario is exercised using the
same set of test requirements that we have described for
the OneOrMore compositor. This means that the algo-
rithm (A1) to test this first scenario is the same and the
test requirements obtained are represented in Table 3
(rows 1-11).

To exercise the second scenario, we have to obtain test
requirements where there is already a unique guarantee
term evaluated as Fulfilled and we flip the evaluation of
another guarantee term between the four possible evalua-
tion values. The algorithm (A2) for the identification of
these test requirements is as follows:

1. Initialize an empty set of test requirements.
2. For each GTi in the ExactlyOne_Compositor:

a. Add an initial test requirement where one guarantee term
GTj with j ≠ i is evaluated as Fulfilled and the rest of
guarantee terms are evaluated as Violated.

b. Add a new test requirement by means of switching the
evaluation value of GTi from Violated (as it is in the cur-
rent initial test requirement) to (Fulfilled, Inapplicable,
Not Determined) while the evaluation of GTj with j ≠ i
remains fixed to Fulfilled and the evaluation of the rest of
terms remains fixed to Violated.

3. Add a new test requirement where all the guarantee terms
are evaluated as Inapplicable in order to get the Inapplica-
ble evaluation value in the ExactlyOne_Compositor.

The test requirements obtained with this algorithm

TABLE 2

TEST REQUIREMENTS FOR AN ALL COMPOSITOR WITH 3
GUARANTEE TERMS

Test Req. ev(GT1) ev(GT2) ev(GT3) ev(ALL)

TR1 F F F F

TR2 V F F V

TR3 I F F F

TR4 N F F N

TR5 F V F V

TR6 F I F F

TR7 F N F N

TR8 F F V V

TR9 F F I F

TR10 F F N N

TR11 I I I I

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

(A2) are represented in Table 3 (rows 12-24). The cells that
contain the initial test requirement of step 2 for each
guarantee term are remarked.

These two aforementioned scenarios may be tested in-
dependently and it is the tester who decides whether
(s)he wants to exercise both scenarios or just one. In case
the tester decides to test both scenarios, it is necessary to
apply an additional step that involves the removal of
duplicated test requirements that are identified for both
algorithms (A1 and A2).

In Table 3 we have joined the set of test requirements
obtained through the algorithm A1 and the algorithm A2
and we have marked the duplicated test requirements. In
the first column we identify with a number all the test
requirements obtained with both algorithms. In the se-
cond column we set an identifier to the final test require-
ment or a brief description about the reason for removing
such test requirement. In the rest of column the evalua-
tion values of the guarantee terms and compositor are
represented. Furthermore, we have remarked the rows
that represent the initial test requirements in each algo-
rithm and those cells where the evaluation value of the
guarantee term is switched (grey shaded).

After joining both sets and removing the duplicated
test requirements, a final number of 19 test requirements
are identified. This number is obtained through the for-
mula:

where n is the number of guarantee terms included in
the ExactlyOne compositor. Thus, even applying these
two algorithms to the compositor, we still provide a line-
ar growth of test requirements regarding the number of
guarantee terms included in such compositor.

4.3 Removing Non-feasible Test Requirements
The application of the aforementioned algorithms pro-
vides a set of test requirements that satisfies the SLACDC
criterion to the logical combinations of terms expressed
by means of the compositors. However some of the iden-
tified test requirements correspond to situations that may
be non-feasible to exercise due to the semantic infor-
mation contained in the guarantee terms. Hence, we have
to deal with these specific situations in order to refine the
tests previously obtained. To address this improvement
we define a set of rules that allow modifying the test re-
quirements that do not make sense and obtain other test
requirements that represent feasible and interesting situa-
tions to be tested.

These rules are defined to keep fulfilled, as much as
possible, the conditions (1) and (2) of the criterion (Defini-
tion 3) whereas the condition (3) needs to be relaxed.
However, it cannot be assured that these conditions will
finally be fulfilled in the resultant set of tests require-
ments due to the dependencies between the conditions
specified in the SLA.

The application of the rules involves identifying the
test requirements that are non-feasible in which certain
evaluation values will be modified to obtain feasible test
requirements. This process requires that more than one
evaluation value is switched within the same test re-

quirement so SLACDC criterion is based on a specific
form of MCDC named Masking MCDC, investigated by
Chilenski [36], which allows more than one condition to
vary at once ensuring that only the condition of interest
influences the outcome.

Rule 1: Guarantee Terms without Qualifying Condition

This first rule is applied when some of the guarantee
terms included in the compositor does not have Qualify-
ing Condition. In this case, the test requirements where
such term is evaluated as Inapplicable must be removed.
This means that: :

In Fig. 4 an example of the application of this rule over
the eHealth scenario is depicted. There is an All composi-
tor with two internal guarantee terms. The first of them
(GT1) does not have Qualifying Condition so the test
requirements where this term is evaluated as Inapplicable
are removed. In the right part of the figure all the guaran-
tee terms obtained for the All compositor are represented.
The test requirements where the current rule is applied
are crossed out so we finally obtain a set of six test re-
quirements instead of the original set of eight test re-
quirements.

Rule 2: Guarantee Terms with same Scope

This second rule is applied when there are guarantee
terms in a compositor that are related to the same method
and service (Scope). In this case, the test requirements
that include these terms contain coupled conditions (in
MCDC conditions that cannot be varied independently
are said to be coupled [32]) or, in SLACDC criterion, bet-

TABLE 3

TEST REQUIREMENTS FOR AN EXACTLYONE COMPOSITOR
WITH 3 GUARANTEE TERMS

Row Test Req. ev(GT1) ev(GT2) ev(GT3) ev(ExOne)

1 TR1 V V V V

2 TR2 F V V F

3 TR3 I V V V

4 TR4 N V V N

5 TR5 V F V F

6 TR6 V I V V

7 TR7 V N V N

8 TR8 V V F F

9 TR9 V V I V

10 TR10 V V N N

11 TR11 I I I I

12 Duplicated (TR5) V F V F

13 TR12 F F V V

14 TR13 I F V F

15 TR14 N F V N

16 Duplicated (TR2) F V V F

17 Duplicated (TR12) F F V V

18 TR15 F I V F

19 TR16 F N V N

20 Duplicated (TR2) F V V F

21 TR17 F V F V

22 TR18 F V I F

23 TR19 F V N N

24 Duplicated (TR11) I I I I

PALACIOS ET AL.: COVERAGE-BASED TESTING FOR SERVICE LEVEL AGREEMENTS 9

ter named as coupled guarantee terms. This implies that if
one of these terms is evaluated as Not Determined (the
method/service is not invoked), then the other term must
also be evaluated as Not Determined. This is: :

At this stage, if we have identified non-feasible test re-
quirements due to dependencies between the scopes of a
pair of involved guarantee terms, we have to modify the
evaluation value of one of these guarantee terms. The
procedure we follow to change this value aims at keep
fulfilling as much as possible the condition (1) of Defini-
tion 3, bearing in mind that conditions (2) and (3) could
be then relaxed. Then, the evaluation values Fulfilled /
Violated / Inapplicable will be the candidates to be modi-
fied because, by construction, they are much more com-
mon than the other value Not Determined.

According to this principle, we search the test re-
quirements that contain pairs of guarantee terms affecting
the same method and service. If one of the terms is evalu-
ated as Not Determined and the other is not, we change
the evaluation value of this last guarantee term to Not
Determined. This process must be repeated for each pair
of terms in a test requirement that affect the same method
and service. Furthermore, if the resultant test requirement
is already duplicated, it is removed.

To illustrate the application of this rule, we consider an
example of an All compositor with three guarantee terms
(GT3, GT4, GT5), all of them affecting the same method /
service (represented in the left part of Fig. 5.). The set of
test requirements identified using the All compositor
algorithm is represented in the first table within the top of
the figure. From this requirements and applying this rule,
we modify the specification of the test requirements 4, 7
and 8 in order to modify the non-feasible situations repre-
sented in such requirements. In the right part of the fig-
ure, we remark the involved guarantee terms in the modi-
fication, we underline the evaluation value that has been
modified in each change and we cross out the removed
test requirements for being duplicated. Finally, the result-
ing set of test requirements is represented in the bottom
right part of the figure. Despite of having modified the
evaluation values in some test requirements, it is remark-

able that, in this example, conditions (1) and (2) of the
criterion are still being fulfilled whereas condition (3) has
been relaxed for having switched more than one evalua-
tion value in the same test requirement.

Rule 3: Guarantee Terms that have exactly the same QC

This rule is applied when there are some terms within
a compositor that specify exactly the same Qualifying
Condition, which is a common situation in a SLA. If such
Qualifying Condition is met, the guarantee terms can be
evaluated as Fulfilled or Violated or Not Determined but
never Inapplicable. If it is not met, the guarantee terms
must be evaluated as Inapplicable or Not Determined.
Hence, in this case we have again coupled guarantee
terms and it does not make sense that some of these terms
are evaluated as Inapplicable while the others are Ful-
filled or Violated. This is: :

As we specified for the previous rule, we have to mod-
ify the test requirements that contain these non-feasible
combinations. Here again, we relax the condition (3) of
the SLACDC criterion but trying to respect conditions (1)
and (2) as much as possible.

To achieve this, we select the test requirements where
this rule needs to be applied. As in the previous rule, the
evaluation values Fulfilled and Violated are more usual
than the Inapplicable so these are the values that will be
modified to Inapplicable. Here again, this variation must
be repeated for each pair of terms that contains the same
Qualifying Condition within the compositor and resultant
duplicated test requirements should be removed.

To illustrate the application of this rule, we use an ex-
ample of an All compositor with three guarantee terms
(represented in the left part of the Fig. 6) that affect differ-
ent services. Two of these terms (GT4 and GT6) specify
the same condition in the Qualifying Condition element.
Once we have identified the set of test requirements by
means of applying the algorithm for the All compositor,

Fig. 4. Example of the Application of Rule 1.

Fig. 5. Example of the Application of Rule 2.

<All>
 <GuaranteeTerm

 Name = “GT1” Obligated = “ServiceProvider”
 <Scope

 serviceName = “WSHealth” method = “notifyAlarm”
 </Scope>

 <ServiceLevelObjective>

 responseTime < 10

 </ServiceLevelObjective>

 </GuaranteeTerm>

 <GuaranteeTerm

 Name = “GT2” Obligated = “ServiceProvider”
 <Scope

 serviceName = “WSHealth” method = “notifyAlarm”
 </Scope>

 <QualifyingCondition>

 alarmType = Emergency

 </QualifyingCondition>

 <ServiceLevelObjective>

 responseTime < 3

 </ServiceLevelObjective>

 </GuaranteeTerm>

</All>

F F
V
I

F
F

ALL(GT1, GT2)GT1 GT2

N F
F
F

V
I

F
I

N
I

F
V
F

N
V
F
N
I

TR1
TR2

TR3
TR4

TR6

No Qualifying

Condition

TR5

<All>
 <GuaranteeTerm

 Name = “GT3” Obligated = “ServiceProvider”
 <Scope
 serviceName = “WSRegistry” method = “getDeviceIP”
 </Scope>

 <QualifyingCondition>

 alarmType = Emergency

 </QualifyingCondition>

 <ServiceLevelObjective>

 responseTime < 3

 </ServiceLevelObjective>

 </GuaranteeTerm>

 <GuaranteeTerm

 Name = “GT4” Obligated = “ServiceProvider”
 <Scope
 serviceName = “WSRegistry” method = “getDeviceIP”
 </Scope>

 <QualifyingCondition>

 alarmType = No Confirmation

 </QualifyingCondition>

 <ServiceLevelObjective>

 responseTime < 3

 </ServiceLevelObjective>

 </GuaranteeTerm>

 <GuaranteeTerm

 Name = “GT5” Obligated = “ServiceProvider”
 <Scope
 serviceName = “WSRegistry” method = “getDeviceIP”
 </Scope>

 <ServiceLevelObjective>

 count (professionals) > 0

 </ServiceLevelObjective>

 </GuaranteeTerm>

</All>

Same Method / Service

GT4 GT5GT3

F
V
I
N

F
F
F
F
F
F

F
F
F
F

V
I

N
F
F
F

F
F
F
F

F
F
F
V
I

N
I I I

N N F N N N
GT1 – GT2 GT1 – GT3

N N F N N N
GT1 – GT2 GT2 – GT3 Duplicated

N F N N N N
GT1 – GT3 GT2 – GT3 Duplicated

GT2 GT3GT1

F
V
I
N

F
F
F
F

F
F
F
N

V
I

F
F

F
F
F
N

F
F
V
I

I I I

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

ALL

F
V
F
N

V
F
V
F
I

TR1

TR2
TR3
TR4

TR6
TR5

TR7

TR9
TR8

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

we have to select and modify those requirements that
contain any of the non-feasible aforementioned combina-
tions (test requirements 3 and 9). In the right part of the
figure, we perform the modifications, indicating the in-
volved guarantee terms and crossing out the removed test
requirement for being duplicated.

Rule 4: Guarantee Terms that have mutually disjoint
QCs

This rule arises when, in a compositor, there are guar-
antee terms that contain Qualifying Conditions that are
mutually disjoint. This means that, if the Qualifying Con-
dition of one term is met then the Qualifying Condition of
the other term must not be met. Regarding the non-
feasible test requirements, if one of these terms is evaluat-
ed as Fulfilled or Violated in a test requirement then the
other one term must be evaluated as Inapplicable or Not
Determined. This is: :

* Note that in this context, the operator (!) does not
mean that one Qualifying Condition is the opposite to the
other. It really means that if the first QC is met then the
second QC cannot be met.

In order to avoid the appearance of the non-feasible
combinations in the final test suite, we have to modify the
test requirements that contain such combinations. The
procedure is similar to the one performed in the previous
pair of rules (Rule2 and Rule3). In fact, this rule is practi-
cally the opposite as Rule3. Here again, we will change
from the most common Fulfilled or Violated evaluation
values to another appropriate value. This could be both
Inapplicable and Not Determined although we decide to
switch to Inapplicable because the Not Determined value
also affects the application of Rule2 and, in that case, we
would have to apply again such rule so this may become
an ineffective loop.

According to this principle, we search the involved test
requirements. By construction, in each test requirement
there is a guarantee term whose evaluation value varied
(named pivot GT) while the evaluation values of the other

terms remained fixed. If the pair of terms that have mutu-
ally disjoint QC includes the pivot GT, then we always
modify the evaluation value of the other term from Ful-
filled or Violated to Inapplicable. On the other hand, if the
pair of terms does not include the pivot GT, then we
could modify the evaluation value of any of the two
terms. As always, we have to repeat the process for each
pair of terms that appear in the test requirement and re-
move the test requirements that become duplicated.

In Fig. 7 we show the application of this rule for an All
compositor with two internal guarantee terms that pre-
sent two mutually disjoint Qualifying Conditions in their
specifications. In the example, the first four test require-
ments were obtained by holding fixed the value Fulfilled
in the second guarantee term while switching the value of
the first guarantee term (so the pivot GT is GT8). Hence,
in test requirements 1 and 2 we change the value of the
second guarantee term from Fulfilled to Inapplicable as
explained before. In test requirements 5 the pivot GT is
GT9 so we modify the evaluation value Fulfilled of GT8
to Inapplicable.

4.4 Derivation of Test Cases
A test case specifies a set of steps that involve different
executions of the constituent services of the application.
These steps are defined by using the information repre-
sented in the test requirements that are exercised in such
test case. In each of these steps the guarantee terms and
compositors need to be evaluated so the expected output
regarding the evaluation of the SLA is automatically ob-
tained by applying the four-valued logic to the elements
that composed the test requirement.

The objective of the generation of test cases is to max-
imize the trade-off among different factors such as cost,
benefit or risks by means of obtaining a reasonable num-
ber of test cases that achieve detecting as many defects as
possible. In this article, this process is based on the four-
valued logic to evaluate SLAs and the proposed criterion
to identify the test requirements. Once the set of test re-
quirements that represent the situations to be tested is
identified, we have to decide how to combine such test
requirements in order to achieve an expected degree of
coverage in the resulting test suite. To do this, it is also
necessary to have some knowledge about the behaviour

Fig. 6. Example of the Application of Rule 3.

Fig. 7. Example of the Application of Rule 4.

<All>
 <GuaranteeTerm

 Name = “GT4” Obligated = “ServiceProvider”
 <Scope
 serviceName = “WSRegistry” method = “getDeviceIP”
 </Scope>

 <QualifyingCondition>

 alarmType = No Confirmation

 </QualifyingCondition>

 ...

 </GuaranteeTerm>

 <GuaranteeTerm

 Name = “GT5” Obligated = “ServiceProvider”
 <Scope
 serviceName = “WSRegistry” method = “getDeviceIP”
 </Scope>

 ...

 </GuaranteeTerm>

 <GuaranteeTerm

 Name = “GT6” Obligated = “ServiceProvider”
 <Scope
 serviceName = “WSRegistry” method = “getDeviceIP”
 </Scope>

 <QualifyingCondition>

 alarmType = No Confirmation

 </QualifyingCondition>

 ...

 </GuaranteeTerm>

 </All>

Same Qualifying

Condition

GT5 GT6GT4

F
V
I
N

F
F
F
F
F
F

F
F
F
F

V
I

N
F
F
F

F
F
F
F

F
F
F
V
I

N
I I I

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

I F I
GT3 – GT5

I F I
GT3 – GT5 Duplicated

GT5 GT6GT4

F
V
I
N

F
F
F
F

F
F
F
F

V
I

N
F

F
F
I
F

F
F
F
V

I I I

ALL

F
V
F
N

V
F
N
V

I

TR1

TR2
TR3
TR4

TR6
TR5

TR7

TR10

TR8

F F N N TR9

<All>
 <GuaranteeTerm

 Name = “GT8” Obligated = “ServiceProvider”
 <Scope

 serviceName = “WSDoctor” method = “receiveAlarm”
 </Scope>

 <QualifyingCondition>

 deployedOn = mobileNode

 </QualifyingCondition>

 <ServiceLevelObjective>

 responseTime < 6

 </ServiceLevelObjective>

 </GuaranteeTerm>

 <GuaranteeTerm

 Name = “GT9” Obligated = “ServiceProvider”
 <Scope

 serviceName = “WSDoctor” method = “receiveAlarm”
 </Scope>

 <QualifyingCondition>

 deployedOn = wiredServer

 </QualifyingCondition>

 <ServiceLevelObjective>

 responseTime < 2

 </ServiceLevelObjective>

 </GuaranteeTerm>

</All>

F F
V
I

F
F

GT8 GT9

N F
F
F

V
I

F
I

N
I

Mutually disjoint

Qualifying Conditions

F I
V I

I V

Duplicated1)

2)

3)

4)

5)

6)

7)

8)

V
I

I
F

GT8 GT9

N F
I
F

V
I

F N

All

V
F

N
V
F
N

TR1

TR2
TR3
TR4

TR6
TR5

I I I TR7

PALACIOS ET AL.: COVERAGE-BASED TESTING FOR SERVICE LEVEL AGREEMENTS 11

of the SBA in order to properly combine the test require-
ments and obtain an effective set of test cases.

At this stage, it is the tester who has to combine the
test requirements in each test case, bearing in mind that
the more test requirements that can be covered in a single
test case, the fewer test cases are needed to cover all the
test requirements. In each test requirement we have as-
sured that there are not non-feasible situations to test by
applying the proposed specific rules but this does not
mean that any combination of test requirements in a test
case makes sense. Typically, there will be test require-
ments that are incompatible to be combined within the
same test case due to the specification of the SBA so this
task of generating the test cases by combining the test
requirement is not definitely trivial and must be carefully
performed.

4.5 Tool Support
We have implemented a proof-of-concept tool that auto-
mates the identification of test requirements from the
specification of a SLA in the WS-Agreement language.

This tool receives the xml file of the SLA as input, it
parses the content of the agreement and implements the
algorithms for each compositor contained in the SLA.
Once the initial set of test requirements is obtained, it
accordingly modifies or removes the non-feasible combi-
nations by means of applying the aforementioned rules.

The output of the tool is the specification of the final
set of feasible test requirements, including the evaluation
value of each involved Guarantee Term.

5 CASE STUDY
In this section we illustrate the identification of test re-
quirements from the logical conditions of a SLA associat-
ed to an eHealth service-based application. This scenario
has been proposed in the context of the EU FP6 PLASTIC
Project [9] and has also been used as case study in previ-
ous approaches that tackle the testing of SLAs [10], [11].
The SLA that contains the conditions that must be ful-
filled by the stakeholders in this scenario is specified in
WS-Agreement standard language and can be publicly
downloaded [37]. The whole process has been performed
automatically using the tool we have implemented.

5.1 Description
The behaviour of the service-based application that is
used as case study in this article is as follows. Basically,
the eHealth system is deployed as a composite service
(WSHealth), which manages the alarms received from the
patients. This service finds the list of professionals to
solve the alarm in a registry (WSRegistry). There are two
different types of alarms (Emergencies and Not Confir-
mation) and two types of professionals to handle the
incident (doctors and supervisors), which are connected
to the system through wired or mobile devices. If a doctor
is contacted, he gets measures from the medical devices
(WSMedicalDevice) deployed in the patient’s location. If
it is a supervisor who is contacted, he arranges an ap-
pointment for the patient in the calendar (WSCalendar).
This scenario has a SLA associated, specified in the WS-

Agreement standard language. This SLA contains 14
Guarantee Terms, which are logically grouped using 5
compositors under the most external and mandatory All
compositor. In Table 4 we represent the distribution of
the guarantee terms in each of these compositors.

5.2 Identification of Test Requirements
The algorithms described in Section 4.2 have been applied
in order to obtain the initial set of test requirements. As
we have previously stated, many of these test require-
ments may be non-feasible so the rules defined in Section
4.3 have also been applied. As a result, Table 5 displays
the compositors specified in the SLA (first column), the
number of test requirements initially identified using the
aforementioned algorithms (second column) and the
number of test requirements that have been modified (M)
and removed (R) after applying each rule (middle col-
umns). Lastly, the last column outlines the final number
of test requirements for each compositor.

Initially, a set of 62 test requirements are identified by
applying the SLACDC criterion .These test requirements
fulfil the conditions specified in such criterion, which
assures that every Guarantee Term and every Compositor
take the four potential evaluation values and the variation
of any value affects the output of the evaluation. After
that, we apply the rules we have defined in Section 4.3in
order to avoid the obtaining of non-feasible requirements.

The final set contains a total number of 33 test re-
quirements, which are represented in Fig. 8. This number
is significantly lower than the number of test require-
ments we had obtained if we had applied a complete
combination using the four-valued logic in each composi-
tor. In that case, we had initially obtained a set of 1136
test requirements (4n for each compositor, where n is the
number of involved GTs).

5.3 Derivation of Test Cases
The identified test requirements are the basis to derive the
test cases that will be executed in the SBA. In this section
we provide an example about how different test require-
ments may be combined in order to generate a complex

TABLE 4

STRUCTURE OF THE EHEALTH SLA

Compositor Guarantee Terms

All (1) GT1, GT2

All (2) GT3, GT4, GT5, GT6, GT7

ExactlyOne (1) GT8, GT9

ExactlyOne (2) GT10, GT11

All (3) GT12, GT13, GT14

TABLE 5

TEST REQUIREMENTS IDENTIFICATION

Compositor Initial
Rule1 Rule2 Rule3 Rule4

Total
R M R M R M R

All (1) 8 0 2 1 0 0 3 1 6

All (2) 17 2 5 4 4 2 6 1 8

ExOne (1) 13 0 4 3 0 0 4 4 6

ExOne (2) 13 0 4 3 0 0 4 4 6

All (3) 11 2 2 1 0 0 5 1 7

Total 62 4 17 12 4 2 22 11 33

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

test case, which covers one test requirement from each of
the SLA compositors (all of them are remarked in Fig. 8).

The specification of this test case is represented in Ta-
ble 6. In the first column the exercised test requirement is
represented. In the second column the description of the
situations related to such test requirement is provided.

In this test case, the use of the two additional evalua-
tion values (Inapplicable and Not Determined) contrib-
utes to identify a specific scenario in which no supervi-
sors are invoked to manage the incidence (GT10 and
GT11 = Not Determined) and only one medical device is
queried whereas the other is not (GT14 = Inapplicable).

5.4 Discussion
One of the main benefits of this work is that a reasona-

ble and manageable number of test requirements and test
cases are systematically and automatically obtained by
applying SLACDC. To be more specific, in this case study
only 10 test cases are needed to cover all the TRs.

In addition to this, is worth mentioning that some de-
sign decisions have been taken when generating the test
cases. Once the test requirements are obtained from each
compositor, in this case study we have applied each-choice
testing to combine one test requirement from each com-
positor to derive a test case. We have used this testing
technique with the aim at obtaining a reduced number of
test cases. However, we could address the derivation of
test cases by means of applying other more exhaustive
testing techniques such as Pairwise or All Combinations.

On the other hand, all the test requirements have been
automatically identified with the aim at fulfilling the
conditions specified in Definition 3. Due to this, the iden-
tified test requirements represent interesting combina-
tions of situations that a tester would identify when per-
forming a manual test in the eHealth system, including
the arrival of different types of alarm, the invocation of

both doctors and supervisors, the use of different types of
medical devices and so on.

6 RELATED WORK
During recent years, many works have been proposed
with the final objective of detecting SLA violations. Most
of these works can be classified according to two main
dimensions: (1) proactive approaches that aim at prevent-
ing or anticipating the detection of problems in the SBA
and (2) reactive approaches that detect the problems at
runtime by observing the behaviour of the SBA. Below we
briefly describe the main characteristics of each work and
we state the points in common with our approach.

Regarding the first group, few works have addressed
the early identification of tests from the specification of
SLAs. Di Penta et al. [19] propose a black and white-box
approach to detect SLA violations in atomic and web
service compositions by means of using Genetic Algo-
rithms. Their objective is the generation of inputs that
causes violations of the SLA whereas we focus on the
identification of situations that implies evaluating the
SLA with all the potential evaluation values, not only
violations. Palacios et al. [38] use the Category Partition
Method (CPM) testing technique in order to identify tests
from WS-Agreements. This work states the problem of
the exponential growth of tests when the SLA becomes
complex, which is an issue that we address in our work
by means of applying coverage-based testing. In previous
works, we provide a general framework to test SLAs [20]
and we focus on identifying test requirements from the
individual guarantee terms of WS-Agreements [7]. In this
article we extend the test basis by considering not only
the guarantee terms in isolation but the logical composi-
tion of such terms. Bertolino et al. [11] propose PUPPET
framework, which generates test beds from the WSDL
and BPEL specification of service compositions, consider-
ing the information contained in a WS-Agreement. This
work can be complemented with our work in the sense
that they provide the necessary infrastructure to deploy
and execute the tests we identify in this article. Muller et
al. [39] propose static testing by detecting and explaining
inconsistencies between the terms of WS-Agreements
using a Constraint Satisfaction Problem based approach.

Regarding the second group, there are more works

Fig. 8. Final Set of Test Requirements.

TABLE 6

TEST CASE SPECIFICATION

TR Description

TR5

An emergency arrives to the system. The eHealth system

must provide a response to the patient in less than the

specified threshold time (GT1 is Fulfilled).

TR7

The registry is invoked in order to provide the list of avail-

able professionals to manage the incidence. In such situa-

tion, the registry spends more time than the expected to

give the response (GT3 is Violated and GT4 is Inapplicable).

Despite of this, the fulfillment of GT5 and GT6 means that

the provided list contains a group of doctors that are ready

to solve the emergency

TR20

Once this list is received, a doctor connected to the system

through a mobile device is contacted, who accepts the

incidence in less than the required time due to the fulfill-

ment of GT8.

TR22
Consequently, no supervisors are contacted (GT10 and

GT11 are Not Determined)

TR29

The doctor successfully obtains the list of medical device

deployed in the patient’s home GT is Fulfilled and
enquiries to receive the measure from the first medical

device, which spends too much response time (GT13 is

Violated and GT14 is Inapplicable).

PALACIOS ET AL.: COVERAGE-BASED TESTING FOR SERVICE LEVEL AGREEMENTS 13

that use monitoring techniques rather than testing to
detect SLA violations. Raimondi et al [3] propose an au-
tomatic SLA monitoring system that verifies the traces of
services executions by translating timeliness constraints
into timed automata. Mahbub and Spanoudakis [1] pre-
sent an Event Calculus (EC) based approach to model and
monitor the conditions specified in a WS-Agreement.
Comuzzi et al. [40] address both the establishment and
monitoring of SLA in the context of the SLA@SOI Euro-
pean Project [41]. Beyond these works, other systems such
as SALMonADA [2] or SLAMonitor [42], have been pro-
posed to monitor the behavior of the SBA and detect the
SLA violations. These approaches may be complemented
with our work by means of configuring the monitoring
systems in order to observe whether the test requirements
have been exercised or not at runtime.

In the borderline between these two groups, there are
other works that use monitoring techniques not to detect
but prevent SLA violations. Lorenzoli and Spanoudakis
[43] present EVEREST+ framework, which allows moni-
toring and predicting potential violations of the QoS met-
rics described in the SLA. Leitner et al. [44] propose an-
other framework to predict SLA violations by using ma-
chine learning techniques. Finally, Ivanovic et al. [45]
detect SLA violations by means of monitoring and ana-
lyzing the QoS metrics using a constraint-based approach.

7 CONCLUSIONS AND FUTURE WORK
In this article we have addressed the evaluation and test-
ing of the logical composition of guarantee terms in a
Service Level Agreement (SLA). We have defined a four-
valued logic that allows evaluating both individual guar-
antee terms and compositor elements. This logic is the
basis for the SLACDC (SLA Condition / Decision Cover-
age) criterion we have devised in order to identify a set of
test requirements that combine different evaluation val-
ues of the terms involved in a compositor. This criterion is
based on MCDC criterion and it provides a linear growth
of test requirements regarding the number of guarantee
terms included in the compositor.

In addition to this identification of test requirements,
we have to deal with non-feasible situations due to the
semantics of the SLA terms. To address this issue, we
have define a set of rules, which are automatically ap-
plied, that allow removing the non-feasible test require-
ments or, if possible, the modification of such require-
ments in order to obtain feasible situations.

The whole approach has been automated and validat-
ed over an eHealth case study proposed in the context of
a European FP7 Project. The automation of the approach
allows reducing the tester’s effort required to design and
specify aligned with the SLA specification. Furthermore,
the analysis and exercitation of the test requirements also
allow detecting wrong SLA specifications regarding the
relationships between the guarantee terms.

In future work, we will focus on evaluating the poten-
tial use of the aforementioned test requirements in other
testing domains. For example, these requirements may
contribute to derive monitoring plans that provide guide-

lines about which situations are more interesting to ob-
serve at runtime, when the SBA is deployed and executed
in the operational environment. Furthermore, we expect
to address the design of tests when the specification of the
SLA contains different levels of nesting between the
guarantee terms and the compositors.

ACKNOWLEDGMENT
This work has been partially funded by the Department
of Science and Innovation (Spain) and ERDF funds within
the National Program for Research, Development and
Innovation, project Test4DBS (TIN2010-20057-C03-01)
and FICYT (Government of the Principality of Asturias)
Grant BP09-075.

REFERENCES
[1] K. Mahbub and G. Spanoudakis, “Monitoring WS-Agreements:

an Event Calculus Based Approach,” Test and Analysis of Service
Oriented Systems, Springer V., 2007, pp. 265-306.

[2] C. Muller, M. Oriol, M. Rodriguez, X. Franch, J. Marco, M.
Resinas, and A. Ruiz-Cortés, “SALMonADA: A Platform for
Monitoring and Explaining Violations of WS-agreement-
Compliant Documents“ ICSE Workshop on Principles of Engineer-
ing Service Oriented Systems (PESOS), pp. 43-49, 2012.

[3] F. Raimondi, J. Skene, and W. Emmerich, “Efficient Online
Monitoring of Web-Service SLAs,” Proc. 16th ACM SIGSOFT
Int. Symp. on Foundations of Software Engineering (FSE-16), 2008.

[4] L. Baresi, N. Georgantas, K. Hamann, V. Issarny, W.
Lamersdorf, A. Metzger, and B. Pernici, "Emerging Research
Themes in Services-Oriented Systems," SRII Global Conference
(SRII), 2012 Annual , vol., no., pp.333-342, 24-27 July 2012.

[5] M. Palacios, J. García-Fanjul, and J. Tuya, “Testing Service
Oriented Architectures with Dynamic Binding: a Mapping
Study,” Information and Software Technology, vol. 53 (3), pp. 171-
189, 2011.

[6] G. Canfora and M. Di Penta, “Testing Services and Service-
Centric Systems: Challenges and Opportunities,” IT Professional
8 (2), pp. 9–17, 2006.

[7] M. Palacios, J. García-Fanjul, and J. Tuya, “Identifying Test
Requirements by Analyzing SLA Guarantee Terms,” Proc. 19th
Int. Conf. on Web Services, pp. 351-358, 2012.

[8] RCTA Inc. DO-178-B: Software Considerations in Airborne
Systems and Equipment Certification. Radio Technical Com-
mission for Aeronautics (RTCA), 1992.

[9] PLASTIC European Project. http://www.ist-plastic.org
[10] M. Autili, P.D. Benedetto, and P. Inverardi, “Context-Aware

Adaptive Services: The Plastic Approach,” Proc. 12th Int. Conf.
In Fundamental Approaches to Software Engineering (FASE), York,
UK, March 22-29, 2009. Proc. LNCS, vol. 5503, pp. 124–139.

[11] A. Bertolino, G. De Angelis, L. Frantzen, and A. Polini, “Model-
Based Generation of Testbeds for Web Services,” Proc. Testing of
TESTCOM/FATES, LNCS, vol. 5047, 2008, pp. 266-282.

[12] Google Apps SLA:
http://www.google.com/apps/intl/en/terms/sla.html

[13] Amazon EC2 SLA: http://aws.amazon.com/ec2-sla/
[14] E. Di Nitto, M. Di Penta, A. Gambi, G. Ripa, and M.L. Villani,

“Negotiation of Service Level Agreements: an Architecture and
a Search-Based Approach,” Proc. 5th Int. Conf. Service-Oriented
Computing (ICSOC), September 17-20, pp. 295–306, 2007.

[15] F.H. Zulkernine and P. Martin, "An Adaptive and Intelligent
SLA Negotiation System for Web Services," IEEE Trans. Services
Computing, vol. 4, no. 1, pp. 31-43, Jan.-March 2011.

[16] M. Palacios, L. Moreno, M.J. Escalona, and M. Ruiz, “Evaluat-
ing the Service Level Agreements of NDT under WS-
Agreement. An Empirical Analysis,” Proc. 8th Int. Conf. on Web
Information Systems and Technologies, Porto, Portugal, April 2012.

14 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

[17] D.M. Quan and L.T. Yang, "Parallel Mapping with Time Opti-
mization for SLA-Aware Compositional Services in the Busi-
ness Grid," IEEE Trans. Services Computing, vol. 4, no. 3, pp. 196-
206, July-Sept. 2011. doi: 10.1109/TSC.2011.27

[18] H. Wada, J. Suzuki, Y. Yamano, and K. Oba, "E3: A
Multiobjective Optimization Framework for SLA-Aware Ser-
vice Composition," IEEE Trans. Services Computing, vol. 5, no. 3,
pp. 358-372, Third Quarter 2012. doi: 10.1109/TSC.2011.6

[19] M. Di Penta, G. Canfora, G. Esposito, V. Mazza, and M. Bruno,
“Search-Based Testing of Service Level Agreements,” Proc. An-
nual Conference on Genetic and Evolutionary Computation (GECCO
07), London, ACM, New York, 2007, pp. 1090-1097.

[20] M. Palacios, “Defining an SLA-aware Method to Test Service-
Oriented Systems,” Proc. 9th Int. Conf. on Service Oriented Com-
puting (ICSOC), PhD Symposium, G. Pallis et al. (Eds.): ICSOC
2011, LNCS 7221, pp. 164--170. Springer, Heidelberg 2012.

[21] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T.
Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu, “Web ser-
vices agreement specification (WS-Agreement),” 2010.

[22] ISO/IEC 24765, Software and Systems Eng. Vocabulary, 2006.
[23] IEEE Std 610.12-1990, IEEE standard glossary of software engi-

neering terminology.
[24] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl,

“A Journey to Highly Dynamic, Self-Adaptive Service-Based
Applications,” Automated Soft. Eng., 15, pp. 313–341, 2008.

[25] J. Offut, L. Nan, P. Ammann, and X. Wuzhi, “Using Abstraction
and Web Applications to Teach Criteria-Based Test Design,"
Proc. 24th IEEECS Conference on Software Engineering Education
and Training (CSEE&T), 2011, pp.227-236.

[26] Q. Wang; J. Shao; F. Deng; Y. Liu; M. Li, J. Han, and M. Hong,
"An Online Monitoring Approach for Web Service Require-
ments,", IEEE Trans. Services Computing, vol. 2, no.4, pp. 338-
351, Oct.-Dec. 2009. doi: 10.1109/TSC.2009.22

[27] N.D. Belnap, “A Useful Four-valued Logic,” In: J.M. Dunn, G.
Epstein (eds.), Modern Uses of Multiple-Valued Logic, Dor-
drecht: Reidel, pp. 8—37, 1977.

[28] E.F. Codd, “The Relational Model for Database Management,” -
Version 2. Addison-Wesley, Reading, MA, 1990.

[29] G. Gessert, “Four Valued Logic for Relational Database Sys-
tems,” Sigmod Rec. 19 (1), pp. 29—35, 1990.

[30] A. Dupuy and N. Leveson, “An Empirical Evaluation of the
MCDC Coverage Criterion on the HETE 2 Satellite Software,”
Proc. 19th Digital Avionics System Conference (DASC), 2000.

[31] M.R. Woodward and M.A. Hennell, “On the Relationship
Between Two Control-Flow Coverage Criteria: all JJpaths and
MCDC,” Information and Software Technology, vol. 48 (7), pp.
433-440, 2006.

[32] J.J. Chilenski and S.P. Miller, “Applicability of modified condi-
tion/decision coverage to software testing,” Software Engineer-
ing Journal, vol 9 (5), pp. 193-229, 1994.

[33] J.A. Jones and M.J. Harrold, “Test-Suite Reduction and Prioriti-
zation for Modified Condition/Decision Coverage,” IEEE
Transactions Software Engineering, vol 29 (3), pp. 195-209, 2003.

[34] J. Kapoor and J.P.Bowen, “Experimental Evaluation of the
Tolerance for Control-Flow Test Criteria,” Software Testing, Veri-
fication and Reliability, vol. 14 (3), pp. 167-187, 2004.

[35] T.K. Yu and M.F. Lau, “A Comparison of MC/DC, MUMCUT
and Several Other Coverage Criteria for Logical Decisions,”
Journal of Systems and Software, vol. 79 (5), pp. 577-590, 2005.

[36] J.J. Chilenski, “An Investigation of Three Forms of the Modified
Condition Decision Coverage (MCDC) Criterion,” Technical
Report DOT/FAA/AR-01/18, U.S. Department of Transporta-
tion, Federal Aviation Administration, April 2001.

[37] Software Engineering Research Group (GIIS) downloads:
http://giis.uniovi.es/testing/downloads/?lang=en.

[38] M. Palacios, J. García-Fanjul, J. Tuya, and C. de la Riva. “A
Proactive Approach to Test Service Level Agreements,” Proc
5th Int. Conf. Software Eng. Advances (ICSEA), pp. 453-458, 2010.

[39] C. Muller, M. Resinas, and A. Ruiz-Cortes, "Automated Analy-
sis of Conflicts in WS-Agreement," IEEE Trans. Services Compu-
ting, 25 Feb. 2013. IEEE computer Society Digital Library.

[40] M. Comuzzi, C. Kotsokalis, G. Spanoudakis, and R. Yahyapour,
“Establishing and Monitoring SLAs in Complex Service Based
Systems,” Int. Conf. on Web Services (ICWS), pp. 783-790, 2009.

[41] SLA@SOI European Project
[42] N. Goel, .V.N. Kumar, R.K. Shyamasundar, “SLA Monitor: A

System for Dynamic Monitoring of Adaptive Web Services,”
Proc 9th IEEE European Conf. on Web Services, pp. 109-116, 2011.

[43] D. Lorenzoli and G. Spanoudakis, “EVEREST+: Run-Time SLA
Violations Prediction,” Proc. of the 5th International Workshop on
Middleware for Service Oriented Computing (MW4SOC ‘10), pp.
13-18. ACM, New York, NY, USA, 2010.

[44] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “Moni-
toring, Prediction and Prevention of SLA Violations in Compo-
site Services,” IEEE Int. Conf. on Web Services (ICWS), pp. 369-
376, 2010.

[45] D. Ivanovic, M. Carro, and M. Hermenegildo, “Constraint-
Based Runtime Prediction of SLA Violations in Service Orches-
trations,” Proc. of the International Conference on Service Oriented
Computing (ICSOC), 2011, pp. 62-76.

Marcos Palacios is currently PhD student and
Teaching Assistant at University of Oviedo,
Spain, and a member of the Software Engi-
neering Research Group of that University. He
received his B. Sc. degree in Computer Sci-
ence in 2006 and his M. Sc. in Computer
Science in 2008 from the University of Oviedo.
He has collaborated with City University Lon-
don (London, UK) as visiting researcher. His

research interests include software engineering, software testing and
service-based applications.

José García-Fanjul is currently Professor at
University of Oviedo, Spain, and a member of
the Software Engineering Research Group of
that University. He received his PhD and
M.Sc. in Computing from the University of
Oviedo. His research interests include soft-
ware engineering, software testing and ser-
vice-based applications, and he has authored
several research papers published on jour-

nals and international conferences.

Javier Tuya is Professor at University of
Oviedo, Spain, where is the research leader
of the Software Engineering Research Group.
He received his PhD in Engineering from the
University of Oviedo. He is Director of the
Indra-Uniovi Chair, member of the ISO/IEC
JTC1/SC7/WG26 working group for the
ISO/IEC/IEEE 29119 Software Testing stand-
ard and convener of the corresponding
AENOR National Body working group. His

research interests in software engineering include verification &
validation and software testing for database applications and ser-
vices. He is a member of the IEEE, IEEE Computer Society, ACM
and the Association for Software Testing (AST).

George Spanoudakis is Professor of Com-
puting and Associate Dean for Research in
the School of Informatics at City University
London. His research is in software engi-
neering with a focus on service oriented
computing and software systems security
where he has published more than 120
peer-reviewed papers. His research has
attracted more than €4.8m of funding and

has been the principal investigator of several R&D projects. He has
served in the committees of several international conferences, and
the editorial boards of several journals including the Int. J. of Soft-
ware Engineering and Knowledge Engineering and Int. J. of Advanc-
es in Security. He is a member of the IEEE.

