
Spanoudakis, G. & Zisman, A. (2010). Discovering Services during Service-Based System Design

Using UML. IEEE Transactions on Software Engineering, 36(3), pp. 371-389. doi:

10.1109/TSE.2009.88

City Research Online

Original citation: Spanoudakis, G. & Zisman, A. (2010). Discovering Services during Service-

Based System Design Using UML. IEEE Transactions on Software Engineering, 36(3), pp. 371-

389. doi: 10.1109/TSE.2009.88

Permanent City Research Online URL: http://openaccess.city.ac.uk/5164/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/76980463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

Discovering Services during Service-based
System Design using UML

G. Spanoudakis and A. Zisman

Abstract—Recently, there has been a proliferation of service-based systems, i.e. software systems that are composed of

autonomous services, but can also use software code. In order to support the development of these systems, it is necessary to

have new methods, processes, and tools. In this paper we describe a UML-based framework to assist with the development of

service-based systems. The framework adopts an iterative process in which software services that can provide functional and

non-functional characteristics of a system being developed are discovered, and the identified services are used to re-formulate

the design models of the system. The framework uses a query language to represent structural, behavioural, and quality

characteristics of services to be identified, and a query processor to match the queries against service registries. The matching

process is based on distance measurements between the queries and service specfications. A prototype tool has been

implemented. The work has been evaluated in terms of recall, precision, and performance measurements.

Index Terms— Design notations and documentation, software process models, search discovery language, service discovery

engine

—————————— ——————————

1 INTRODUCTION

ervice-based software system engineering has been recog-
nised as an important paradigm for software system de-
velopment in which different distributed software services

are composed to support the rapid and low-cost development
of software systems. Services, in this paradigm, are loosely
coupled autonomous software entities that can be deployed
remotely across organisational and IT infrastructure bounda-
ries. To enable this paradigm, software services need to be
described, discovered, composed, and monitored.

To address this challenge, service integrators, developers,
and providers have been collaborating over the last few years
developing approaches and tools that can support the emerg-
ing paradigm. These approaches and tools include: (a) lan-
guages to describe services (WSDL[60], WSCL[59],
BPEL4WS[6], OWL-S[37], and WSMO[62]), (b) techniques for
service discovery (e.g. semantic matchmaking
[2][20][21][25][27][32], behavioural signatures matching [63],
and matching of full service behavioural models [19] involv-
ing requirements [66], architectural [29], and run-time [52]
aspects of service oriented systems); (c) techniques for
service composition [3][9][10][45][46], and (d) techniques
for service monitoring, validation, verification, and evolu-
tion [14][15][19][19]. Despite advances in this area, how-
ever, existing techniques still fall short of supporting ade-
quately the development and deployment of complex and
dependable service-based systems.

In order to overcome this situation, in this paper we
describe a framework that we have constructed to sup-

port the development of service-based systems; i.e., soft-
ware systems that are composed of services but may also
use additional software code to provide the required
functionality. Our framework is UML-based and assists
with the design of structural and behavioural models of
service-based systems. The framework adopts an iterative
system development process, in which software services
that can provide the functionality and quality of service (QoS)
properties required by a service-based system being devel-
oped are identified, and identified services are used to
amend and re-formulate the design models of the system.
The reformulated design models are used in other itera-
tions of the development process to trigger the identifica-
tion of services that can be used in the design models.

The framework makes use of a query language to specify
the characteristics of the services to be discovered, and a query
processor that can execute the queries against service regis-
tries. These characteristics can be related to different aspects of
the system to be developed and the services that can be de-
ployed in it, and include structural (aka interface) and behav-
ioural models representing expected functionality from the
services, and constraints representing additional structural,
behavioural, and quality properties that services should sat-
isfy (e.g., the time and cost of executing certain operations,
conditions about the provider of a service). Constraints can be
hard or soft. Hard constraints must always be satisfied by
services whilst soft constraints may be compromised if a serv-
ice has a good match with other required characteristics but
fails to satisfy them.

Queries are executed in a two-stage process. In the first
stage, services that satisfy hard constraints in a query are iden-
tified generating a set of candidate services. In the second
stage, the candidate services of the first stage are matched
with the structural and behavioural models of the query as
well as its soft constraints, and those services with the best
overall match are returned as the final candidate services. The

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

• G. Spanoudakis is with the School of Informatics, City Univer-
sity,Northampton Sqaure, London, EC1V 0HB, UK. E-mail: gespan@
soi.city.ac.uk.

• A. Zisman is with the School of Informatics, City University,Northampton
Sqaure, London, EC1V 0HB, UK.. E-mail: a.zisman@soi.city.ac.uk.

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

S

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

matching of services with a query is based on the computation
of distances between service descriptions and queries.

The framework assumes services specified by different
perspectives, including structural (interface) describing
operations of services with their data types using WSDL
[60], behavioural describing behavioural models of services
in BPEL4WS [6], quality describing non-functional aspects
of services in XML-format, and general information of the
services. The identification of services based on distinct
aspects provide a more accurate match between queries
and services and the consequent discovery of services
with the required characteristics, as opposed to tech-
niques that are based only on keywords or interface as-
pects (e.g., WOOGLE [58] and UDDI [54]), which provide
less precise match.

The work presented in this paper has been carried out as
part of a large European research programme on service cen-
tric systems enginering (SeCSE[48]) and has been based on
requirements identified in scenarios of service based systems
development within different industrial domains including
the telecommunication, automotive, and software industries.

The work presented in this paper extends our previous
work described in [29][30][68]. The work in [30], presents ini-
tial ideas of the framework and describes the discovery proc-
ess only in terms of structural matching of queries and service
operations. In [68], we describe the results of evaluating the
framework for structural matching only in terms of precision
measures. The work in [29] describes the discovery process in
terms of structural and behavioral matching and evaluates
only the precision of the structural matching using a small
set of services. In contrast, the main contributions in this
paper are: (a) development of constraint language to rep-
resent extra conditions when executing service discovery
during the design of service-based systems, (b) extension
of the discovery process to support structural, behavioral,
and quality matching, (c) development of the approach as
a web service to allow the framework to be used inde-
pendently of any CASE tool, (d) thorough evaluation of
structural, behavioral, and constraint matching in terms
of recall, precision, and performance measures, (e) detail
description of the framework, and (f) more complete ac-
count of related work.

The remainder of this paper is structured as follows. In
Section 2 we present an overview of the framework. In
Section 3 we describe the service discovery query used in
our work. In Section 4 we present the computation of dis-
tances. In Section 5 we evaluate the work in terms of re-
call/precision and performance. In Section 6, we discuss
the main features and limitations of the approach under-
taken by the framework. In Section 7, we discuss some
related work. Finally, in Section 8 we provide some con-
cluding remarks and outline directions for future work.

2 FRAMEWORK OVERVIEW

As described in Section 1, our framework adopts an iterative
process. In this process, service discovery is driven by struc-
tural and behavioural design models of service-based sys-
tems (called SySM and SyBM, respectively). The services
identified during this process can be used to reformulate the

design models and trigger new service discovery iterations.
The behavioral models used in the discovery process de-

scribe interactions between operations of a service-based
system that can be provided by web services, legacy sys-
tems, or software components, while the structural models
specify the types of the parameters of operations in the be-
havioural models1.

SySM and SyBM are expressed in UML as class and se-
quence diagrams, respectively. The use of UML as a basis for
our approach is because this language: (a) is the de facto
standard for designing software systems and can effectively
support the design of service-based systems [11][16][31], and
(b) has the expressive power to represent the design models
of service-based systems since it can represent modelling of
software services, legacy code and software components in a
system. Furthermore, UML provides built-in extensibility
mechanisms (aka UML profiles) that can be used to define
an extension of its meta model for specifying service discov-
ery queries and, thus, enable specification of queries in the
same language as the system design models.

Fig. 1. Overview of framework process

Figure 1 presents an overview of the iterative discovery

process of the framework. As shown in the figure, queries
are specified in reference to the sequence diagrams in SyBM
and the classes and interfaces in SySM, and may include
additional constraints about the required services. The can-
didate services which are identified after the execution of
queries can be bound to the SySM and SyBM models by de-
signers. When this happens, SySM and SyBM are re-
formulated (e.g. by adding message data types and opera-
tions of identified services) and their new versions can be
used to specify further queries for discovering additional
services for other parts of the system. Queries may also be
re-formulated and re-executed when the identified services
are not adequate. This process can be terminated by the sys-
tem designer at any time, when all the required services
have been discovered, or when it is clear that further queries
would not be able to identify services that have a better
match with the current design models.

The framework has been implemented as a web service
and can be deployed by any client that is able to produce
service discovery queries expressed as UML 2.0 models

1 Examples of such models are given in Section 3.

AUTHOR ET AL.: TITLE 3

Fig. 2. An interaction of the ConferenceTravel system

represented in XMI. Service discovery queries are expressed
using appropriate UML sterotypes that we have defined for
this purpose. Queries may also include hard and soft con-
straints, which are expressed in an XML based language
that we have developed for this purpose (see Section 3).
The deployment of the framework as a web service allows
the framework to be used by different types of CASE
tools that support UML 2.0 and the representation of such
models in XMI.

The execution of a query consists of retrieving different
types of service specifications from registries and match-
ing these specifications against the query. The different
types of service specifications are called facets and include
structural, behavioral, and quality specifications. In the
current implementation, structural and behavioural de-
scriptions of services are expressed in WSDL[60] and
BPEL[6], respectively, and quality descriptions are ex-
pressed in XML. The registry used in the current imple-
mentation is an eXist database [12]. The framework also
provides access to different types of registries through the
use of adapters. In this case it is possible to use standard
UDDI [54] technologies to store service interface specifica-
tions expressed in WSDL together with other service reg-
istries to store other types of facets.

3 SERVICE DISCOVERY QUERIES

As discussed earlier, a query may have three different
parts, namely (a) structural query model, (b) behavioral
query model, and (c) query constraints. The structural
and behavioural query models represent functional as-
pects of the service-based system being developed that
need to be fulfilled by the services. The query constraints
represent quality aspects (e.g. performance, availability,
or cost of service operations) or extra functional aspects
(e.g., provider of a service, receiver of a query message)

that need to be present in the services. The specification of
these parts is discussed in the following.

3.1 Structural and Behavioural Query Model

The elements in SySM and SyBM are used to specify que-
ries to indetify services that can be used in the service-
based systems. To express a query, system designers must
select an interaction from the SyBM model of the system
being designed and specify the messages in this interaction
that should be realized by service operations that are to be
discovered. These messages constitute the so called “query
messages” of the query. The specification of an interaction
message as a query message is possible by associating the
message with the stereotype <<query_message>>. This
stereotype is part of a service querying profile that we have
defined to enable the specification of queries in UML 2.0
and has been presented in detail in [29].

The service querying profile defines additional stereo-
types for different types of UML elements that may exist in
a query interaction. These include the stereotypes <<con-
text_message>> and <<bound_message>>. The stereotype
<<context_message>> indicates additional structural and
behavioural constraints for the query messages. For exam-
ple, if a context message has a parameter p1 with the same
name as a parameter p2 of a query message, then the type
of p1 should be taken as the type of p2. The stereotype
<<bound_message>> indicates a candidate service opera-
tion that is bound to a query message by the designer. All
the messages in a query interaction, which are not stereo-
typed by any of the above stereotypes, are treated as mes-
sages irrelevant to the discovery process and, thus, do not
restrict the services to be discovered in any way.

As an example of query specification, consider the be-
havioural and structural design models of a Conference
Travel support system shown in Figure 2 and Figure 3,
respectively. This system allows users to search for and

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

book flights and hotels as part of trip planning and prepa-
ration activities. When a designer wants to find service
operations that can provide implementations of the mes-
sages checkHotelAvailability(info:AccommodationInfo,
hotel:String):Boolean and bookHotel(bookInfo: Accommoda-
tionInfo, hotel: String): String in the sequence diagram of
Figure 2, he/she can create a query as a copy of the se-
quence diagram, and attach the stereotype
<<query_message>> to these two messages. The classes
representing the data types of the parameters of the two
query messages, and all the other classes which are di-
rectly or transitively related to them, are automatically
identified by the framework and pulled together to for-
mulate the structural model of the query. In the example,
these classes are those shown in Figure 3.

Fig. 3. Structural model of ConferenceTravel system

3.2 Hard and Soft Contraint Query Language
The specification of hard and soft constraints in queries is
based on an XML-based constraint service query lan-
guage that we have defined as part of the framework and
is called ConstraintSQL. The specification of the con-
straints in an XML-based language is motivated by the
fact that it is necessary to use XPath [64] expressions to
reference elements and attributes in service specifications
that are described in XML format.

A soft or hard constraint is defined as a constrain-
tQuery. A constraintQuery is a logical expression that de-
fines an atomic condition over some element or attribute
in a service specification, or a logical combination of
atomic conditions that is formed by using logic operators
AND and OR. Logical expressions can also be negated.

An atomic condition is defined by a relational expres-
sion over the values of two operands (operand1 and op-
erand2). This expression can be specified using the rela-
tional operators of the language, namely the operations
equalTo, notEqualTo, greaterThan, lessThan, greater-
ThanEqualTo and lessThanEqualTo. The operands of a
relational expression can be of three types, namely query
operands, arithmetic expressions or constants.

A query operand identifies an element or attribute in the
description of a service (facet) using an XPath [64] expression
(see Section 2 for description about facets). An arithmetic
expression is used to express a computation over the values
of service facet elements and/or attributes and is defined by
a sequence of arithmetic operands connected by arithmetic
operators (e.g., addition (plus), subtraction (minus), multi-
plication (multiply), and division (divide)). The operands of
an arithmetic expression can be query operands, constants,
or functions. A function operand denotes the execution of a
complex computation over a series of arguments, which
results in a numerical value that can be subsequently used as
an operand in the arithmetic expression. A function has a
name indicating the function to be executed and a sequence
of one or more arguments that might be query operands,
constant, or arithmetic expressions, themselves. Con-
straintSQL offers a set of built-in functions including func-
tions for computing statistics (e.g. mean, standard deviation)
and arithmetic functions (e.g. sum, min/max values, power).

<?xml version="1.0"?>

<constraintQuery xmlns="http://tempuri.org/secse/normalQuery"

 name="MaxMeanTimeToComplete"

 weight="0.5" type="soft">

 <logicalExpression> <condition negated="false">

 <lessThanEqualTo>

 <operand1> <queryOperand> <xpathExpression>

 <facet>

 <name>QoS</name> <type>QoS</type> </facet>

 <xpath> //Metrics//Metric[Name =

 "MeanTimeToComplete"]/MinValue </xpath>

 </xpathExpression> </queryOperand> </operand1>

 <operand2> <constant>

 <value>3500</value> <type>STRING</type>

 </constant></operand2>

 </lessThanEqualTo> </condition> </logicalExpression>

</constraintQuery>

Fig. 4. Example of a soft constraint in CostraintSQL

A constraintQuery has also: (i) a name specifying the

name of the constraint; (ii) a type indicating whether the
constraint is hard or soft; and (iii) a weight (i.e., a number
in the range [0,1]) specifying the significance of the con-
straint for the service discovery query. The weight in hard
constraints is always 1.0, given that a hard constraint
needs to be satisfied by all candidate services, while in
soft constraints the weight is in the range [0.0, 1.0], since
soft constraints are used to rank a service with respect to a
query (see Section 4).

Figure 4 presents an example of a soft constraint ex-
pressed in ConstraintSQL. This constraint specifies that
the mean time to execute the operations of a service

AUTHOR ET AL.: TITLE 5

should not be more than 3500 milliseconds. As shown in
the figure, the constraint is soft and applies to element
//Metrics/Metric[Name = “MeanTimeToComplete”]/MinValue
of facet QoS in service descriptions. Furthermore, the
weight of the constraint is defined as 0.5.

4 QUERY EXECUTION

Service discovery queries are executed in two phases by a
query processor. In the first phase, the query processor searches
service registries in order to identify services that satisfy the
hard constraints of a query. This stage is called filtering phase
and is based on an exact matching of hard constraints of a
query against the service descriptions in the registries. In the
second stage, candidate services which have been returned at
the filtering stage are matched against structural and behav-
ioral models and soft constraints of a query, and the best can-
didate services for the query are identified. This stage is called
optimisation phase

The fit of services with a query is computed during the op-
timisation stage using three partial distances, namely signa-
ture, behavioural, and soft constraint distances. These distances
are computed by matching service descriptions with struc-
tural model, behavioural model, and soft constraints of a
query, respectively. This matching is inexact and even services
which do not match exactly with the query may be identified
as the best possible candidates.

The structural matching between a query and a service is
performed by comparing the signatures of query mes-
sages in the structural model against the signatures of the
operations of the services. In this case, the WSDL specifi-
cation of a service and the signatures of the messages in a
query are converted into a set of data type graphs (see
Subsection 4.1). The matching identifies the mapping and
calculates the distances between the elements represented
in the graphs.

The behavioural matching between a query and a serv-
ice is performed by comparing the behavioral specifica-
tion of the services and the behavioral model of a query.
In this case, the behavioural specifications of the service
and the behavioural model of the query are converted
into state machine models and distances between these
state machines are calculated (see Subsection 4.2).

The soft constraint matching between a query and a
service is performed by analysing the conditions in the
constraint part of a query against service specifications
(see Subsection 4.3).

The partial signature, behavioural, and soft constraint dis-
tances which are computed between services and a query are
aggregated in an overall distance which is then used to select
the best service operations for different query messages. The
selection of the best service operation for query messages is
formulated as an instance of the assignment problem [43], i.e.,
the problem of 1-1 mapping between query messages and
service operations, which minimises a weighted sum of the
overall distances between all the mapped service operations
and query messages.

There may be some differences in the execution proc-
ess of a query. These differences are due to the lack of
hard, behavioral, and soft constraints in a query, or any

combinations of the above constraints. In the case in
which there are no hard constraints in a query, the filter-
ing phase is not executed and the partial distances are
calculated between all the services in the registries. In the
case in which behavioral or soft constraints are not pre-
sent in a query, the computation of the corresponding
partial distance is bypassed and the overall distance is
computed by using only the partial distances of the types
of constraints specified in a query. Note that structural
constraints are always present in a query and, therefore,
at least distances based on them are calculated.

In the following, we discuss the computation of signature,
behavioural and soft constraints distances and the selection of
the best candidate service operations for a query. We also give
an example of computing these distances.

4.1 Signature Distance

The signature distance between a service operation So and a
query message Qm is computed by a function that considers
the linguistic distance between the names of the operation
and query message, the names of their parameters, and the
data types of these parameters as defined below.

Definition 1: The signature distance between a service op-
eration So and a query message Qm is computed by function:
 df-sig(Qm,So) = wN*dL(name(Qm), name(So)) +
 wI*dPS(in(Qm),in(So)) + wO*dPS(out(Qm),out(So))
where, dL is a linguistic distance function; dPS is a function
that computes the distance between input and output
parameters of So and Qm; and wN, wI, wO are weights asso-
ciated with the names, input parameters, and output pa-
rameters of the service operation and query message, re-
spectively (with wN+wI+wO=1).

The definitions of the dL and dPS fuctions are given be-
low. Note that df-sig∈[0,1] since this function is defined as a
linear combination of dL and dPS which also return values
in [0,1] as we discuss below.

Definition 2: The linguistic distance between two strings S1
and S2 is computed as:
 dL(S1,S2) = |t(S1/S2)| + |t(S2/S1)| +
 0.5*|t(S2) ∩s t(S1)| / |t(S2) ∪ t(S1)|
where,
 t(S1) and t(S2) are sets of tokens in S1 and S2. The to-

kens in a string S are identified by splitting S into suc-
cessive substrings starting at the beginning of S, or at a
capital letter within S, and ending before the next capi-
tal letter,

 t(Si/Sj) is the set of tokens x in t(Si) for which there is no
token y in t(Sj) that is a synonym of x (the synonymy of
two tokens is determined on the basis of WordNet lexi-
con [35]),

 t(S2) ∩s t(S1) is the set of the tokens in S1 and S2 which
have synonym or identical tokens in the other set,

 |Φ| is the cardinality of set Φ.
According to the above definition, the linguistic distance be-
tween two strings S1 and S2 is computed by tokenising S1 and
S2 into two sets of tokens t(S1) and t(S2) and taking the ratio of
the sum of the number of tokens in each of these two sets
which have no synonym in the other set and the number of

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

tokens which have synonyms weighted by 0.5 over the total
number of distinct tokens in t(S1) and t(S2) (i.e., the cardinality
of the set t(S2) ∪ t(S1)).

Note that dL ≤ 1 since t(S1/S2) ∪ t(S1/S2) ∪ (t(S2) ∩s t(S1))
⊆ t(S2) ∪ t(S1) and t(S1/S2) ∪ t(S1/S2) ∪ (t(S2) ∩s t(S1)) and,
therefore, |t(S1/S2)| + |t(S2/S1)| + 0.5*|t(S2) ∩s t(S1)| ≤
|t(S2) ∪ t(S1)|. Also, 0≤dL since t(S1)≠∅ and t(S2)≠∅ (every
string will have at least one token) and, therefore, |t(S2) ∪
t(S1)|> 0.

dPS is computed by finding the best possible morphism
between the data types of the parameters of a service op-
eration So and a query message Qm. To compute this mor-
phism, the query processor first formulates graphs that
represent the data types of the input and output parame-
ters of So and Qm and then matches the input graphs and
output graphs with each other.

The data type graphs of the input and output parame-
ters of a service operation and a query message are con-
structed taking into consideration both primitive and
non-primitive data types. In the graph of a set P of pa-
rameters, a special node representing the root of the
graph is created with immediate children nodes, for each
parameter pi in set P. The data type associated with pa-
rameter pi is added to the graph as a child node of the
respective root node (datatype_pi node). The name of the
parameter pi is represented in the graph as the name of
the edge between the root node and datatype_pi node. In
the case of a data type that is a non-primitive type, a sub-
graph for this data type is constructed such that each data
type of the attributes in the class representing datatype_pi
is added to the graph as a child of datatype_pi with the
name of the attribute as the name of the respective edge.
If the data type of an attribute is also non-primitive the
process is repeated for this data type. The process termi-
nates when all the leaf nodes in the graph have only
primitive data types.

More specifically, the graph that represents the data types of
a set S of parameters p1,…,pm with types T1, …, Tm is a labeled
directed graph that includes the following set of edges:

Edges(S) = ∪i=1,…,m <pi, (sn,Ti)> ∪i=1,…,m Edges’(Ti)
Edges(S) containts: (i) the edges <pi, (sn,Ti)> that represent the
parameters in S, and (ii) sets of Edges(Ti) which represent the
structure of the types Ti of the different parameters pi . In an
edge <pi, (sn,Ti)>, pi is the name of the parameter that labels
the edge, sn is a special root node that does not represent any
specific parameter type and Ti is the type of the relevant pa-
rameter. If the type of a parameter is primitive Edges’(Ti) is
empty (i.e., Edges’(Ti)=∅). Otherwise, for non primitive data
types, assuming that Sfeatures(Ti) is the set of structural fea-
tures of Ti, (i.e., the set of attributes and associations of Ti) and
each feature x in Sfeatures(Ti) relates Ti with another type
Type(x), Edges’(Ti) is defined as Edges’(Ti)= ∪x∈ Sfeatures(Ti)

{<name(x), (Ti,Type(x))>} ∪x∈ Sfeatures(Ti) {Edges’(Type(x))}. Thus,
the set of nodes which are inteconnected by Edges(S) repre-
sent T1, …, Tm and all the types in their own structures, and are
labelled by the names of these types. Also, the edges in
Edges(S) represent the structural relations (attributes and as-
sociations) between T1, …, Tm and all the types in their struc-
tures, and are labelled by the name of the relevant relation. An
example of graphs of input parameter data types is

shown in Figure 5 for a query message checkHotelAvailabil-
ity(info:AccommodationInfo,hotel:String):Boolean from the
ConferenceTravel system described in Section 3, and a serv-
ice operation checkRoomAvaliability(room:Room,
Starts:Date,Ends:Date):Boolean, where Room is a non-
primitive data type with attributes hotelName:String and
category:String.

Definition 3: The distance between two sets of parameters P1
and P2 is computed as:
dPS(P1,P2) = MIN m ∈ Morphisms(Edges(P1), Edges(P2)) {(∑ (e1,e2) ∈ m dE(e1,e2)
 +abs(|Edges(P2)|− |Edges(P1)|)) /
 max(|Edges(P2)|, |Edges(P1)|) }
where,
 Morphisms(Edges(P1), Edges(P2)) is the set of all the total

morphisms from the edges in Edges(P1) to the edges in
Edges(P2)

 abs(exp) is the absolute value of the arithmetic expression,
 dE(e1,e2) is the distance between two edges e1=< e1-name,

(T1
S, T1

D)> and e2=< e2-name, (T2
S, T2

D)> defined as
dE(e1,e2) = w1.dL(e1-name, e2-name) +
 w2.dL(name(T1

S), name(T2
S)) +

 w3.dL(name(T1
D),name(T2

D)) +
 w4.dEDGES(Edges(T1

D), Edges(T2
D)))

with Ti
S and Ti

D are the source and destination data type
nodes respectively; and w1, w2, w3 and w4 weights associa-
ted with the linguistic distances of the names of the edges,
the names of the data types, and the distances of two e-
dges.

 dEDGES(Edges(T1
D), Edges(T2

D)) is the distance between the
edges of two types, defined as
dEDGES(Edges(T1

D), Edges(T2
D)) = 1 if Edges(T1

D)=∅ or
 Edges(T2

D) =∅
dEDGES(Edges(T1

D), Edges(T2
D)) =

 MIN m ∈ Morphisms(Edges(T1D), Edges(T2D))

 {(∑ (e1,e2) ∈ m dE(e1,e2) + abs(|Edges(T2
D)|−

 |Edges(T1
D)|)) / max(|Edges(T1

D)|, |Edges(T2
D)|) }

 Otherwise
According to Definition 3, the morphism of the structure of

the data types of the parameters is determined by finding the
matching between the edges of the data type graphs of two
parameters that has the least possible sum of edge distances
(see formula (∑(e1,e2)∈mdE(e1,e2) + |Edges(P2)|−|Edges(P1)|)
/|Edges(P2)|). The distance between two edges is computed
by taking into account the linguistic distance between the
names of the structural features represented by the edges, the
names of the types that have these features (T1

S and T2
S), and

the similarity of the structures of the types that the features
point to (see function dEDGES(Edges(T1

D), Edges(T2
D))). Thus, the

computation of dE analyses recursively the entire structure of
the graphs that represent the data types of two parameters.

 Note that 0≤dPS≤1. This is because Edges(P1)≠∅ and
Edges(P2)≠∅ and, thus, max(|Edges(P2)|,|Edges(P1)|) ≥ 0.
Also, for any morphism m in Morphisms(Edges(P1),Edges(P2)),
we have that |m|= min(|Edges(P2)|,|Edges(P1)|). Thus, for
all m in Morphisms(Edges(P1),Edges(P2)) it will be that ∑ (e1,e2)∈m

dE(e1,e2)) ≤ |m| and ∑(e1,e2)∈mdE(e1,e2) + abs(
|Edges(P2)|−|Edges(P1)|)) ≤ max(|Edges(P2)|,|Edges(P1)|) if
0 ≤ dE(e1,e2) ≤ 1. However, dE(e1,e2) is computed recursively as a
linear combination of dL, which as discussed earlier takes

AUTHOR ET AL.: TITLE 7

values in [0,1], and dEDGES. At the end of the recursion, howe-
ver, dEDGES will be applied on primitive types with no further
edges and therefore it will be equal to 1. Hence, in the precee-
ding computation it will be that dE(e1,e2) ≤ 1. Similarly it can be
shown that for all previous computations of dE in the recur-
sion it will be dE ≤ 1. An example of signature distance is de-
scribed in Section 4.4.

4.2 Behavioural Distance

The behavioural distance between a service operation So and a
query message Qm is computed by matching the state ma-
chine representing the behaviour expected by interface I that
executes Qm in the query (SMQ) and the state machine repre-
senting the behaviour of the service S that provides So (SMS)
(see Definition 4). The state machines SMQ and SMS are gener-
ated automatically from the interaction diagram of a query Q
and the BPEL specification of a service S in the registry, respec-
tively. The algorithms used to generate the state machines can
be found in [29].

Definition 4: The behavioural distance between So and Qm is
computed as:
 df-beh(So, Qm; k) = dbeh(SMQ, SMS; k) =

 MINn=0...k

 {MINm ∈ Morphs(n)(SMQ, SMS)

 {1/(MAX(len(SMQ),len(SMS))

 (∑ ti∈p and m(ti) ≠ NULL df-sig(oper(ti),oper(m(ti))) +

 (∑ ti∈transititions(SMQ) and m(ti)= NULL1) +

 (∑ tj∈q and m-1(tj)= NULL1))}}} if SMQ.Transitions≠∅

and SMS.Transitions≠∅

df-Beh(So, Qm; k) = 1 Otherwise
where,
 SMQ and SMS are state machines represented as SM = <σ,

O, T, σI> where σ is the set of states of SM, O is the set of
signatures of the operations provided by SM, T is a set of
transitions of SM which are labelled by an operation signa-
ture in O, and σI is the initial state of S (σI ∈ σ),

 len(SMQ) and len(SMS) are maximum length of a path in
SMQ and a path in SMS, respectively;

 Morphs(n)(SMQ,SMS) is the set of all the possible 1-1 map-
pings between the transitions of two paths p and q in SMQ
and SMS that preserve the ordering of the transitions
within these paths (i.e. for all transitions ti and tj in p such
that ti p tj it also holds that m(ti) q m(tj)

2) and leave n tran-
sitions in p or q without counterparts (the counterpart of
all such transitions will, by convention, be a dummy tran-
sition NULL);

 m-1 is the inverse mapping of a mapping m from p to q;
 k (flexibility matching) is a parameter defining the maxi-

mum number of the transitions of p or q that are allowed
not to have a counterpart in the mappings between these
paths, 0 ≤ k ≤ ABS(len(SMQ) − len(SMS));

 oper(t) is the operation signature that labels a transition t
in a state machine;

2 p is a relation that reflects the linear order of transitions within a

path p.

 df-sig is the distance between signatures of two operations.
The algorithm that computes dbeh(SMQ, SMS; k) is a search

algorithm that finds the path q in SMS which has the best pos-
sible match with the single path p of SMQ , and returns the
aggregate distance between these paths as the distance be-
tween SMQ and SMS. In this search, the degree of match be-
tween two paths p and q is computed as the sum of the signa-
ture distances between the operations which label the mapped
transitions of p and q (df-sig(oper(ti),oper(m(ti)))).

The search of a path q in SMS that has the best possible
match with path p in SMQ is implemented by trying to con-
struct alternative mappings from p onto q (Morphs(n)(p,q))
Incrementally. These alternative mappings must preserve the
order of the transitions in the two paths (i.e., for all transitions
ti and tj in p such that ti p tj it should also hold that m(ti) q
m(tj)). Furthermore, valid mappings are allowed to leave up to
k transitions of p and q without a counterpart.

More specifically, the construction of alternative mappings
from p onto q is executed by consuming one by one all the
transitions tp in p, comparing these transitions with the transi-
tions tq in q, preserving the order of tp and tq in the paths, and
verifying if transition tp can be (i) accepted, when tp matches tq;
(ii) removed, if tp does not match tq, but a transition tp+x follow-
ing tp in p matches transition tq (where 1 ≤ x ≤ k-L and L is the
number of transitions that have already been removed or
added during the transformation process), or (iii) tq, tq+1, tq+x
can be added when t p, tq+x and the other transitions in p can be
consumed. The mapping that minimizes the distance df-

beh(SMQ, SMS; k) is the one selected. It should be noted that
whilst matching the state machine of a query with the state
machine of a service any conditions of the later are ignored.
This is because it is not possible to establish the equivalence of
such conditions without making strong assumptions about
naming of internal service variables.

The flexibility of the approach to allow up to k transitions of
p to be left without counterparts makes it possible to discover
services whose behaviour is similar to the behaviour of the
required service, but not identical. It should be noted, how-
ever, that while unmapped transitions of p and q are allowed
in a mapping m, such transitions contribute a distance of 1 to
the aggregate distance of m. Thus, the more the transitions
that a mapping leaves without counterparts, the less likely is
for m to present the best possible match for p.

Note that, df-beh takes always values in range [0,1]. This is a
direct implication of its definition when if SMQ.Transitions=∅
or SMS.Transitions=∅. In cases where SMQ.Transitions≠∅ and
SMS.Transitions≠∅ df-beh ≥ 0 since MAX(len(SMQ),len(SMS) > 1.
We also have that df-beh ≤ 1, since |Morphs(n)(SMQ,SMS)| ≤

MAX(len(SMQ),len(SMS) and df-sig(oper(ti),oper(m(ti)) ≤ 1.
An example of the behavioural distance is described in

Subsection 4.4.

4.3 Soft Constraint Distance

The soft constraint distance between a query message Qm

and a service operation So is computed by the function in
Definition 5 below:

Definition 5: The soft constraint distance between So and Qm

is computed as:
df_con(Qm,So) = ∑Ci∈Scons(Qm) widcon(Ci,So)/ ∑wi if Scons(Qm) ≠∅

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

df_con(Qm, So) = 0 if Scons(Qm) =∅
where,
 Scons(Qm) is the set of soft constraints defined for query

message Qm in the query and the global soft constraints
of the query which apply to Qm by default,

 wi is a weight expressing the significance of the con-
straint Ci for query message Qm (wi >0),

 dcon(Ci,So) is a distance measure that represents if the con-
straint Ci is satisfied by service operation So. This meas-
ure is 0 if the constraint Ci is satisfied by So, and 1 other-
wise.

According to this definition, the soft constraint distance
between Qm and So is the sum of the weights of the soft con-
straints that apply to Qm and are not satisfied by So , divided
by the sum of the weights of all the soft constraints in the
query which apply to Qm. It should also be noted that
df_con(Qm,So) takes always values in the range [0,1] since
dcon(Ci,So) ∈ [0,1] and, therefore, ∑Ci∈Scons(Qm) widcon(Ci,So) ≤ ∑wi

and ∑wi > 0.

4.4 Overall Distance

The overall distance between a query message Qm and a serv-
ice operation So is computed as the weighted sum of the signa-
ture, behavioural, and soft constraint distances between Qm
and So as defined below.

Definition 6: The overall distance between Qm and So is com-
puted as:
 D(Qm, So; k) = wsig df-sig(Qm, So) + wbeh df-beh(Qm, So; k) +
 wcon df-con(Qm, So)

where wsig, wbeh and wcon are weights of signature, behavioural
and constraint distances for which wsig + wbeh + wcon = 1.

It should be noted that D(Qm, So; k) returns always a va-
lue in the range [0,1] since df-sig, df-beh and df-con also return
values in the same range, as discussed earlier.

Following the computation of the D distances between all
the query messages in a query (Qm) and the set of service op-
erations in registries (So), the best service operation for each
query message is determined by finding the morhism (1-1
mapping) between query messages and service operations
which minimises the function
 MIN M∈Morphisms(QM,SO) {∑ (Qm,So)∈M D(Qm, So; k) }
for a given value of flexibility matching K (Morphisms(Qm,So)
in the above formula denotes the set of all the possible mor-
phisms from Qm to So).

More specifically, the computation of the best service
operation for each query message is executed by con-
structing an operation matching graph G with (a) two dis-
joint sets of vertices: one set of vertices representing mes-
sages in a query and another set of vertices representing
the service operations identified in the filtering stage (or
the service operations in the registries when the filtering
stage has not been executed); and (b) edges that connect
each of the messages in the query with all the operations
of the retrieved services, and vice versa. Each edge e(m,o)
in graph G is weighted by a measure that indicates the
overall distance D(Qm, So; k) between a message m in Qm
and an operations o in So.

Following the computation of the distances between

the vertices, the matching between the messages in the
query and the operations in the candidate services is de-
tected by selecting a subset E’ of the edges in graph G,
such that E’ is a total morphing between the vertices in G,
and has the minimal distance values. This subset is se-
lected by applying an instance of the assignment problem
algorithm following the approach in [51]3.

4.5 Example

As an example of computing the different types of dis-
tances between query messages and service operations
consider again the query for ConferenceTravel system that
we introduced in Section 3. This query has two query
messages, namely checkHotelAvailabil-
ity(info:AccommodationInfo, hotel:String):Boolean (QM1) and
bookHotel(bookInfo: AccommodationInfo, hotel: String): String
(QM2), and the soft constraint as described in Figure 4.
Suppose also that the query is matched with a service,
called HotelService1, which offers the following 3 opera-
tions:
 SO1:HotelService1::checkRoomAvailability(room:Room,Start

s:Date,Ends:Date): Boolean
 SO2: HotelService1::reserveRoom(room: Room, From:Date,

To:Date): Reservation
 SO3: HotelService1::cancelReservation(reservation: Reserva-

tion): Boolean
Assume that HotelService1 has a QoS facet indicating

that the time to execute the operations in the service is
3500 miliseconds (this facet is not shown in the paper due
to space limitations).

As an example of the computation of signature distance,
consider the signature distance between query message
QM1 and the service operation SO1. According to Definition
1, this distance is computed from the linguistic distance
dL(checkHotelAvailability, checkRoomAvailability) between the
names of QM1 and SO1, the distance between the input pa-
rameters of QM1 and SO1 dPS(in(QM1),in(SO1)), and the
distance between the output parameters of QM1 and SO1
dPS(out(QM1),out(SO1)). The linguistic distance between
QM1 and SO1 is equal to 0.5 as the names of QM1 and SO1
have two identical substrings (i.e., “check” and “availabil-
ity”) and two non identical substrings with no synonyms
(i.e., “hotel” and “room”). Hence, dL(checkHotelAvailability,
checkRoomAvailability) = 2/4 = 0.5.

The computation of dPS(in(QM1),in(SO1)) and
dPS(out(QM1),out(SO1)) is based on the graphs of the data
types of QM1 and SO1. Figure 5 shows the graphs of the data
types of the input parameters of QM1 and SO1. Based on
these graphs, the distance dPS(in(QM1),in(SO1)) is 0.415. Ac-
cording to Definition 3, this distance is computed from dE dis-
tances between the pairs of edges that have been mapped by
the best possible morphism between the input parameters of
QM1 and SO1 which is shown by the dashed lines in Figure
54. The dE distances between these edges are shown in the grey
boxes which appear upon the dashed lines in Figure 5 (each of

3 When the number of messages in a query is not the same to the
number of operations in the candidate services, special vertices are
added in the graph representing dummy operations, in order to
make the number even.

4 0.415=((0.437+0.437+1+0.437+0.437+0+0+0)+1)/9.

AUTHOR ET AL.: TITLE 9

these boxes shows the distances (dE(e1, e2),
dL(name(T1

S),name(T2
S)), dL(e1-name,e2-name), dL(name(T1

D),
name(T2

D)), dEDGES(Edges(T1
D), Edges(T2

D)))) for the relevant
pair of mapped edges).

As shown in Figure 5, the best morphism between the in-
put parameters of QM1 and SO1 maps the edges day, month
and year of data types Date in the two graphs. This is because
the linguistic distance between the names of these edges, the
names of their starting nodes (Date), the names of their desti-
nation nodes (String), and the distance between the edges of
their destination nodes are all equal to 0. Note also, that the
edge which represents the attribute StartingDate of data type
AccommodationInfo in QM1 is mapped on the input parameter
Starts of SO1. These two edges have an overall distance 0.437
which is the minimum possible edge distance excluding the
mappings discussed above. For the same reason, the attribute
roomType of the data type AccommodationInfo in QM1 is
mapped onto the attribute category of data type Room in SO1.

The computation of dPS(out(QM1),out(SO1)) is performed
in a similar way to the computation of dPS(in(QM1),in(SO1)).
In the example, dPS(out(QM1),out(SO1)) is zero, since both
QM1 and SO1 have returned parameters of type Boolean.

Fig. 5. Graphs for data types of input parameters of QM1
and SO1

Consider wN = 0.4, wI = 0.4, and wO= 0.2 the weights as-
sociated with the linguistic distance and the input and
output parameter distances, respectively. The signature
distance for QM1 and SO1 is df-sig(QM1,SO1) = 0.4*0.5 + 0.4*
0.415 + 0.2 * 0 = 0.366.

The behavioural distance between QM1 and SO1 is 0.209
for K=0. This distance results from the computation of the best
possible mapping between the state machine of QM1 and the
state machine of SO1. This mapping is shown by the dashed
lines in Figure 6 where (i) transition checkHotelAvailability() in
the state machine of QM1 is mapped onto transition check-
RoomAvailability() from state S1 to state S1 in the state machine
of SO1, and (ii) transition BookHotel() in the state machine of
QM1 is mapped onto transition reserveRoom() from state S1 to
state S2 in the state machine of SO1. This particular mapping
is selected because (a) it consists of the minimum sum of dis-
tances between possible pairs of transitions (the distances be-

tween the former and the latter pair of mapped transitions
were 0.174 and 0.281, respectively), and (b) the value of the
parameter K=0 eliminates other alternative mappings of tran-
sitions with the same pairwise distances.

One of these alternatives, for example, is a mapping in
which transition BookHotel() in the state machine of QM1 is
mapped onto transition reserveRoom() from state S1 to state S2
in the state machine of SO1 (as in the selected mapping) , but
transition checkHotelAvailability() in the state machine of QM1
is mapped onto transition checkRoomAvailability() from the
initial state to state S1 in the state machine of SO1. Although,
the pairwise distance between the latter pair of transitions in
the alternative mapping is the same as the distance between
transition checkHotelAvailability() in QM1 and transition check-
RoomAvailability() from state S1 to state S1 in the selected
mapping, the alternative mapping was eliminated since this
mapping requires one unmapped transition between two
mapped transitions in the state machine of SO1 (i.e., transition
checkRoomAvailability() from state S1 to state S1) and, as the
value of K is zero, no such unmapped transitions are allowed.

Fig. 6. ConferenceTravel and HotelService1 statemachines

The soft constraint distance between QM1 and SO1 is
zero since the constraint specified in Figure 4 matches the
performance time describe in the QoS facet of the service.

Suppose in the example that the signature distance has a
weight of 0.5, the behavioural distance has a weight of 0.3,
and that constraint distance has a weight of 0.2. In this case,
the overall distance between QM1 and SO1 is D(QM1,SO1,0)
= 0.5*0.366 + 0.3*0.209 + 0.2*0 = 0.2457.

5 EVALUATION

To evaluate our framework, we have performed a set of
experiments, designed to measure and analyse: (a) the
recall and precision of the results of service discovery, and
(b) the performance of the matching process.

5.1 Experimental SetUp

In the experiments we used a registry of services that had
been built collectively by the industrial partners of the SeCSE
project [48]. The registry included 95 different services offering
a total of 316 service operations of different complexities.
These services had different service providers and were re-
lated to different domains including: (a) online retailing, (b)
internet searching, (c) travel planning and booking, and (d)

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

online banking. All the 95 services had structural specifica-
tions expressed in WSDL [60] and QoS specifications, and
more than half of them (52) had behavioral specifications ex-
pressed in BPEL [6]. The registry had been implemented as an
eXist database [12].

In the evaluation, we also used six queries drawn from de-
sign models of two service-based systems that had been pro-
vided as case studies by the industrial partners of the SeCSE
project, namely ConferenceTravel (i.e., the system introduced in
Section 3), and PurchaseTransaction (i.e. a system for purchas-
ing services and goods over the Internet). Three of these que-
ries (Q1, Q2, and Q3) were defined for the PurchaseTransaction
system and another three were defined for the Conference
Travel system (queries Q4, Q5, and Q6). The exact form of the
queries that we used reflected steps in the design of the
relevant systems that had been identified by the industrial
partners. The queries had a total of 18 query messages with
different complexities, where (i) Q1 and Q5 had two query
messages, (ii) Q2 and Q6 had three query messages, and (iii)
Q3 and Q4 had four query messages.

The complexity of query messages was determined by the
number of edges in the graphs of the data types of the pa-
rameters of the message, as in the case of operations (see Sub-
section 4.1). Based on this measure, a query message was clas-
sified as of low complexity if it had a data type graph with less
or equal to ten edges and of medium-high complexity if it had a
data type graph with more than ten edges. This boundary
value between low and medium-high complexity was deter-
mined by a previous analysis of the complexity of service op-
erations in the registry [68]. This previous analysis has dem-
onstrated that 49% of the services in the registry had data type
graphs of low complexity and 51% had data type graphs of
medium-high complexity. The boundary value represented
the median operation complexity found in that study. Fur-
thermore, all the queries used in the experiment included
the soft constraint shown in Figure 4, but no hard con-
straints. Hard constraints were excluded from queries as
they could filter out services before the optimisation stage
during query execution and, therefore, reduce the query
execution time (due to the reduction on the number of
services to be matched in the optimization phase) and im-
prove recall and precision. Furthermore, each query was
executed twice: once with a flexibility matching level k=0
and once with flexibility matching level k=1.

To evaluate recall and precision we used assessments of
the relevance of service operations in the registry to the
messages in the queries. These assessments of relevance
were provided by six different users, who had no involve-
ment in the development of the discovery framework and
the specification of the queries and design models used in
the experiment, and no knowledge of the algorithms used
by the framework. Four of the users had a PhD in Software
Engineering or Computer Science and two of them had an
MSc in Computer Science and were undertaking a PhD in
Software Engineering at the time of the experimentation.
All users were familiar with service-oriented system engi-
neering and UML based system design.

The six users who participated in the experiment assessed
the relevance of 5688 possible pairs of query messages and
service operations (18 query messages × 316 service opera-

tions) independently and prior to the execution of queries.
Each user was given the queries and access to the descriptions
of the services in the registry and asked to assess if the service
operation in each of these pairs was relevant to the query mes-
sage based on two criteria of relevance.

The first of these relevance criteria (RC1) was to assess rele-
vance by looking at both the signatures and the behaviour of
the query messages and service operations and consider as
relevant only operations whose behaviour had an exact fit
with what was expected in the query. The second criterion
(RC2) was to assess relevance by looking at both the signa-
tures and the behaviour of the query message and the service
operations and consider as relevant operations whose behav-
iour was similar to what was required in the query even if it
was not exactly the same.

The provision of generic criteria of relevance to the us-
ers was to avoid excessive diversity in their assessments
[49]. The selected criteria corresponded to general factors
that could be taken into account in the software design
process and had a general correspondence to the different
types of matching used in the discovery process of the
framework. It should be noted, however, that no hints
about this correspondence were given to the users.

Based on the assessments of the different users, we de-
rived an aggregate final assessment of the relevance of
service operations to query messages with respect to each
of the three different relevance criteria. Aggregate rele-
vance assessments were derived based on “voting
scheme”. More specifically, an operation was deemed
relevant to a message with respect to a specific relevance
criterion only if least 4 of the 6 users confirmed the rele-
vance of a result (i.e., when at least 65% of the users con-
firmed the relevance of a result).

5.2 Recall and Precision Evaluation Results

The evaluation of recall and precision was used for as-
sessing the ability of the framework to locate as many as
possible service operations which are relevant to a spe-
cific query (recall), and disregard operations which are
irrelevant in the discovery process (precision). In the ex-
periments, recall and precision were measured according
to the following formulas:

Precisionc =|SO ∩UOc|/|SO|) (1)
Recallc =|SO∩UOc|/|UOc| (2)

In these formulas,
 SO is the set of service operations that were retrieved as

possible results for a query Q;
 UOc, is the set of service operations that more than T per-

cent of the users considered to be relevant to query Q ac-
cording to criterion C; and

 |X| is the cardinality of set X.
Recall and precision measures were computed for individ-

ual messages in the different queries using the above formu-
las. Based on these assessments, after the execution of queries,
we measured recall and precision (using the above formulas)
for the service operations that were returned for each query
message, at 10 successive distance cut-off levels (dt); i.e., for
service operations with a distance of up to 0.1, 0.2, … and 1.0
from a query message. The use of different distance cut-off
levels spanning the entire range of possible distance values,

AUTHOR ET AL.: TITLE 11

enabled the evaluation of recall and precision when consider-
ing results at different distance levels. The main findings of the
recall and precision evaluation of the framework are discussed
below.

Overall Performance
Table 1 shows cumulative precision (P) and recall (R)

measures taken at successive overall cut-off distance lev-
els (dt) between query messages and service operations
(i.e., for operations having up to a dt distance from the
relevant query message). The shown recall and precision
measures are averages of recall and precision measures
obtained across the individual messages of the different
queries for different distance cut-off points using formu-
las (1) and (2). They are also based on: (i) overall query
message to service operation distances computed using
ws=0.6, wb=0.35 and wsc=0.05 as weights, and (ii) aggre-
gate assessments of relevance that were derived from in-
dividual relevance assessments of the six users using the
voting scheme discussed in Subsection 5.1. The values of
the weights used in the experiments demonstrate the im-
portance of the different factors for the scenarios.

TABLE 1
OVERALL RECALL AND PRECISION FOR ALL QUERIES

k=1 k=0

D(≤dt) R P R P

0.1 0.10 0.97 0.19 0.86

0.2 0.54 0.74 0.67 0.42

0.3 0.80 0.30 1.00 0.15

0.4 0.83 0.22 1.00 0.11

0.5 0.95 0.07 1.00 0.03

0.6 1.00 0.03 1.00 0.01

0.7 1.00 0.03 1.00 0.01

0.8 1.00 0.03 1.00 0.01

0.9 1.00 0.03 1.00 0.01

1 1.00 0.03 1.00 0.01

The assessments of relevance that were used to evalu-
ate recall and precision in the case of exact matching dis-
tances (i.e., when k=0) were different from those used for
inexact matching distance (i.e., when k=1). More specifi-
cally, for k=0 we used assessments of relevance formu-
lated by users after considering the relevance criterion
RC1 (consideration of service and query message opera-
tion signatures and behaviour and the existence of an ex-
act behavioural matching). For k=1, we used assessments
of relevance formulated by the users after considering the
criterion RC2 (consideration of service and query message
operation signatures and behaviour and the existence of a
non exact but good behavioural matching).

As shown in the table, precision was high for service op-
erations with a distance of up to 0.1 from a query message
since 97% and 86% of the retrieved operations in this dis-
tance range on average were relevant in the case of inexact
and exact matching, respectively. For operations with dis-
tances up to 0.2, precision dropped to 74% in the case of in-
exact matching and 42% in the case of exact matching. Re-
call reached its maximum value of 1.0 when considering
service operations with a distance of up to 0.3 in the case
of exact matching and up to 0.6 in the case of inexact

matching. These findings indicate that the users of the
framework should expect a high accuracy of results when
considering service operations whose distance from a query
message is up to 0.2 in the case of inexact matching and up
to 0.1 in the case of exact matching, but need to consider the
relevance of service operations carefully for distances higher
than these values depending on the required matching flexi-
bility. Furthermore, to ensure that no relevant results are
missed, all service operations with a distance of up to 0.3 or
0.6 need to be considered, when exact and inexact matching
are deployed, respectively.

The results shown in Table 1 also indicate that the pre-
cision of inexact matching was higher than the precision
of exact matching for all distance cut-off levels (see col-
umns (k=1)-P and (k=0)-P in Table 1). The statistical sig-
nificance of the difference in precision between inexact
and exact matching was tested using the paired t-test. The
use of this test in checking the statistical significance of
comparative evaluations of the precision and recall of IR
methods is supported by different studies and evidence
that t-test produces reliable results even when assump-
tions about the normality of underpinning data do not
hold [23][47].

The t-test was applied to pairs of cumulative precision
rates that were calculated for each query message of the
queries used in the experiments by the two types of
matching for each distance cut-off level. The use of the
test indicated that the observed differences at all the dif-
ferent distance cut-off levels were statistically significant
at α=0.05 (the probability p yielded by the t-test for the
different cut-off points ranged from 0.00025 to 0.0425)5.

The same test was applied to the recall measures of the
two types of matching. As shown in Table 1, the recall of
exact matching was higher than the recall of inexact
matching until the distance cut-off level of 0.5. This dif-
ference was also statistical significant at α=0.05.

Effect of Partial Distances on Precision and Recall

In the evaluation, we also investigated differences in the re-
call and precision measures produced by different partial dis-
tances. Table 2 presents the average recall and precision meas-
ures that were obtained at different distance cut-off levels
based on the different types of distances computed by the
framework, namely the overall (D), signature (df-sig), behav-
ioural (df-beh), and soft constraint distances (df-con).

As shown in the table, the precision of results based on
overall distances was higher than the precision of results
based on signature distances only for all the cut-off distance
points up to 0.5 in both inexact and exact matchings. The
statistical significance of this difference was examined using
the paired t-test and found to be statistically significant at
α=0.05 for all the cut-off distance levels up to 0.5.

The overall distance was also found to generate more
precision results than the behavioural distance at the first
cut-off point (0.1) for both types of matching (the differ-
ences at this level were statistically significant at α=0.025
in both cases). However, for higher cut-off points, the pic-
ture was mixed. In particular, the differences in the preci-

5 p is the probability of the two samples coming from a population with
the same average precision.

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

sion of the overall and behavioural distance results were
not statistically different at the cut-off point 0.2 in the case
of exact matching and at the cut-off points 0.2 and 0.3 in
the case of inexact matching. Following these two cut-off
points, the differences in precision between these two
distances became statistically significant again at α=0.025
but this time the behavioural distance was found to gen-
erate results of higher precision. The reason for this phe-
nomenon might be an increased focus of the users on be-
havioural aspects when service operations start being
dissimilar to query messages.

Finally, the precision of the overall distance clearly outper-
formed the precision of the constraint distance at all cut-off
points and the observed differences were statistically signifi-
cant at α=0.025.

The behavioural distance also produced more precise
results than the signature distance at all the distance cut-
off points for both types of matching, as shown in Table 2.
However, the observed differences in the precision of
these two distances were statistically significant at
α=0.025 for all but the first cut-off point (i.e., 0.1).

TABLE 2

RECALL AND PRECISION OF DIFFERENT DISTANCES

(k=1)

D df-sig df-beh ds-con d

≤dt R P R P R P R P

0.1 0.10 0.97 0.18 0.79 0.60 0.87 0.44 0.04

0.2 0.54 0.74 0.62 0.50 0.74 0.72 0.44 0.04

0.3 0.80 0.30 1.00 0.03 0.78 0.31 0.44 0.04

0.4 0.83 0.22 1.00 0.03 0.82 0.30 0.44 0.04

0.5 0.95 0.07 1.00 0.03 0.82 0.23 0.44 0.04

0.6 1.00 0.03 1.00 0.03 0.82 0.23 0.44 0.04

0.7 1.00 0.03 1.00 0.03 0.82 0.22 0.44 0.04

0.8 1.00 0.03 1.00 0.03 0.82 0.18 0.44 0.04

0.9 1.00 0.03 1.00 0.03 0.82 0.18 0.44 0.04

1 1.00 0.03 1.00 0.03 1.00 0.03 1.00 0.03

 (k=0)

D df-sig df-beh ds-con d

≤dt R P R P R P R P

0.1 0.19 0.86 0.21 0.52 0.87 0.64 0.51 0.01

0.2 0.67 0.42 0.62 0.21 0.93 0.42 0.51 0.01

0.3 1.00 0.15 1.00 0.01 1.00 0.15 0.51 0.01

0.4 1.00 0.11 1.00 0.01 1.00 0.15 0.51 0.01

0.5 1.00 0.03 1.00 0.01 1.00 0.11 0.51 0.01

0.6 1.00 0.01 1.00 0.01 1.00 0.11 0.51 0.01

0.7 1.00 0.01 1.00 0.01 1.00 0.10 0.51 0.01

0.8 1.00 0.01 1.00 0.01 1.00 0.09 0.51 0.01

0.9 1.00 0.01 1.00 0.01 1.00 0.09 0.51 0.01

1 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01

In the case of recall, the signature distance produced better

results than the overall distance for all cut-off points up to
0.5 in the case of inexact matching, and the observed differ-
ences were statistically significant at α=0.025. In the case of
exact matching, however, the differences in the recall of
these two distances were neither consistent nor statistically
significant.

A mixed picture of recall differences was observed across

signature and behavioural distances. More specifically, the
behavioural distance generated higher recall for the first two
cut-off distance levels (0.1 and 0.2) for both types of match-
ing. The differences for the 0.1 cut-off level were statistically
significant at α=0.025 for both types matching. At the 0.2
cut-off level, however, the recall difference was statisti-
cally significant (at α=0.025) only in the case of exact
matching. For cut-off levels greater than 0.2, however, the
signature distances resulted in statistically better recall
measures than behavioural distances (at α=0.025) in the
case of inexact matching, or equal recall measures in the
case of exact matching.

Effect of Matching Flexibility on Precision and Recall

The effect of matching flexibility in recall and precision was
also analysed in the experiments.

As discussed earlier, inexact matching (k=1) resulted in sta-
tistically significant higher average precision than exact
matching (k=0) in the case of overall distances across all the
distance cut-off points. Also exact matching resulted in statis-
tically significant higher recall than inexact matching for all
the distance cut-off levels up to 0.5, as discussed earlier.

The application of the t-test on the precision and recall
measures associated with the different partial distances
across the two types of matching indicated further statis-
tically significant differences. More specifically, the differ-
ences in the precision of both the signature distances and
the behavioural distances across the two types of match-
ing flexibility were also statistically significant for all the
distance cut-off points at α=0.025. Also, the recall of be-
havioural distances in exact matching was higher than the
recall of the same distances in inexact matching up to dis-
tances of 0.9 and the relevant differences were statistically
significant at α=0.025. In the case of structural distances,
however, no statistically significant differences were ob-
served in the recall measures.

5.3 Performance Evaluation Results

The performance evaluation focused on the time to execute
queries Q1 to Q6. This time was measured for flexibility
matching levels k=0 and k=1 and for service registries with
20, 40, 52, and 95 services, in order to analyze whether in-
crements in these two factors affect the performance of the
discovery process. All the queries were executed on an Intel
Core 2 Duo machine, with 2.33 GHz and 500 MB Ram.

Table 3 presents the results of the execution times in sec-
onds for Q1 to Q6 and flexibility matching k=0 and k=1. The
results shown for each query Qi represent the average execu-
tion time of Qi that was taken across ten different executions
of it for each of the different sizes of the registry used in our
experiment. For each query, the table shows the average time
taken to: (a) retrieve services from the registry, (b) execute
structural matching, (c) execute behavioral matching, (d)
execute soft constraint matching, and (e) execute whole
query (rows Total per query). Table 3 also presents the total
average time to execute all queries for each different number
of services (column Avg) and the number of the query mes-
sages in each query (row Qm in the table).

As shown in the table, the time to retrieve services from the

AUTHOR ET AL.: TITLE 13

registry grows linearly with the number of services, and it is
not affected by the flexibility matching level k and the size of
the queries. The high time for retrieving services from the reg-
istry, in particular for service registry with 95 services, is due
to the fact that the database used to implement the registry is
slow. It should be noted, however, that although the registry
retrieval time affects the performance of the framework, the
implementation of the service registry was not our focus dur-
ing the development of the discovery framework. Further-
more, the registry retrieval time could be improved by using
appropriate indexing schemes or an alternative DBMS for
implementing the registry. These indexing schemes could be
based on the properties of hard constraints in order to facili-
tate the filtering phase of the query execution process (see
Section 4). However, as mentioned before, we have not used
hard constraints in these experiments since we did not want to
restrict the number of services to be used in the structural,
behavioural, and soft constraint matching process.

The results also show that the time to execute structural
matchings for a query grows linearly with the size of the regis-
try. This is indicated in Table 3 by contrasting the average
structural matching times of each query for k=0 or k=1 across
registries of different sizes. This linearity was confirmed by
regression analysis between the execution times recorded for
each query and the corresponding size of the service registry.
The r2 coefficients that were produced for the different queries
by linear regression analysis ranged from 0.82 to 0.91 across
the different queries when k=0 and from 0.89 to 0.96 when
k=1. Also both the fitted lines and the coefficients of the serv-
ice size variable (i.e., the coefficient b in the fitted lines Y =
bX+a where X is the registry size and Y is the structural match-
ing time) were statistically significant at a=0.025 in all cases.
The statistical significance of the fitted line was tested using
the F-test and the statistical significance of the service size coef-
ficient was tested using the t-test.

It should also be noted that in most cases, the structural
matching time of queries with fewer query messages was
lower than the structural matching time for queries with more
query messages. An exception to this occurs in queries Q2 and
Q3, as shown in Table 3. In this case, the structural matching
time of query Q2 (three query messages) took a bit longer than
the structural matching time of query Q3 (four query mes-
sages) in some cases. This was again due to the lower com-
plexity of query messages in Q3. Thus, the time to execute
structural matching varies not only with the number of query
messages, but also with the complexity of these messages.

The results in Table 3 show that the behavioural matching
time increased across all queries when a higher flexibility
matching factor was used for all the different sizes of the regis-
tries. This result was confirmed by the the application of an
one-tail upaired t-test over the samples of execution times ob-
tained for each query in the ten different trials (ten data points
in each set). The test was applied to 18 pairs of sample execu-
tion times − six pairs of samples for the three registries of 20,
40 and 52 services (the registry with 95 services was excluded
as the additional services in it did not have a behavioural
model and, hence, would not affect behavioural matching
times). The normality of the underlying data – a condition
that is normally required for the application of the t-test – was
tested using the Anderson-Darling test [1]. This test confirmed

the normality of the two thirds of the used samples. The
application of the t-test showed that the execution time when
k=1 was higher than the time when k=0, and the result was
statistically significant at α=0.025 in all cases. This result was
expected since for higher values of k the number of combina-
tions of paths in the state machines of the query and the serv-
ice that need to be compared increases. The behavioral
matching time increases linearly with the number of serv-
ices up to 52 services in the registry, but there was no in-
crease for 95 services. This was because in the data set

TABLE 3
PERFORMANCE TIME IN SECONDS FOR EXECUTING QUERIES

Q1 TO Q6

(k=0)

 Q1 Q2 Q3 Q4 Q5 Q6 #
Ser Qm

 2
Qm
 3

Qm
 4

Qm
 4

Qm
 2

Qm
 3

Avg

20 34.9 33.7 32.6 35.6 36.9 31.5 34.2

40 81.8 77.9 80.5 73.6 84.1 83.0 80.1

52 101.9 104.8 104.7 98.4 107.3 103.9 103.5

Reg.

Retr.

95 203.0 202.4 202.7 202.6 202.5 202.2 202.6

20 5.1 7.2 7.3 8.7 5.2 7.5 6.8

40 11.1 17.8 15.3 26.0 12.8 14.7 16.3

52 16.0 22.4 21.0 35.1 19.2 22.5 22.7

Str.

Match

95 63.4 79.1 102.2 139.7 67.3 101.6 92.2

20 17.2 16.7 16.9 14.8 15.7 17.2 16.4

40 25.1 25.4 23.8 24.8 22.7 22.8 24.1

52 33.9 32.6 31.7 31.2 32.0 31.6 32.2

Beh.

Match

95 29.9 29.0 28.7 33.7 30.6 28.0 30.0

20 0.3 0.3 0.4 0.2 0.2 0.4 0.3

40 0.4 0.6 0.6 0.6 0.2 0.3 0.5

52 0.5 0.5 0.7 0.6 0.3 0.5 0.5

Soft

Cons.

Match

95 1.0 1.2 3.8 2.0 1.0 0.9 1.7

20 60.3 60.9 59.7 61.9 60.2 59.2 60.4

40 122.1 125.7 123.8 128.8 123.1 124.1 124.6

52 156.8 164.9 162.0 169.4 162.9 162.5 163.1

Total

per

query

95 306.3 320.2 354.1 388.9 309.8 340.3 336.6

(k=1)

20 37.1 25.3 20.4 21.4 28.8 28.7 27.0

40 81.8 70.6 44.5 39.5 79.4 70.3 64.4

52 105.5 83.7 55.8 52.6 98.3 84.1 80.0

Reg.

Retr.

95 201.8 205.5 201.6 201.3 201.5 201.5 202.2

20 3.4 7.3 6.0 9.7 5.9 5.5 6.3

40 9.0 14.7 14.7 22.9 12.7 14.7 14.8

52 13.4 22.3 21.0 35.0 19.1 22.4 22.2

Str.

Match

95 50.0 75.7 73.9 118.6 57.5 98.7 79.1

20 17.6 47.2 224.7 230.8 25.4 35.9 96.9

40 30.5 47.0 317.7 322.3 30.3 47.3 132.5

52 41.0 57.9 333.9 333.3 41.1 57.2 144.1

Beh.

Match

95 36.0 62.3 337.9 333.2 36.8 53.1 143.2

20 0.1 0.4 0.4 0.4 0.2 0.2 0.3

40 0.2 0.3 0.5 0.5 0.2 0.3 0.3

52 0.3 0.5 0.6 0.6 0.3 0.5 0.5

Soft

Cons.

Match

95 0.5 1.0 1.4 1.1 0.6 0.9 0.9

20 61.0 82.8 254.0 264.8 63.7 72.8 133.2

40 125.3 136.0 381.0 388.6 126.6 136.0 215.6

52 164.7 168.4 415.9 425.7 163.4 168.3 251.1

Total

per

query

95 295.7 352.3 623.4 661.9 303.8 361.4 433.1

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

used in the experiments there were a total of 52 services
with behavioral specifications. The linear increase in the
behavioural matching time with respect to the size of the
registry was confirmed by regression analysis using the
size of the registry as independent variable (X) and the
behavioural execution time as the dependent variable (Y).
The r2 coefficients that were produced for the different
queries by linear regression analysis ranged from 0.87 to
0.94 across the different queries when k=0 and both the
fitted lines and the coefficients of the service size variable
were statistically significant at a=0.025 in all cases. For
k=1, the r2 coefficients ranged from 0.69 to 0.98 in five of
the six queries. The fitted lines and the coefficients of the
service size variable (b coefficients) in these cases were
statistically significant at α=0.025. In the sixth query (Q2),
the r2 coefficient was equal to 0.18 and neither the regres-
sion line nor the coefficient of the independent variable
was statistically significant (the probability of the b coeffi-
cient being different than 0 was 0.17 and therefore it was
rejected at α=0.025).

Table 3 also shows that the behavioural matching time
increased with the number of query messages for k=1
(i.e., the times to execute Q3 and Q4 are higher than the
times to execute Q2 and Q6, which are higher than the
times to execute Q1 and Q5). In the case of k=0, the be-
havioral matching times recorded were similar for all the
different queries given registries of the same size.

The above differences were confirmed by performing
analysis of variance over three groups of behavioural exe-
cution times for different k values and service sizes. The
first of these groups (G1) included the execution times in
the ten trials of each of Q1 and Q5, the second group (G2)
included the behavioural execution times in the ten trials
of each of Q2 and Q6 and the third group included the
execution times in the ten trials of each of Q3 and Q4. The
differences across these three groups were found to be
statistical significant for k=1 across each of the service
sizes but insignificant when k=0. This was because for
k=0 the matching of the paths in the state machines of the
queries had to be exact with the paths in the state ma-
chines of the services (i.e., no transition in the paths of the
state machines of the queries and services could be left
without a counterpart). Thus, any path in the state ma-
chine of a service that was shorter than the path in the
state machine of the query was ignored and, therefore, the
number of detailed path comparisons during the behav-
ioural matching decreased.

Although very small, the constraint matching presented
some variations with the number of services and number of
query messages. This was because the soft constraint had to
be evaluated for each single service in a registry and for each
of the query messages in a query.

It should be noted that in Table 3, the total time for each
combination of query and registry size (rows Total per
query) is higher than the sum of the registry retrieval,
structural matching, behavioral matching, and soft con-
straint matching times for the given combination. This
discrepancy arises because the total time per query in-
cludes the time required for additional computations dur-
ing the execution of a query, namely the time required to

(a) create graphs of the data types of the parameters of the
query messages, (b) create state machines, and (c) parse
constraints.

6 DISCUSSION

Overall, the results of the evaluation presented in Section
5 demonstrate the merit of the proposed framework for
service discovery and its ability to support this process as
part of a service-based system design process that uses
UML. This is particularly important if someone considers
that the framework relies only on modeling notations and
service standards, namely UML, WSDL and BPEL, which
are widely used in the software industry and does not
require the deployment of further notations whose uptake
is limited within the industry (e.g. special purpose seman-
tic service description languages). It should be noted,
however, that the framework could be applied to services
with different types of behavioural models as long as they
can be translated to state machines.

The conducted evaluation has also indicated some basic
characteristics of the discovery process that are important for
practitioners. More specifically, when deploying the frame-
work, users can expect that in most cases it will be sufficient to
consider retrieved service operations having a distance to a
query message in the range [0, 0.6] to ensure that no relevant
operations are missed (as indicated in Table 1 recall reached its
maximum value of 100% for both types of matching within
this range). Furthermore, from the service operations which
fall in this range only those with a distance of up to 0.1 are
highly likely to be accurate (precision ranged from 97% to 86%
for distances up to 0.1, depending on the type of maching).

The evaluation also indicated that the incorporation of
behaviour and constraint matching into the retrieval
process can increase precision for low-to-medium dis-
tance results significantly in comparison with a structure
only matching process. The evaluation also indicated that
the performance of the framework in terms of recall and
precision is good even with inexact matching. This makes
the use of the framework suitable in stages of software
system design where system models are still evolving.
Performing service discovery based on exact matching
and constraints in such stages would not be appropriate.

Although the computation of behavioural matching for
inexact cases (i.e., flexibility matching k>0) is combinato-
rial, the statemachines representing the queries are nor-
mally small.

Clearly, the realization of the discovery process by the
presented framework makes assumptions that can limit
its applicability in certain circumstances. One limitation is
related to the computation of the linguistic distance (dL)
which assumes that service operation and query mes-
sages signatures are specified using the “Camel” notation
where different words within strings are distinguished by
starting with a capital letter. Whilst this convention is
used widely in practice, our plan is to look at alternative
ways of identifying words within strings in future work.

The use of weights in the computation of distances is
another assumption that may turn out to be limiting.
Weights are used to express the relative importance of

AUTHOR ET AL.: TITLE 15

different factors (e.g., service interface, behaviour and
QoS constraints) in the discovery process but users may
sometimes have difficulty in expressing this importance
accurately. The specification of weights has not been the
main focus of our work, as our assumption has been that
the exact phase in the system design life-cycle when the
discovery is performed can indicate the general magni-
tude of weights.

If the design model that is used for discovery does not
include elaborate behavioural models, for example, then
the weight used for the behavioural distance could be
low. Similarly, when certain parts of a design model are
stable and should not be modified, the weights attached
to the criteria of the matching process that relate to them
should be relatively high. For example, if the data types of
the parameters of some query messages should not be
changed, the weight attached to the signature distance
should be high. Alternatively, designers may decide to
specify some hard constraint to ensure that operations
won’t be matched to the particular query messages unless
they have the required parameters.

In general, it should be noted that the framework gives
its users the ability to configure its matching process in
various ways, including: (i) the assignment of weights to
partial distances and constraints, (ii) the definition of con-
straints of different types (hard vs. soft) and importance,
and (iii) the configuration of the flexibility of the behav-
ioural matching process (by setting the value of the pa-
rameter k). This ability is one of the key characteristics of
our approach and can be used to address different re-
quirements which may arise in the design process.

The relative slow performance found in the evaluation
of the approach has been mainly due to the time required
to retrieve services from the registries and the matching of
complex criteria such as data types of parameters of serv-
ice and query operations, and behavioural matching. The
registry retrieval time can be reduced by using faster
DBMS or appropriate indexing schemes. The use of com-
plex querying criteria (e.g. behaviour) is necessary to
support service discovery during service-based system
design and has been shown to improve the precision of
results. Hence, the additional performance cost that they
induce is justified. However, if developers prefer to avoid
this cost, it is possible to specify queries without behav-
ioural parts.

7 RELATED WORK

There have been various strands of research in the literature to
support service discovery. In [17], the authors describe some
initial work in this area. We present below an account of the
various approaches for service discovery.

The structural matching process used in our framework is
similar to the work in [67] applied to software libraries. Our
work extends this approach by considering matching of be-
havioral and quality specifications of services.

Approaches based on graph matching have been proposed
in [20][26]. The work in [20] uses graph transformation rules
for specifying services and service discovery queries. Similarly
to our work, these rules represent each service operation by

two "source" and "target" object graphs whose nodes and
edges correspond to data entities and relationships between
them, respectively. Our matching criteria are more flexible as
they are based on distance measures which quantify similari-
ties between the graphs.

Work on similarity analysis based on WordNet have been
proposed in [28][55][63]. The approach in [63] uses four simi-
larity assessment methods to support service matching,
namely lexical, attribute, interface, and quality-of-service
(QoS) similarity. In our approach, the distance of the parame-
ters is computed by finding the best possible morphism be-
tween the data types of the operation parameters. Moreover,
the quality matching in our framework is not restricted to
specific types of quality aspects.

The work in [55] combines WordNet-based techniques and
structure matching for service discovery. This approach identi-
fies similarities between WSDL [60] specifications by compar-
ing the structures and identifiers of the operations, messages,
and data types in WSDL descriptions. Details of how the de-
gree of similarity between data types is calculated are not de-
scribed in the paper. The structural matching used in our
work also considers the names of the operations, parameters,
and data types, as well as the structure of primitive and com-
plex data types in service specifications and structural query
models. In our work, the similarity of data type structures is
computed by considering the morphism of the graphs repre-
senting the data types. Unlike the work in [55], our approach
does not compare WSDL specifications only, but it compares
UML design models with WSDL specifications. In addition,
our work differs from the technique in [55], since it uses be-
havioral and other types of constraint matchings.

The WSDL-M2 approach [28] uses lexical matching to cal-
culate linguistic similarities between concepts, structural
matching to evaluate the overall similarity between composite
concepts, and combines vector-space model techniques with
synonyms and semantic relations based on WordNet. The
structural matching is based on maximum weight bipartite
problem in which weights in the edges are denoted by lexical
similarities of the two elements associated with the edge. Our
work differs from WSDL-M2 since, in addition to lexical simi-
larity of concepts and parameters, it considers the structure of
the data types of the parameters, as well as the behavioral and
quality aspects of the system being developed and services.

The approach in [22] uses service descriptions based on op-
eration signatures that can be queried through XQuery. This
approach is primarily focused on interface queries where op-
eration signatures are matched using string matching. This
form of matching is very limited, as it cannot account for small
variations in operation signature specifications such as the use
of different parameter names or orderings of parameters.

The use of behavioral matching for service discovery have
been advocated in [18][19][34][50]. In [19], the approach uses
(abstract) behavioural models of service specifications to in-
crease the precision in service discovery. This approach locates
services that satisfy task requirement properties expressed
formally in temporal logic, by using a lightweight automated
reasoning tool. Our approach can support the use of behav-
ioral service specifications as those proposed in [19]. The ap-
proach in [50] proposes a behavioral model for services which
associates messages exchanged between services with activi-

16 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

ties performed within services. A query language based on
first-order logic that focuses on properties of behavior signa-
tures is used to support the discovery process. The work in
[34] advocates the use of behavioral specifications represented
as BPEL for service discovery for resolving ambiguities be-
tween requests and services and use a tree-alignment algo-
rithm to identify matching between request and services.

The work in [18] proposes an approach for service discov-
ery based on the use of behavioural models for services repre-
sented as WSCL [59] conversation protocols. The behavioural
matching in this work is based on graph matching represent-
ing user’s requirements and service specifications in WSCL.
More specifically, the approach transforms graphs by the use
of editing operations and computes the distances between the
graphs. These distances take into account the cost to insert and
suppress edges and vertices in the graph, the cost to edit a
vertice in the graph, and the linguistic differences of WSCL
interactions (e.g., identifiers, types, and documents). Our be-
havioural matching is similar to the approach in [18]. How-
ever, in our work behavioural matching is based on the com-
parison of state machines representing UML sequence dia-
grams (queries) and service specifications in BPEL4WS.
Moreover, in our approach the mappings between the state
machines preserve the order of the transitions and allow for a
pre-defined number of transitions not to be matched (flexibil-
ity matching).

Semantic web matchmaking approaches have been pro-
posed to support service discovery based on logic reasoning
of terminological concept relations represented on ontologies
[1][2][5][21][25][27][28][32][41][55][56]. The METEOR-S [2]
system adopts a constraint driven discovery approach in
which queries are integrated into the composition process of a
service-based system. In [1], semantic, temporal, and security
constraints are considered during service discovery. In our
framework, extra constraints concerned with structural, be-
havioral, and quality aspects of the system are considered.

In [21] the discovery of services is addressed as a problem
of matching queries specified as a variant of Description Logic
(DL) with service profiles specified in OWL-S [37]. The match-
ing process is based on the computation of subsumption rela-
tions between service profiles and supports different types of
matching. Our view is that our framework is more flexible as
it can support the discovery of services specified in various
specification formats (facets).

The work in [27] extends existing approaches by support-
ing explicit and implicit semantic by using logic based, ap-
proximate matching, and IR techniques. The work in [56] pro-
poses QoS-based selection of services. In [25], the authors pre-
sent a goal-based model for service discovery that considers
re-use of pre-defined goals, discovery of relevant abstract serv-
ices described in terms of capabilities, and contracting of con-
crete services to fulfill requesting goals. Our work differs from
the above approaches since it supports the discovery of serv-
ices not only based on the linguistic distances of the query and
service operations and their input and output parameters, but
also on the structure of the data type graphs of these parame-
ters, the behavior of the system and services, quality aspects of
the system and services, and extra conditions that cannot be
specified by the models of the system. Moreover, our ap-
proach is not restrictive to return exact matches, but instead it

returns a set of best matches for a request. These best matches
provide the designer an opportunity to choose the most ade-
quate service and to become more familiar with the available
services.

Approaches for service discovery based on service ca-
pabilities have been proposed in [5][41]. The work in [41]
uses DAML-S to describe service capabilities while in [5]
services are described in OWL. In [41] service requests are
matched against service advertisement by comparing
outputs (inputs) of the request with outputs (inputs) of
the advertisement. The approach considers four degrees
of matching namely exact, plugin, subsumes, and fails.
The work in [5] reduces these four degrees of matching to
three degrees namely exact, inclusive, and weak. The ap-
proach in [5] also considers discovery of pervasive serv-
ices based on context and QoS characteristics. As in our
approach, this approach uses weights to denote the im-
portance and preference of non-functional properties.

Other approaches have been proposed to support quality-
of-services aware composition and service level agreements
[7][36][40]. Although existing approaches have contributed to
assist service composition an approach that uses these compo-
sitions as part of the development of service-based systems
has not been proposed.

There have been proposals for specific query languages to
support web services discovery [4][38][39][44][65]. In [4] the
authors propose BP-QL a visual query language for business
processes expressed in BPEL. The behavioral part of the query
language used in our framework also supports querying
BPEL specifications. However, our language is based on UML
interaction diagrams, which is widely used to describe behav-
ioral aspects of software systems. The query language pro-
posed in [44] is used to support composition of services based
on user’s goals. NaLIX [65], which is a language that was de-
veloped to allow querying XML databases based on natural
language, has also been adapted to cater for service discovery.

In [38], the authors propose USQL (Unified Service Query
language), an XML-based language to represent syntactic,
semantic, and quality of service search criteria. The query lan-
guage used in our framework is more complete, since it ac-
counts for the representation of behavioral aspects of the sys-
tem. Moreover, in our query language, structural and behav-
ioral criteria are represented by complete UML class and in-
teraction models including the specification of complex types.
Our constraint query language allows for the specification of
not only quality aspects of the system, but also extra condi-
tions concerned with structural and behavioral criteria. An
extension of USQL that incorporates the behavioral part of our
query language has been proposed in [39].

Although the above approaches have contributed to the
problem of service discovery, none of them supports service
discovery as part of the design process of service-based sys-
tems. Also, to the best of our knowledge, there are no other
approaches that focus on service discovery based on struc-
tural, behavioral, and quality descriptions of services at the
same time, as well as approaches that support service requests
based on structural, behavioral, quality, and extra constraints
of the system being developed. In our view, in many settings,
service discovery needs to be integrated with main stream
software development processes as the UML-based design

AUTHOR ET AL.: TITLE 17

process that we assume in this paper and, in this respect, the
approach that we have presented in this paper has clear ele-
ments of novelty.

8 CONCLUSION AND FUTURE WORK

In this paper we have presented a framework to support
the development of service-based systems by discovering
services that can fit in the design of such systems. Our
framework adopts an iterative process in which structural
and behavioural design models of service-based systems,
together with extra quality and non-quality constraints,
are used to identify services that can fulfill functional and
non-functional characteristics of the systems. The identi-
fied services are used to reformulate the design models,
and trigger new service discovery iterations. The ap-
proach is UML-based as structural and behavioural de-
sign models are represented as UML class and sequence
diagrams, respectively.

A query language enabling the specification of the
characteristics of the services to be discovered has been
developed. A query in this language contains: (a) a struc-
tural model, (b) a behavioural model, and (c) a constraint
specification. The structural and behavioural models in a
query are derived from UML design models of the system
being developed. The constraint language allows for the
representation of additional structural, behavioural, and
quality properties that services should satisfy.

Queries are executed in a two-stage process. The first
stage is a filtering phase, in which services that satify the
hard constraints in a query are identified. The second
stage is an optimization phase in which the services re-
turned by the first stage which have the best match with
the structural, behavioural, and soft constraints in a query
are selected. This part of the process is flexible enough to
allow the selection of services which might not have be-
havioural and/or other types of descriptions (excluding
WSDL descriptions, which are always required). The
matching is based on the computation of partial distances
between service descriptions and queries.

A prototype tool has been implemented and used in an
evaluation of the framework in terms of recall, precision,
and performance. The results of this evaluation were
positive indicating: (a) high precision (86-97%) of results
(services) with low distance to queries (<0.1); (b) high recall
of services for distances of up to 0.5 (95%-100%); and (c) sta-
tistically significant increase in precision when flexible be-
havioural service-query matching was included in queries
(for low service-query distances of up to 0.2 the increase was
from 18% to 32%). The results also confirmed that the time
for all different types of matching and the overall query exe-
cution time grow only linearly with the number of services
in registries and, therefore, the framework can scale to regis-
tries of large sizes.

We are currently extending the framework to support
creation and negotiation of service level agreements during
the developmnt of service-based systems, service discovery
based on behavioural composition, and verification of de-
sign models.

ACKNOWLEDGMENT

The work reported in this paper has been funded by the
European Commission under the Information Society
Technologies Programme as part of the project SeCSE
(contract IST-511680).

REFERENCES

[1] Anderson, T. W.; Darling, D. A. "Asymptotic theory of certain
"goodness-of-fit" criteria based on stochastic processes". Annals
of Mathematical Statistics 23:193–212, 1952

[2] Aggarwal R., Verma K., Miller J., Milnor W. “Constraint Driven
Web Service Composition in METEOR-S”, IEEE Int. Conf. on
Services Computing, 2004.

[3] Albert P., Henocque L., and Kleiner M. Configuration-Based
Workflow Composition. Int. Conf. on Web Services (ICWS
2005), USA, July 2005.

[4] Beeri C., Eyal A., Kamenkovich S., and Milo T. “Querying Busi-
ness Processes, 32nd Int. Conf. on Very Large Data Bases, 2006.

[5] Ben Mokhtar S., Preuveneers D., Georgantas N., Issarny V., and
Berbers Y. “EASY: Efficient semantic Service discovery in per-
vasive computing environments with QoS and context sup-
port”. Journal of Systems and Software 81: 785-808, 2008.

[6] BPEL4WS. www-106.ibm.com/developerworks / webservices/
library/ws-bpel.

[7] Canfora G., Di Penta M., Esposito R., Perfetto F., and Villani
M.L. “Service Composition (re)Binding Driven by Application-
Specific QoS”. 4th Int. Conf. on Service Oriented Computing
(ICSOC), December, 2006

[8] Cardoso J. and Sheth A. “Semantic e-Workflow Composition”,
Journal of Intelligent Information Systems, 21(3):191-225.

[9] Chafle G., Chandra S., Mann V., and Nanda M.G. “Orchestrat-
ing Composite Web Services Under Data Flow Constraints”.
Int. Conf. on Web Services, 2005.

[10] Courbis C. and Finkelstein A. “Weaving Aspects into Web Ser-
vice Orchestration”. Int. Conf. on Web Services, USA, 2005.

[11] Deubler M., Meisinger M., and Kruger I. "Modelling Crosscut-
ting Services with UML Sequence Diagrams", ACM/IEEE 8th
Int. Conf. on Model Driven Engineering Languages and Sys-
tems, MoDELS 2005, 2005.

[12] eXist. http://exist.sourceforge.net
[13] Faloutsos C. and Oard D. “A Survey of Information Retrieval

and Filtering Methods”, Tech. Report CS-TR3514, Dept. of
Computer Science, Univ. of Maryland, 1995.

[14] Foster H., Uchitel S., Magee J., and Kramer J. “Compatibility
Verification for WS Choreography”, Int. Conf. on Web Services,
2004

[15] Fu X., Bultan T., and Su J. “Conversation Protocols: A For-
malism for Specification and Verification of Reactive Services”.
Theoretical Computer Science, 328(1-2):19-37, November 2004.

[16] Gardner T., “UML Modelling of Automated Business Processes
with a Mapping to BPEL4WS”, 2nd European Workshop on OO
and Web Services, 2004.

[17] Garofalakis J., Panagis Y., Sakkopoulos E., and Tsakalidis “A.
Web Service Discovery Mechanisms: Looking for a Needle in a
Haystack”. Int. Workshop on Web Engineering, Hypermedia
Development and Web Engineering principles and Techniques:
Put them in Use, (ACM Hypertext 2004), 2004.

[18] Grirori D., Corrales J.C., and Bouzeghoub M. “Behavioral
Matching for Service Retrieval”, Int. Conf. on Web Services,
ICWS 2006, 2006.

[19] Hall R.J. and Zisman A. “Behavioral Models as Service
Descriptions”, 2nd Int. Conference on Service Oriented
Computing, ICSOC 2004, 2004.

[20] Hausmann, J. H., Heckel, R. and Lohmann, M., “Model-based
Discovery of Web Services”, IEEE Int. Conf. on Web Services
(ICWS’04), USA, 2004.

[21] Horrocks, I., Patel-Schneider, P.F. and van Harmelen, F. “From
SHIQ and RDF to OWL: The making of a Web ontology lan-
guage”, J. of Web Semantics, 1(1), 7-26, 2003.

[22] Hoschek W. “The Web Service Discovery Architecture”,
IEEE/ACM Supercomputing Conf., Baltimore, USA, 2002

[23] Hull, D. 1993. “Using statistical testing in the evaluation of
retrieval experiments”, 16th Annual ACM SIGIR Conference on
Research and Development in information Retrieval, 1993

18 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

[24] Jones S., Kozlenkov A., Mahbub K., Maiden N., Spanoudakis
G., Zachos K., Zhu X., Zisman A.: Service Discovery for Service
Centric Systems, eChallenges 2005, Slovenia, October 2005.

[25] Keller U., Lara R., Lausen H., Polleres A., and Fensel D.
“Automatic Location of Services”, Proc. of 2nd European Seman-
tic Web Conference (ESWC), Greece, 2005.

[26] Klein M. and Bernstein A. “Toward High-Precision Service
Retrieval”. IEEE Internet Computing, 30-36, January 2004.

[27] Klusch M., Fries B, and Sycara K. “Automated Semantic Web
Service Discovery with OWLS-MX”, 5th Int. Conf. on Autono-
mous Agents and Multiagent Systems, 2006

[28] Kokash N., van den Heuvel W.J., D’Andrea V. “Leveraging
Web Services Discovery with Customizable Hybrid Matching”,
Int. Conf. on Web Services, ICWS 2006, 2006.

[29] Kozlenkov A., Spanoudakis G., Zisman A., Fasoulas F., Sanchez
F. “Architecture-driven Service Discovery for Service Centric
Systems” International Journal of Web Services Research, spe-
cial issue on Service Engineering,, 4(2):81-112, 2007

[30] Kozlenkov A., Spanoudakis G., Zisman A., Fasoulas V., and
Sanchez F. “A Framework for Architecture Driven Service Dis-
covery”. Int. Workshop on Service Oriented Software Engineer-
ing – IW-SOSE’06, 2006.

[31] Kramler G., Kapsammer E., Kappel G., and Retschitzegger W.
"Towards Using UML 2 for Modelling Web Service Collabora-
tion Protocols", 1st Conf. on Interoperability of Enterprise Soft-
ware and Applications (INTEROP-ESA), 2005.

[32] Li L. and Horrock I. “A Software Framework for Matchmaking
based on Semantic Web Technology”, Int. WWW Conference
Workshop on E-Services and the Semantic Web, 2003.

[33] Mahbub K. and Spanoudakis G. Run-time Monitoring of Re-
quirements for Systems Composed of Web-Services: Initial Im-
plementation and Evaluation Experience, Int. Conf. on Web
Services, 2005.

[34] Mikhaiel R. and Stroulia E. “Interface- and Usage-aware Service
Discovery”, 4th Int. Conf. on Service Oriented Computing, 2006.

[35] Morato J., Marzal M. A., Llorens J., and Moreiro J. “WordNet
Application”, 2nd Global Wordnet Conference, 2004.

[36] Nguyen X.T., Kowalczyk R., and Han J. “Using Dynamic Asyn-
chronous Agregate Search for Quality Guarantees of Multiple
Web Services Compositions”, 4th Int. Conf. on Service Oriented
Computing, 2006.

[37] OWL-S. http://www.daml.org/services/owl-s/1.0, 2003.
[38] Pantazoglou M., Tsalgatidou A., and Athanasopoulos G.. “Dis-

covering Web Services in JXTA Peer-to-Peer Services in a Uni-
fied Manner”, 4th Int. Conf. on Service Oriented Computing,
2006.

[39] Pantazoglou M., Tsalgatidou A., and Spanoudakis G. “Behav-
ior-aware, Unified Service Discovery”, Service-Oriented Com-
puting: a look at the inside Workshop, SOC@Inside'07, co-
located with ICSOC, 2007.

[40] De Paoli F., Lulli G., and Maurino A. “Design of Quality-Based
Composite Web Services”, 4th Int. Conf. on Service Oriented
Computing, 2006.

[41] Paolucci M., Kawamura T., Payne T.R., and Sycara K. “Semantic
Matching of Web Services Capabilities”. Int. Semantic Web
Conference, Italy, 2002.

[42] Papazoglou M.P., Traverso P., Dustdar S., Leyman F., and
Kramer B. “Service-Oriented Computing Research Roadmap”.
ftp://ftp.cordis.lu/pub/ist/docs/directorate_d/st-
ds/services-research-roadmap_en.pdf.

[43] Papadimitriou C. and Steiglitz K. “Combinatorial Optimisation:
Algorithms and Complexity”, Prentice-Hall Inc.

[44] Papazoglou M., Aiello M., Pistore M., Yang J. “XSRL: A Request
Language for web services”
http://citeseer.ist.psu.edu/575968.html

[45] Di Penta M., Esposito R., Villani M.L., Codato R., Colombo M.,
and Di Nitto E.. WS Binder: a Framework to enable Dynamic
Binding of Composite Web Services. Int.l Workshop of Service
Oriented Software Engineering, Shanghai, May 2006.

[46] Pistore M., Traverso P., Bertoli P., and Marconi. “A. Auto-
mated Synthesis of Composite BPEL4WS Web Services”. Int.
Conf. on Web Services (ICWS2005), USA, July 2005.

[47] Sanderson M. and Zobel J. “Information Retrieval System
Evaluation: Effort, Sensitivity and Reliability”, 28th Annual
ACM SIGIR Conf. on Research and Development in Informa-
tion Retrieval, pp. 162-169, August 2005

[48] SeCSE, http://secse.eng.it/pls/secse/ecolnet.home.
[49] Seracevic T. “Relevance: A Review of the Literature and a

Framework for Thinking on the Notion in Information Science

– Part III: Behaviour and Effects of Relevance”, Journal of the
American Society for Information Science and Technology,
58(13): 2126-2144, 2007

[50] Shen, Z. and Su, J. “Web Service Discovery Based on Behavior
Signature”. IEEE Int. Conf. on Services Computing, 2005.

[51] Spanoudakis G, Constantopoulos P., “Elaborating Analogies
from Conceptual Models”, Int. Journal of Intelligent Systems,
11(11): 917-974, 1996.

[52] Spanoudakis G., Zisman A. and Kozlenkov A. “A Service Dis-
covery Framework for Service Centric Systems”, Int. Conf. on
Services Computing (SCC 2005), USA, July 2005.

[53] Swinscow T.D.V., "Statistics at Square One", BMJ Publishing
Group 1997,
http://bmj.bmjjournals.com/collections/statsbk/index.shtml

[54] UDDI. http://www.uddi.org.
[55] Wang Y. and Stroulia E. “Semantic Structure Matching for as-

sessing Web-Service Similarity”, 1st Int. Conf. on Service Ori-
ented Compusting, 2003.

[56] Wang X., Vitvar T., Kerrigan T., and Toma I. “A QoS-Aware
Selection Model for Semantic Web Services”, 4th Int. Conf. on
Service Oriented Computing, 2006

[57] WebServiceX, http://www.webservicex.net/WS/default.aspx
[58] Woogle,

http://haydn.cs.washington.edu:8080/won/wonServlet
[59] WSCL. Web Services conversation language.

http://www.w3.org/TR/wscl10.
[60] WSDL. http://www.w3.org/TR/wsdl.
[61] WSML. http://www.wsmo.org/wsml/wsml-syntax
[62] WSMO.http://www.w3.org/Submission/2005/SUBM-

WSMO-20050603.
[63] Wu J. and Wu Z. "Similarity-based Web Service Matchmaking".

IEEE Int. Conf. on Services Computing, SCC 2005, July 2005.
[64] XPath. http://www.w3.org/TR/xpath.
[65] Yunyao L.Y., Yanh H., and Jagadish H. “NaLIX: an Interactive

Natural Language Interface for Querying XML”, SIGMOD
2005, Baltimore, June 2005.

[66] Zachos K., Zhu X., Maiden N., and Jones S. “Seamlessly Inte-
grating Service Discovery into UML Requirements Processes”.
Int. Workshop of Service Oriented Software Engineering (IW-
SOSE 2006), May 2006.

[67] Zaremski A.M. and Wing J.M. “Signature Matching: A Tool for
Using Software Libraries”, ACM Transactions on Software En-
gineering and Methodology, 4(2):146-170, 1995.

[68] Zisman A. and Spanoudakis G. UML-based Service Discovery
Framework, 4th Int. Conf. on Service Oriented Computing, 2006.

George Spanoudakis holds BSc, MSc and PhD degrees in Com-
puter Science. He is a Professor at City University in London and
has more than 14 years of research experience and has been the
principal investigator of several national, European and industry
funded research projects. His principal research interests are in the
area of software engineering with a recent focus on the development
of techniques for runtime software systems verification and methods
and techniques for engineering service-centric systems. George has
published extensively in the area of software engineering and served
on the program and organizing committees of more than 50 Int.
Conf.s and workshops in this area. He is also an associate editor of
the International Journal of Software Engineering and Knowledge
Engineering. For more information see:
http://www.soi.city.ac.uk/~gespan.

Andrea Zisman holds PhD, MSc, and BSc degrees in Computer
Science. She is a Reader in the Deaprtment of Computing, City Uni-
versity London. Andrea has been research active in the areas of
software and service engineering where she has published exten-
sively. Her research interests are in service discovery, validation of
service-based systems, and consistency management and traceabil-
ity of software artefacts. Andrea has given tutorials in many Int.
Conf.s and has served in the organising and program committees of
various Int. Conf.s and workshops, has acted as a reviewer for many
international journals, and has co-edited special issues of journals.
Andrea has been principal and co-investigator in several European,
EPSRC, and industry funded research projects. For more information
see: http://www.soi.city.ac.uk/~zisman

