
Fairbank, M. & Alonso, E. (2012). Value-Gradient Learning. Paper presented at the WCCI 2012 

IEEE World Congress on Computational Intelligence, 10-06-2012 - 15-06-2012, Brisbane, 

Australia. 

City Research Online

Original citation: Fairbank, M. & Alonso, E. (2012). Value-Gradient Learning. Paper presented at 

the WCCI 2012 IEEE World Congress on Computational Intelligence, 10-06-2012 - 15-06-2012, 

Brisbane, Australia. 

Permanent City Research Online URL: http://openaccess.city.ac.uk/5205/

 

Copyright & reuse

City University London has developed City Research Online so that its users may access the 

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are 

retained by the individual author(s) and/ or other copyright holders.  All material in City Research 

Online is checked for eligibility for copyright before being made available in the live archive. URLs 

from City Research Online may be freely distributed and linked to from other web pages. 

Versions of research

The version in City Research Online may differ from the final published version. Users are advised 

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact 

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/76980471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Value-Gradient Learning

Michael Fairbank

Department of Computing,

School of Informatics,

City University London,

London, UK

Email: michael.fairbank.1@city.ac.uk

Eduardo Alonso

Department of Computing,

School of Informatics,

City University London,

London, UK

Email: E.Alonso@city.ac.uk

Abstract—We describe an Adaptive Dynamic Programming
algorithm VGL(λ) for learning a critic function over a large
continuous state space. The algorithm, which requires a learned
model of the environment, extends Dual Heuristic Dynamic
Programming to include a bootstrapping parameter analogous
to that used in the reinforcement learning algorithm TD(λ).
We provide on-line and batch mode implementations of the
algorithm, and summarise the theoretical relationships and
motivations of using this method over its precursor algorithms
Dual Heuristic Dynamic Programming and TD(λ). Experiments
for control problems using a neural network and greedy policy
are provided.

Index Terms—Value-Gradient Learning, Dual Heuristic Dy-

namic Programming, DHP, Adaptive Dynamic Programming

I. INTRODUCTION

Adaptive Dynamic Programming (ADP, [1]) is the study

of how an agent can learn to choose actions that minimise

a total long-term cost. For example a typical scenario is an

agent wandering around in an state space S ⊂ ℜn, such that

at time t it has state vector ~xt ∈ S. At each time t the agent

chooses an action ~ut (from an action space ~ut ∈ A) which

takes it to the next state according to the environment’s model

function ~xt+1 = f(~xt, ~ut), and gives it an immediate scalar

cost Ut, given by the function Ut = U(~xt, ~ut). The agent keeps

moving, forming a trajectory of states (~x0, ~x1, . . .), which

terminates if and when a state from the set of terminal states

T ⊂ S is reached. If a terminal state ~xt ∈ T is reached

then a final instantaneous cost Ut = U(~xt) is given which

is independent of any action.

An action network or actor or policy function, A(~x, ~z), is a

neural network (or more generally, a function approximator)

with parameter vector ~z, which specifies which action ~u =
A(~x, ~z) to take for any given state ~x. From any given state ~x,

the expectation of the total future long term cost encountered

when following actions chosen by an action network A(~x, ~z),
is given by the function J(~x, ~z) = 〈

∑
t γ

tUt〉, where 〈〉
denotes expectation. This is the cost-to-go function for the

given action network, also known as the value function from

dynamic programming [2] and reinforcement learning (RL,

[3]). Here γ ∈ [0, 1] is a constant discount factor that specifies

the importance of long term costs over short term ones. The

objective of ADP and RL is to train the action network to

choose actions that minimise the total cost-to-go function from

any state ~x.

ADP also uses a second neural network (or function ap-

proximator), J̃(~x, ~w) ∈ ℜ, with weight vector ~w, known as

the critic or approximate value function. The intermediate

objective of ADP is to train the critic to approximate the cost-

to-go function, so that J̃(~x, ~w) ≈ J(~x, ~z) for all ~x ∈ S. If this

is achieved perfectly, and if simultaneously the action network

always chooses actions according to:

~u = argmin
~u∈A

〈
U(~x, ~u) + γJ̃(f(~x, ~u), ~w)

〉
∀~x (1)

then Bellman’s Optimality Condition [2] shows the trajectories

produced will be optimal, and the action network is optimal.

The method of choosing actions purely by equation 1 is

called the greedy policy on J̃ since it chooses actions that the

critic rates as best.

The ADP method Heuristic Dual Programming (HDP), and

the RL methods TD(λ) and Q-learning [4], [5], are all critic

learning methods that sample trajectories and update the critic

values encountered along the trajectory. We call these methods

value learning (VL) methods since they learn the values of J̃
along the trajectory. Variants of these methods have produced

successes in control problems [6], [7], but they can be very

slow since Bellman’s condition needs meeting over the entire

continuous state space for optimality. Even if Bellman’s condi-

tion is perfectly satisfied along a single trajectory, performance

can be extremely far from optimal. Bellman’s condition must

be satisfied at least on the neighbouring trajectories too for

local optimality. Hence VL methods must be supplemented

by exploration of the environment just to attain local optimal-

ity. This exploration could be provided by stochastic model

functions, a stochastic policy, or a stochastic start point for

each trajectory. The methods we follow significantly reduce

the need for this explicit exploration.

In this paper, we follow the ADP methods of Dual Heuristic

Dynamic Programming (DHP) and Globalized DHP (GDHP)

[8], [9], [10], [1]. DHP and GDHP work by explicitly learning

the gradient of the value function with respect to the state

vector, i.e. they learn ∂J
∂~x

instead of J directly. We refer to

these methods collectively as value gradient learning (VGL)

methods, to distinguish them from VL methods. The main

reason to use VGL methods over VL methods is that whereas

VL methods need to learn the critic values all along the current

trajectory and all neighbouring trajectories to achieve local



optimality, VGL methods only need learn the value-gradient

along the single trajectory to achieve the same assurance

of local optimality. This motivation is discussed further in

section I-A. Also, VGL methods can work very well in control

problems in continuous state spaces.

We extend the VGL methods from DHP to include a

bootstrapping parameter λ ∈ [0, 1] (just as TD(λ) is an

extension of TD(0)), to give the algorithm we call VGL(λ),

which we describe in this paper. For λ = 0, VGL(λ) is

equivalent to DHP, but for λ > 0, VGL(λ) is a new algorithm.

The motivations for this extension are that using λ > 0
can increase the stability of learning and sometimes increase

learning speed, as discussed further in section I-B.

VGL methods (including DHP) are model-based methods

that require a learned differentiable model of the environment

and cost functions, f(~x, ~u) and U(~x, ~u). We discuss this more

in section I-C.

In sections I-A and I-B, we expand on the motivations for

VGL methods and the λ parameter, and in section I-C we

discuss the applicability of VGL methods and the necessary

learning of the model functions. In the rest of the paper,

we define the VGL(λ) algorithm in section II, and state its

relationship to TD(λ) and DHP in subsections II-C and II-D.

In section III, we give experimental results, and finally, in

section IV we give conclusions.

A. Motivations for DHP and VGL Methods

The VGL (and hence DHP) methods address the issue of the

Bellman equation needing to be solved over the whole of state

space, in that it turns out to be only necessary to fully learn

the value gradient along a single trajectory, under a greedy

policy, for it to be locally extremal, and often locally optimal.

This is proven by [11], and is closely related to Pontryagin’s

Minimum Principle [12]. This optimality condition contrasts

strongly with the VL methods which need to learn the value

function over all immediately neighbouring trajectories too in

order to achieve the same level of guarantee for being locally

extremal/optimal trajectories. So this is a significant efficiency

gain for the VGL methods, and is their principal motivation.

This implies that VGL methods have a much lesser require-

ment for exploration than VL methods do, since the local

part of exploration comes for free by using VGL methods.

What we mean by this is that provided the VGL learning

algorithm makes progress in learning the value gradient all

along a trajectory, while following a greedy policy, then the

trajectory will automatically make progress in bending itself

towards a locally optimal shape. This will happen without the

need for any stochastic exploration. In effect, by using VGL

methods, local exploration is automatic; or put another way the

traditional RL dilemma of “exploration versus exploitation”

transforms into “exploration and exploitation”, locally at least.

This leads to greater efficiency for VGL compared to VL.

In comparison the failure of VL without any exploration in

a deterministic environment is dramatic and common, even

when the value-function is perfectly learned along a single

trajectory. The experiment in section III-A confirms this.

Both VL and VGL methods have the same requirement for

global optimality, that is if the value function (or its gradient)

is exactly learned over all of state space, with a greedy policy,

then Bellman’s condition assures global optimality.

For a fuller discussion of the motivations to use VGL

methods see [13].

B. Motivations for Introducing the λ Parameter into DHP

The motivations for using the λ parameter are that choosing

λ carefully can increase the stability of learning and sometimes

increase learning speed.

For example, when λ = 1, the weight update used by

TD(λ) for a fixed action network is true gradient descent

on an error function and so is guaranteed to converge [4].

However when λ = 0, TD(λ) is not true gradient descent

on any error function, and this weight update can diverge

when the approximator for J̃(~x, ~w) is non-linear in ~w [14].

Similarly, DHP is not true gradient descent on any function,

and general instability in this case has been proven [15, sec.

7.7-7.8]. However VGL(1) is true gradient descent on an error

function, for a fixed action network, and so will converge.

Furthermore, when a greedy policy is used, all of TD(1),

TD(0) and DHP can be made to diverge [16]. However

with carefully chosen learning parameters and smoothness

assumptions, VGL(1) can be guaranteed to converge with a

greedy policy, as discussed further in section II. In this case

VGL(1) becomes identical to backpropagation through time

[17] acting directly on the greedy policy, as proven by [11].

Choosing λ carefully can affect the learning speed of critic

learning algorithms. Having a high value of λ makes the

target in the critic weight update use a longer “look-ahead”

along the trajectory, and so this can improve learning speed.

However, conversely, having too large a value of λ can increase

the variance of the sampled target J value in a stochastic

environment, which can slow down learning. Hence in TD(λ),

often the optimal value of λ for learning speed is somewhere

in the middle range of λ ∈ [0, 1], as demonstrated by [3].

C. Applicability of VGL methods and System Identification

The VGL methods are strictly model-based methods, and

this is largely where the extra efficiency comes from. We

assume the model functions can be learned by a separate “sys-

tem identification” learning process, for example as described

by [18]. This system identification process could have taken

place prior to the main learning process (e.g. like [19]), or

concurrently with it, and results in learned model functions

f(~x, ~u) and U(~x, ~u). Alternatively, there is an extremely fast

on-line model-learning method by [20] which could be used.

We do not describe this model-learning stage of the process

any further in this paper.

The VGL methods work naturally with continuous space

problems. They are also limited to situations to where the

model functions and policy are once-differentiable, comprising

of a deterministic part plus optionally some additive noise. In

many situations we can force smoothness onto the model func-

tions by using a smooth deterministic function approximator

to represent them.



DHP successes include autopilot landing [10], power system

control [21] and many others [1]. However some traditional

RL problem domains with discrete spaces would not be readily

solvable by VGL methods, such as a “grid world” problem,

backgammon, or a k-armed bandit problem. Also, step cost

functions would not be applicable, thus excluding problems

such balancing a pole where the total cost is a function of

the integer number of time steps that the pole is balanced for.

However the pole balancing problem can be solved by DHP if

a smoothed out cost function is used [22]. As a rule of thumb,

if a problem is suitable for smooth gradient descent on J with

respect to ~w, then it will be suitable to work on VGL methods.

II. THE VGL(λ) ALGORITHM

In this section we define the VGL(λ) Algorithm and state

how it relates to the algorithms TD(λ) and Dual Heuristic

Dynamic Programming.

To define the VGL(λ) algorithm, we require that J̃(~x, ~w)
is defined by a smooth scalar function approximator, e.g. a

neural network with weight vector ~w. This enables us to

define the “critic gradient”, or “approximate value gradient”,

as G̃(~x, ~w) ≡ ∂J̃(~x,~w)
∂~x

.

Throughout this paper, a convention is used that all defined

vector quantities are columns, whether they are coordinates,

or derivatives with respect to coordinates. So, for example, G̃

and ∂J̃
∂~x

are columns. Also, all subscripted indices are what we

call trajectory shorthand notation. These refer to the time step

of a trajectory and provide corresponding arguments ~xt and

~ut where appropriate; so that for example J̃t+1 ≡ J̃(~xt+1, ~w)
and G̃t ≡ G̃(~xt, ~w).

Differentiating a column vector function by a column vector

causes the vector in the numerator to become transposed

(becoming a row).1 For example ∂f
∂~x

is a matrix with element

(i, j) equal to
∂f(~x,~u)j

∂~xi . Similarly,
(

∂G̃
∂ ~w

)ij
= ∂G̃j

∂ ~wi , and
(

∂G̃
∂ ~w

)

t
is this matrix evaluated at (~xt, ~w).

Then, using this notation and the implied matrix products,

the VGL(λ) algorithm can be defined as a weight update of

the form:

∆~w = α
∑

t

(
∂G̃

∂ ~w

)

t

Ωt(G
′
t − G̃t) (2)

where α is a small positive learning rate; G̃t is the critic gradi-
ent; and G′

t is the “target value gradient” defined recursively
by:

G
′

t =

(
DU

D~x

)

t

+ γ

(
Df

D~x

)

t

(
λG

′

t+1 + (1− λ)G̃t+1

)
(3)

with G′
t =

(
∂U
∂~x

)
t

at any terminal state; where λ ∈ [0, 1] is a

constant; where Ωt is an arbitrary positive definite matrix of

dimension (dim ~x× dim ~x); and where D
D~x

is shorthand for

D

D~x
≡

∂

∂~x
+

∂A

∂~x

∂

∂~u
; (4)

1This is the opposite of a common convention.

and where all of these derivatives are assumed to exist. We

ensure the recursion in eq. 3 converges by requiring that

either γλ < 1, or the environment is such that the agent is

guaranteed to reach a terminal state at some finite time (i.e.

the environment is “episodic”). Equations 2, 3 and 4 define the

VGL(λ) algorithm. Section II-B gives further implementation

details and pseudocode.

The target value-gradients, G′, are so called because the

VGL objective is to achieve G̃t = G′
t for all t along a

trajectory. This objective ensures a locally extremal, and often

locally optimal, trajectory (as proven by [11]), when combined

with a greedy policy. It should be noted that this objective is

not straightforward to achieve since the targets G′
t are moving

ones and are highly dependent on ~w (especially when a greedy

policy is being used, so that then the policy is also indirectly

dependent on ~w). Hence we must use the weight update to

slowly move the approximated gradients towards their targets.

The Ωt matrix was introduced by Werbos for the algorithm

GDHP (e.g. see [15, eq. 32]), which is very closely related to

VGL(λ). It is a free parameter, included for generality, since

the presence of any positive definite matrix here in equation

2 will force every component of G̃t to move towards the

corresponding component of G′
t (in any basis). It is often

just taken to be the identity matrix for simplicity. However

for the special choice of

Ωt =





(
∂f
∂~u

)T
t−1

(
∂2Q̃
∂~u∂~u

)−1

t−1

(
∂f
∂~u

)

t−1
for t > 0

0 for t = 0
, (5)

the algorithm VGL(1) is proven to converge for a sufficiently

small learning rate and when used in conjunction with a greedy

policy, under certain smoothness assumptions [11]. Here Q̃ is

the approximate Q Value function defined by

Q̃(~x, ~u, ~w) = U(~x, ~u) + γJ̃(f(~x, ~u), ~w). (6)

A. Action Network Training Algorithm and Greedy Policy

The VGL(λ) algorithm is for training a critic function. To

make the agent learn to behave optimally, the action network

function A(~x, ~z) also needs training. We follow the method

of [10], which uses the following weight update for the action

network at each time step t:

∆~z = −β

(
∂A

∂~z

)

t

((
∂U

∂~u

)

t

+ γ

(
∂f

∂~u

)

t

G̃t+1

)
(7)

where β is a separate learning rate for the action network.

The multiplication by ∂A
∂~z

can be done quickly and exactly

by ordinary backpropagation. This weight update can be done

concurrently with the critic weight update, or by iteratively

doing several critic weight updates followed by several action

network weight updates.

The above weight update is equivalent to ∆~z =

−β
(
∂A
∂~z

)
t

(
∂Q̃
∂~u

)

t
, which is direct gradient descent on the

function Q̃(~xt, A(~xt, ~z), ~w) with respect to ~z, where Q̃ is

defined by eq. 6. Consequently the objective of the above

weight update is to achieve



A(~x, ~z) = argmin
~u∈A

(Q̃(~x, ~u, ~w)) ∀~x. (8)

In some circumstances we can omit the action network

altogether and just use the right hand side of equation 8

directly, forming the greedy policy (as in equation 1). This

saves the difficulty of having to simultaneously train the critic

and action networks, which may interfere with each other in

unpredictable ways. Instead it makes the action network appear

to be always fully trained. A greedy policy is only possible

when the right hand side of equation 8 is efficient to compute,

which is common in the continuous time situations described

by [7] or [23, section 2.2]. In this case the greedy policy often

reduces to

(~ut)
i ≡ g

(
−

(
∂U

∂~ui

)

t

− γ

(
∂f

∂~ui

)

t

G̃t

)
, (9)

where g(x) is a chosen sigmoid function, for example a

hyperbolic tangent or logistic function. This greedy policy

equation produces actions that are bound to the range of

g(x), and it is conveniently efficient and differentiable, so

is applicable for use in the VGL(λ) algorithm. We give an

example of this kind of greedy policy in section III-C.

B. Implementation of VGL(λ)

We now give pseudocode for two different ways of imple-

menting the VGL(λ) algorithm - one is for on-line learning

which can be continually applied as trajectories are expanded,

and one is a batch mode implementation which is slightly more

efficient but is only applicable to completed trajectories.

When implementing VGL(λ), the function G̃(~x, ~w) can be

implemented in two different possible ways. Since G̃(~x, ~w)

is defined to be
∂J̃(~x,~w)

∂~x
, the appearance of the term ∂G̃

∂ ~w
in

equation 2 is defined to mean ∂2J̃
∂ ~w∂~x

. We refer to this method of

implementation as using a scalar critic function, J̃(~x, ~w), or a

GDHP style critic. However an alternative, easier, method is to

implement G̃(~x, ~w) directly as the output of a smooth vector

function approximator of output dimension dim(~x). In this

case the scalar function J̃(~x, ~w) is never actually needed in

VGL(λ). We refer to this alternative method of implementation

as using a vector critic function, G̃(~x, ~w), or as using a DHP

style critic. Either of these two approaches is a valid way to

implement the VGL(λ) algorithm.

Algorithm 1 makes a direct implementation of VGL(λ)

for episodic environments. It makes a forward pass through

the trajectory, storing all states and actions, followed by a

backward pass through the trajectory accumulating G′
t by the

recursion in Eq. 3.

In this implementation, if a neural network is used to

output the function G̃(~x, ~w), then the matrix-vector products

involving ∂G̃
∂ ~w

can be calculated in time O(dim(~w)), by using

backpropagation. Similarly, if G̃ ≡ ∂J̃
∂ ~w

, where J̃ is the

scalar output of a neural network, then the matrix product

involving second order derivatives ∂G̃
∂ ~w

can still be evaluated

in the same time, by using methods analogous to those of

Algorithm 1 VGL(λ). Batch-mode implementation for

episodic environments.

1: t← 0
2: {Unroll trajectory...}
3: while not terminated(~xt) do

4: ~ut ← A(~xt, ~z)
5: ~xt+1 ← f(~xt, ~ut)
6: t← t+ 1
7: end while

8: F ← t
9: ~p←

(
∂U
∂~x

)
t
, ∆~w ← ~0, ∆~z ← ~0

10: {Backwards pass...}
11: for t = F − 1 to 0 step −1 do

12: G′
t ←

(
∂U
∂~x

)
t
+ γ

(
∂f
∂~x

)

t
~p

+
(
∂A
∂~x

)
t

((
∂U
∂~u

)
t
+ γ

(
∂f
∂~u

)

t
~p
)

13: ∆~w ← ∆~w +
(

∂G̃
∂ ~w

)

t
Ωt

(
G′

t − G̃t

)

14: ∆~z ← ∆~z −
(
∂A
∂~z

)
t

((
∂U
∂~u

)
t
+ γ

(
∂f
∂~u

)

t
G̃t+1

)

15: ~p← λG′
t + (1− λ)G̃t

16: end for

17: ~w ← ~w + α∆~w
18: ~z ← ~z + β∆~z

[24]. The matrix products involving ∂A
∂~x

can also be evaluated

quickly using backpropagation. Hence the whole algorithm

takes O(n) operations per time step of the trajectory, where

n = max(dim(~w), dim(~z)).
For non-episodic environments, Algorithm 2 gives an on-

line implementation of VGL(λ). Unlike the previous algo-

rithm, this one does not require that the trajectory reaches

a terminal state before the weight update can be applied.

This algorithm runs in a slower time of O(dim(~w) dim(~x)2)

operations per time step of the trajectory, and its derivation

is given by [11, Appendix B]. In the case of λ = 0, the

algorithm can be optimised to remove the variable E, and

then the algorithmic complexity drops to be the same as that

of Algorithm 1.

Neither algorithm attempts to learn the value gradient at the

final time-step of a trajectory since it is prior knowledge that

the target value gradient is always ∂U
∂~x

at any terminal state.

Hence we assume the function approximator for G̃(~x, ~w) has

been designed to explicitly return ∂U
∂~x

for all terminal states ~x.

Both algorithms incorporate the action network weight

update of equation 7. If a different actor weight update scheme

was needed then these lines could be moved or replaced, and

similarly if a greedy policy was used then these lines would

be removed.

C. Relationship to TD(λ)

TD(λ), and its related algorithms Sarsa(λ) and Q(λ), are

important learning algorithms of RL [25], [5]. VGL(λ) was

adapted from these algorithms to improve efficiency of learn-

ing of control problems in continuous spaces, where the model

functions are known, and where a critic function must be



Algorithm 2 VGL(λ). On-line implementation.

1: E ← 0 {E ∈ ℜdim(~w)×dim(~x) is an “eligibility trace”

workspace matrix.}
2: t← 0
3: while not terminated(~xt) do

4: ~ut ← A(~xt, ~z)
5: ~xt+1 ← f(~xt, ~ut)
6: ~δ ←

(
∂U
∂~x

)
t
+
(
∂A
∂~x

)
t

(
∂U
∂~u

)
t

+γ
((

∂f
∂~x

)

t
+
(
∂A
∂~x

)
t

(
∂f
∂~u

)

t

)
G̃t+1 − G̃t

7: E ← E +
(

∂G̃
∂ ~w

)

t
Ωt

8: ~w ← ~w + αE~δ
9: E ← λγE

((
∂f
∂~x

)

t
+
(
∂A
∂~x

)
t

(
∂f
∂~u

)

t

)

10: ~z ← ~z − β
(
∂A
∂~z

)
t

((
∂U
∂~u

)
t
+ γ

(
∂f
∂~u

)

t
G̃t+1

)

11: t← t+ 1
12: end while

learned by a neural network. Hence the VGL(λ) algorithm

has a very similar form to that of TD(λ).

For a given trajectory, the following critic weight update is

equivalent to the TD(λ) algorithm:

∆~w = α
∑

t

(
∂J̃

∂ ~w

)

t

(J ′
t − J̃t) (10)

where J ′ is defined recursively by

J ′
t = Ut + γ

(
λJ ′

t+1 + (1− λ)J̃t+1

)
(11)

with J ′
t = Ut at any terminal state, and where λ ∈ [0, 1] is

a fixed global constant. For convergence of this recursion we

require that either γλ < 1, or the environment is episodic,

just like the recursion in equation 3. To understand the

equivalence of this weight update to the TD(λ) algorithm

originally described by [4], first we note that J ′ as defined

by equation 11 is identical to the “λ-return” of [5], as proven

by [11, Appendix A]. Hence equation 10 is an application of

what [3] describe as the “forwards view of TD(λ)”, and hence

is equivalent to the TD(λ) weight update (see [11, Appendix

A] for further details).

Since J ′
t is defined for an arbitrary trajectory, we can

rewrite its recursive definition as

J ′(~xt, ~w, ~z) =U(~xt, A(~xt, ~z)) + γ (λJ ′(f(~xt, A(~xt, ~z)), ~w)

+(1− λ)J̃(f(~xt, A(~xt, ~z)), ~w)
)

(12)

We can now obtain the relationship of VGL(λ) to TD(λ).

Differentiating equation 12 fully with respect to ~xt (and

applying the chain rule, ~ut = A(~xt, ~z), ~xt+1 = f(~xt, ~ut),

G̃ ≡ ∂J̃
∂~x

and trajectory shorthand notation) produces the

same recursion as equation 3. This proves that G′ ≡ ∂J ′

∂~x
.

Furthermore, replacing all of the terms J̃ and J ′ in the TD(λ)

weight update by their derivatives with respect to ~x produces

the VGL(λ) weight update (with Ωt ≡ I). Hence VGL(λ)

is a differentiated form of TD(λ); whereas TD(λ) attempts

to learn values, VGL(λ) attempts to learn value gradients.

The reason VGL(λ) does this is because value-gradients are

what the greedy policy uses to decide which actions to take

(for example see equation 9, or see section I-A for a further

discussion).

D. Relationship to Dual Heuristic Dynamic Programming

The algorithm Dual Heuristic Dynamic Programming

(DHP) by [8] and described more recently by [10], [1] is

identical to VGL(0) with a vector critic. The DHP algorithm

has been designed with similar motivations as ours, and pre-

dates our work. Our implementation VGL(λ) generalises it to

include a bootstrapping parameter λ analogous to that used in

TD(λ). The relationship of DHP to VGL(λ) is identical to the

relationship of TD(0) to TD(λ).

The algorithm Globalized Dual Heuristic Dynamic Pro-

gramming (GDHP) is identical to a weight update that is a

linear combination of VGL(0) with a scalar critic and TD(0).

III. EMPIRICAL RESULTS

We describe neural network experiments for two control

problems: a simple quadratic optimisation problem and a verti-

cally moving spacecraft simulation. We show the performance

of VL versus VGL methods, and also investigate the effects

of varying the λ parameter and Ωt matrix.

A. Quadratic Optimisation Problem

We now describe a quadratic optimisation experiment using

an actor-critic architecture, and compare the effectiveness of

VGL(λ) to TD(λ) in the situation of both noisy and deter-

ministic policies. This shows the motivation for VGL based

methods in that they work very quickly and that they can

do local exploration even while only following deterministic

trajectories.

We define an environment with ~x = x ∈ ℜ and ~u = u ∈ ℜ,

and model and cost functions:

f (x, t, u) = x+ u

U (x, t, u) = (u)2

Each trajectory is defined to terminate on arriving at time

step t = 2, and on termination a final instantaneous cost of

U(~x) = (x)2 is given. The only actions used in the trajectory

are u0 and u1; the total cost for this trajectory is (u0)
2 +

(u1)
2+(x0+u0+u1)

2, and the theoretical optimal total cost

for the whole trajectory is J∗ = (x0)
2/3.

The action network was a multi-layer perceptron (MLP, see

[26] for details) with two inputs, one output and one hidden

layer of 4 nodes, shortcut connections from the input layer to

the output layer, and with activation function g(x) = tanh(x)
at all nodes. The weights ~z were initially randomised uni-

formly from the range [-0.1, 0.1]. The critic network J̃(~x, ~w)
was a scalar critic, so that in this implementation, VGL(0) is

equivalent to GDHP. The critic was identically dimensioned

to the action network, with a weight vector ~w randomised

initially in the same way. The activation function used for the

critic was g(x) = tanh(x) at all nodes except for the output



node, which used g(x) = x. The input vector to each neural

network was (x, t).
Each trajectory was made to start at x0 = 0.8. Learning

rates for the critic and actor were both α = 0.1 and β = 0.1,

respectively, with discount factor γ = 1. To provide the facility

for exploration, Gaussian noise with mean zero and variance

σ2 was added to the output of the action network to form the

policy function, A(~x, ~z).
The critic learning algorithms tested were TD(1), TD(0),

VGL(1) and VGL(0). The action network’s weight update

was done by equation 7 in all experiments. We repeated the

experiments with noise (σ = 0.01) and without noise (σ = 0).

Results averaged from 40 trials for each algorithm are shown

in figure 1. The results show that the value-learning method

(TD(λ)) could not cope without some random exploration,

but the VGL based methods (GDHP and VGL(λ)) work

successfully for both σ values used. Also, in comparison

to the value learning methods, VGL methods are very fast.

On the other-hand VGL methods require knowledge of the

model functions (in order to use their derivatives), whereas VL

methods do not. But when the model functions are available,

the increased speed and automatic local exploration provides

a strong motivation to use VGL methods.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

1 10 100 1000 10000

J-
J*

Iterations

Results without Policy Noise (σ = 0)

VGL(0)
VGL(1)

TD(0)
TD(1)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

1 10 100 1000 10000

J-
J*

Iterations

Results with Policy Noise (σ = 0.01)

VGL(0)
VGL(1)

TD(0)
TD(1)

Fig. 1. Algorithm performances for the quadratic optimisation problem of
section III-A, both with and without policy noise. The y axis shows J − J∗,
where J∗ is the optimal trajectory cost. Compared to the VL method (TD(λ)),
the VGL method works well in the absence of stochastic exploration, and
quickly attains J = J∗. The VL method fails without stochastic exploration
here (i.e. it converges to a suboptimal policy), but does learn slowly and
successfully in the presence of policy noise.

B. Vertical Spacecraft Problem

In this section we consider a neural network controlled

spacecraft.

A spacecraft of mass m is dropped in a uniform gravita-

tional field. The spacecraft is constrained to move in a vertical

line, and a single thruster is available to make upward acceler-

ations. The state vector of the spacecraft is ~x = (h, v, t)T and

has three components: height (h), velocity (v) and time step

(t). The action vector is one-dimensional (so that ~u ≡ u ∈ ℜ)

producing accelerations u ∈ [0, 1]. The Euler method with

time-step ∆t is used to integrate the equation of motion, giving

the model function:

f((h, v, t)T , u) =(h+ v∆t, v + (u− kg)∆t, t+ 1)T

Here, kg = 0.2 is a constant giving the acceleration due to

gravity (which is less than the range of u; so the spacecraft

can overcome gravity easily). ∆t was chosen to be 0.4.

A trajectory is defined to last exactly 200 time steps. A final

impulse of cost equal to

U(~x) =
1

2
mv2 +m(kg)h (14)

is given on completion of the trajectory. This cost penalises the

total kinetic and potential energy that the spacecraft has at the

end of the trajectory. This means the task is for the spacecraft

to lose as much mechanical energy as possible throughout the

duration of the trajectory, to prepare for a gentle landing. The

optimal strategy for this task is to leave the thruster switched

off for as long as possible in the early stages of the journey,

so as to gain as much downward speed as possible and hence

lose as much potential energy as possible, and at the end of

the journey produce a burst of continuous maximum thrust to

reduce the kinetic energy as much as possible.

In addition to the cost received at termination by equation

14, a cost is also given for each non-terminal step. This cost

is

U(~x, u) =c

(
1

2
ln(2− 2u)− u arctanh(1− 2u)

)
∆t (15)

where c = 0.02 is constant. This cost function is designed to

ensure that the actions chosen will satisfy u ∈ [0, 1], even if

a greedy policy is used. We explain how this cost function

was derived, and how it can be used in a greedy policy, in

section III-C, but first we describe experiments that did not

use a greedy policy.

A DHP-style critic, G̃(~x, ~w), was provided by a fully

connected MLP with 3 input units, two hidden layers of

6 units each, and 3 units in the output layer. Additional

short-cut connections were present fully connecting all pairs

of layers. The weights were initially randomised uniformly

in the range [−.1, .1]. The activation functions were logis-

tic sigmoid functions in the hidden layers, and the identity

function in the output layer. The input to the MLP was

(h/1600, v/40, t/200)
T

and the output gave G̃ directly.

The action network was identical in design to the critic,

except there was only one output node, and this had a logistic

sigmoid function as its activation function. The output of the

action network gave the spacecraft’s acceleration u directly.

The mass of the spacecraft used was m = 0.02. This kept

the magintude of J quite small so that no rescaling was needed

on the critic’s output. In all of the experiments we made the

trajectory always start from h = 1600, v = −2, and used

discount factor γ = 1.



Results using the actor-critic architecture and Algorithm 1

are given in figure 2 comparing the performance of VGL(1)

and VGL(0) (DHP). Each curve shows algorithm performance

averaged over 40 trials.

The graphs show that the VGL(1) algorithm produces a

lower total cost J than the VGL(0) algorithm does, and does

it faster. It is thought that this is because in this problem the

major part of the total cost comes as a final impulse, so it is

advantageous to have a long look-ahead (i.e. a high λ value)

for fast and stable learning.

For the actor-critic learning we chose the learning rate of

the actor to be high compared to the learning rate for the critic

(i.e. β > α). This was to make the results comparable to those

of a greedy policy which we try in the next section.

0

5

10

15

20

1 10 100 1000 10000 100000

J

Iterations

VGL(0) and VGL(1) using Actor-Critic

VGL(0)
VGL(1)

Fig. 2. VGL(0) (i.e. DHP) and VGL(1), with Actor-Critic, using learning
rates α = 10−6 and β = 0.01.

C. Vertical Spacecraft Problem with Greedy Policy

The cost function of equation 15 was derived to form an

efficient greedy policy, by following the method of [7]. First

we chose the sigmoid function g(x) that we would like the

greedy policy of equation 9 to use. This was chosen to be

g(x) =
1

2
(tanh(x/c) + 1).

The choice of c affects the sharpness of this sigmoid function.

Using this chosen sigmoid function, the cost function based

on [7] is defined to be

U(~x, u) = ∆t

∫
g−1(u)du. (16)

Note that solving this integral gives equation 15. Then to

derive the greedy policy for this cost function, we make a

first order Taylor series expansion of the Q̃(~x, ~u, ~w) function

(eq. 6) about the point ~x:

Q̃(~x, ~u, ~w) ≈ U(~x, ~u) + γ



(
∂J̃

∂~x

)T

(f(~x, ~u)− ~x) + J̃(~x, ~w)




= U(~x, ~u) + γ
(
G̃(~x, ~w)

)T
(f(~x, ~u)− ~x) + γJ̃(~x, ~w)

(17)

This approximation becomes exact in continuous time, i.e. in

the limit as ∆t → 0. The greedy policy must minimise Q̃,

hence we differentiate equation 17 to get
(
∂Q̃

∂u

)

t

=

(
∂U

∂u

)

t

+ γ

(
∂f

∂u

)

t

G̃t by eq. 17

= g−1(ut)∆t+ γ

(
∂f

∂u

)

t

G̃t by eq. 16

For a minimum, we must have ∂Q̃
∂u

= 0, which, since ∂f
∂u

is

independent of u, gives ut = g
(
− γ

∆t

(
∂f
∂u

)

t
G̃t

)
. This is a

variation on equation 9, and we used it as the greedy policy for

the experiments in Figure 3. The results show similar relative

performance of VGL(1) versus VGL(0) as in the actor-critic

experiments, and both algorithms are faster than when an actor

was used. This indicates that in this experiment, the greedy

policy derived can successfully replace the action network,

raising efficiency, and without any apparent detriment.

0

5

10

15

20

1 10 100 1000 10000

J

Iterations

VGL(0) and VGL(1) using a Greedy Policy

VGL(0)
VGL(1)

Fig. 3. VGL(0) (i.e. DHP) and VGL(1), with a greedy policy, using a learning
rate α = 10−6.

0

5

10

15

20

0 200 400 600 800 1000 1200 1400

J

Iterations

VGL(0) using RPROP and a Greedy Policy

0

5

10

15

20

0 200 400 600 800 1000 1200 1400

J

Iterations

VGL(1) using RPROP and a Greedy Policy

0

5

10

15

20

0 200 400 600 800 1000 1200 1400

J

Iterations

VGLΩ(1) using RPROP and a Greedy Policy

Fig. 4. VGL(0), VGL(1) and VGLΩ(1), with a greedy policy, using RPROP.
Each graph shows the performance of a learning algorithm for each of five
different weight initialisations; hence the ensemble of curves in each graph
gives some idea of an algorithm’s reliability and volatility.

Using a greedy policy, there are no longer two mutually



interacting neural networks whose training could be interfering

with each other. With the simpler architecture of just one

neural network (the critic) to contend with, we attempt to

speed up learning using RPROP [27]. Results as shown in

figure 4. It seems the aggressive acceleration by RPROP can

cause large instability in the VGL(1) and DHP algorithms.

This is because neither of these two algorithms is true gradient

descent when used with a greedy policy [16]. However when

the Ωt matrix defined by equation 5 is used with λ = 1, giving

the algorithm that we will refer to as VGLΩ(1), the resulting

algorithm is true gradient descent. It is gradient descent on

J , as proven by [11]. The performance of this algorithm is

shown in the bottom graph of Figure 4, and this shows the

minimum being reached stably and many times quicker than

in the actor-critic or non-RPROP case.

This represents a significant breakthrough in making learn-

ing with a greedy policy exhibit reliable and monotonic

progress. The Ωt equation that achieves this is only proven

to work for VGL(1), and counterexamples exist for its use

with DHP [16].

IV. CONCLUSIONS

We have defined the VGL(λ) algorithm and explained

its relationship to its precursor algorithms DHP and TD(λ).

VGL(λ) can be viewed as a differentiated form of TD(λ);

whereas TD methods learn values, VGL methods learn value-

gradients. VGL(λ) extends the DHP algorithm by introducing

a bootstrapping parameter, λ, which can affect learning speed

and stability.

We have described the motivations for using VGL based

methods (including DHP) in comparison to VL methods.

These are that local exploration is automatic; VGL methods

can be many times faster than VL methods; and VGL methods

work naturally in continuous state spaces. The experiments

confirmed these motivations, showing success for VGL in

environments when no exploration is used and where VL

methods fail. The experiments also demonstrate that VGL

methods can be many times faster than VL methods. However,

unlike VL methods, VGL methods require that the model

functions are differentiable, and known or learnable.

Learning value-gradients is theoretically motivated since

value-gradients can drive a greedy policy (e.g. as in equation

9), and the greedy policy equation (in the form of equation

1) must be satisfied if Bellman’s Optimality Principle is to

apply; so explicitly learning value-gradients is a very direct

way to achieve optimal trajectories, without the need for local

exploration.

The experiments demonstrated that when the special Ωt

matrix of equation 5 is used, then the VGLΩ(1) algorithm

can produce very stable learning with a greedy policy. This

is a proven convergent critic learning algorithm, under certain

smoothness assumptions, with a general function approximator

and a greedy policy.

REFERENCES

[1] F.-Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming:
An introduction,” IEEE Computational Intelligence Magazine, vol. 4,
no. 2, pp. 39–47, 2009.

[2] R. E. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton
University Press, 1957.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, Massachussetts, USA: The MIT Press, 1998.

[4] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine Learning, vol. 3, pp. 9–44, 1988.

[5] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, Cambridge University, 1989.

[6] C. Kwok and D. Fox, “Reinforcement learning for sensing strategies,”
in Proceedings of the International Confrerence on Intelligent Robots

and Systems (IROS), 2004.

[7] K. Doya, “Reinforcement learning in continuous time and space,” Neural

Computation, vol. 12, no. 1, pp. 219–245, 2000.

[8] P. J. Werbos, “Approximating dynamic programming for real-time
control and neural modeling.” in Handbook of Intelligent Control, D. A.
White and D. A. Sofge, Eds. New York: Van Nostrand Reinhold, 1992,
ch. 13, pp. 493–525.

[9] S. Ferrari and R. F. Stengel, “Model-based adaptive critic designs,” in
Handbook of learning and approximate dynamic programming, J. Si,
A. Barto, W. Powell, and D. Wunsch, Eds. New York: Wiley-IEEE
Press, 2004, pp. 65–96.

[10] D. Prokhorov and D. Wunsch, “Adaptive critic designs,” IEEE Transac-

tions on Neural Networks, vol. 8, no. 5, pp. 997–1007, 1997.

[11] M. Fairbank and E. Alonso, “The local optimality of reinforcement
learning by value gradients, and its relationship to policy gradient
learning,” CoRR, vol. abs/1101.0428, 2011. [Online]. Available:
http://arxiv.org/abs/1101.0428

[12] L. S. Pontryagin, V. G. Boltayanskii, R. V. Gamkrelidze, and E. F.
Mishchenko, The Mathematical Theory of Optimal Processes (Trans-

lated from Russian). Wiley, 1962, vol. 4.

[13] M. Fairbank and E. Alonso, “A comparison of learning speed and ability
to cope without exploration between DHP and TD(0),” in Proceedings

of the IEEE International Joint Conference on Neural Networks 2012

(IJCNN’12). IEEE Press, June 2012, pp. 1478–1485.

[14] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference
learning with function approximation,” IEEE Transactions on Automatic
Control, Tech. Rep., 1996.

[15] P. J. Werbos, “Stable adaptive control using new critic designs,” eprint

arXiv:adap-org/9810001, 1998.

[16] M. Fairbank and E. Alonso, “The divergence of reinforcement learning
algorithms with value-iteration and function approximation,” in Proceed-

ings of the IEEE International Joint Conference on Neural Networks

2012 (IJCNN’12). IEEE Press, June 2012, pp. 3070–3077.

[17] P. J. Werbos, “Backpropagation through time: What it does and how to
do it,” in Proceedings of the IEEE, vol. 78, No. 10, 1990, pp. 1550–1560.

[18] P. J. Werbos, T. McAvoy, and T. Su, “Neural networks, system identi-
fication, and control in the chemical process industries.” in Handbook

of Intelligent Control, D. A. White and D. A. Sofge, Eds. New York:
Van Nostrand Reinhold, 1992, ch. 10, pp. 283–356.

[19] A. Y. Ng, H. J. Kim, M. I. Jordan, and S. Sastry, “Inverted autonomous
helicopter flight via reinforcement learning,” in International Symposium

on Experimental Robotics. MIT Press, 2004.

[20] R. Munos, “Policy gradient in continuous time,” Journal of Machine

Learning Research, vol. 7, pp. 413–427, 2006.

[21] G. K. Venayagamoorthy and D. C. Wunsch, “Dual heuristic program-
ming excitation neurocontrol for generators in a multimachine power
system,” IEEE Transactions on Industry Applications, vol. 39, pp. 382–
394, 2003.

[22] G. G. Lendaris and C. Paintz, “Training strategies for critic and action
neural networks in dual heuristic programming method,” in Proceedings

of International Conference on Neural Networks, Houston, 1997.

[23] M. Fairbank, “Reinforcement learning by value gradients,” CoRR, vol.
abs/0803.3539, 2008. [Online]. Available: http://arxiv.org/abs/0803.3539

[24] B. A. Pearlmutter, “Fast exact multiplication by the Hessian,” Neural

Computation, vol. 6, no. 1, pp. 147–160, 1994.

[25] G. Rummery and M. Niranjan, “On-line q-learning using connection-
ist systems,” Tech. Rep. Technical Report CUED/F-INFENG/TR 166,

Cambridge University Engineering Department, 1994.



[26] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford
University Press, 1995.

[27] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” in Proc. of the IEEE

Intl. Conf. on Neural Networks, San Francisco, CA, 1993, pp. 586–591.


