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Asymmetric Games in Monomorphic and Polymorphic
Populations

Mark Broom - Jan Rychtar

Abstract Evolutionary game theory is an increasingly important way to model the evolution
of biological populations. Many early models were in the form of matrix games, or bi-
matrix games in asymmetric situations when individuals occupy distinct roles within the
contest, where rewards are accrued through independent contests against random members
of the population. More recent models have not had the simple linear properties of matrix
games, and more general analysis has been required. In this paper we carry out a general
analysis of asymmetric games, comparing monomorphic and polymorphic populations. We
are particularly interested in situations where the strategies that individuals play influence
which role that they occupy, for example in a more realistic variant of the classical Owner-
Intruder game. We both prove general results and consider specific examples to illustrate the
difficulties of these more complex games.

Keywords Bi-matrix games - ESS - Population games - Uncorrelated asymmetry - Role

1 Introduction

Evolutionary game theory has its origins in important work carried out in the 1960s and early
1970s, see [21] and [8]. Using ideas from classical game theory, the central feature is that
of the population and the frequencies of strategies (or traits) within it. The most important
contribution is perhaps the work of Maynard Smith and co-workers, in particular [14] and [12]
which set out the underlying theory essentially in the way that we understand it today. The
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central concept of the theory is the Evolutionarily Stable Strategy (ESS), a strategy which,
if all individuals play it, resists invasion by alternatives and thus persists through time. It is
thus essentially a static concept, and much of the early theory did not concem itself with how
populations reached the ESS. The concept of evolutionary dynamics, which addressed this
question, was introduced in [201], see also [6] and [10].

1.1 Matrix Games

Perhaps the simplest type of evolutionary game is the matrix game. Here individuals play
games against opponents randomly selected from the population. An individual playing
S; facing one playing S; receives reward a; 7, 80 one playing mixed strategy p against an
opponent playing q receives reward pAqT, where A is the n x n matrix (a; 7). An important
feature of matrix games is that the expected payoff to an individual does not depend upon the
composition of the population, except through its mean (thus matrix games always have the
polymorphic—monomorphic equivalence property, see Sect. 2). Thus for a population with
mean strategy g, and denoting £ [p; q] as the expected payoff to a player playing strategy p
in a population playing g, we have

&[p a] = pAq". (1)

This payoff is linear in both the vector p (linear on the left, or linear in the focal player
strategy) and the vector q (linear on the right, or linear in the population strategy). This
leads to much simplification, and the ESS conditions reduce to a form that is easier to work
with. In particular, classical games like the Hawk-Dove game and the Prisoner’s Dilemma
are examples of matrix games. For example in the Hawk-Dove game, individuals compete
for a resource of value V with two available strategies, Hawk and Dove. Hawks always beat
Doves, contests between players with the same strategy are won with probability 0.5, with
the loser of a Hawk-Hawk contest incurring an additional cost C. Thus, indicating Hawk as
strategy 1 and Dove as strategy 2, we have payoffs a;; = (V — C)/2,a12 = V,az1 = 0, and
az; = V /2. For more on matrix games see [12], [2], and [3].

1.2 Nonlinear Games

Not all games have the nice properties described above. One of the earliest examples of
an evolutionary game, the sex ratio game (see [9]), considers a focal female producing a
proportion p of male offspring in a population with equivalent proportion q. The payoff to
the focal female is

R A el 4 2
E[piq] q+1—q’ @
which is linear in p (focal strategy), but not in ¢ (population mean). The game here cannot
be thought of in terms of individual contests, but it is a game against the population as a
whole. This is called a playing the field game, or a population game [3,15,16]. We note that
such games also satisfy polymorphic-monomorphic equivalence (see Sect. 2). For examples
of games that do not satisfy polymorphic-monomorphic equivalence, see [3, Chap. 7] and
[19].

In general the payoff to an individual is a function of its strategy and the composition
of the population. We write the payoff to an individual playing p within a population IT as
& [p; l'[]. A monomorphic population all playing q is indicated by IT = §q, whereas if the
population is polymorphic with the proportion playing q; being «;, we write IT = >, a; 8.



1.3 Games with Distinct Roles

In the above we have considered populations with indistinguishable individuals. What if
individuals can be distinguished? Maynard Smith and Parker [13] identified two main types
of difference between individuals: correlated asymmetries, where there is some real difference
between them, and uncorrelated asymmetries where individuals are effectively identical, but
can be distinguished by the role they occupy, for example territory owner or intruder.

We will mainly consider uncorrelated asymmetries. The classical Owner-Intruder game
involves a territory owner meeting an intruder. Each individual chooses Hawk or Dove, and
the usual contest as described above occurs. Here an individual can be an owner or an intruder
in different contests (it is assumed to occupy each role with probability 0.5), and can choose
its strategy conditional on which role it occupies. This yields results of different character to
the original game, where mixed strategies now do not occur. In fact for this class of game it
was shown in [18] that mixed strategies are impossible, Selten’s classic Theorem (see Sect. 3,
and also 3, p.142).

The owner intruder game is an example of a bi-matrix game: a two role game where
payoffs are determined by a set of independent contests between a focal individual using
strategy (p1, p2) (i.e. a strategy p; as an owner and p; as an intruder) and a randomly
selected opponent using a strategy (q1, q2). The payoff to the focal individual is given by

E[p1, p2); (a1, @2)] = %81 [p1; q2] + %52 [p2: q1]. 3

where
& [p1; az] = p14q], C)
&2 [p2; a1] = p2Bq]. (5)

The evolution of such populations can be analysed using replicator dynamics [17], [10],
(but see [1]). Here, rather than each individual being able to switch roles, we must consider
individuals which are permanently in one (given) role, and the composition of the population
of each role through time is dynamically changing. We might think of the roles being male
and female, for example.

Although, for the sake of simplicity, our formulations suggest our focus on static games,
the content can be readily adapted to dynamic games such as parental care games [11], in
which individuals pass between different states according to their sex and the strategy they
use, or food-stealing games, e.g. {5], where individuals can be a food handler or challenger,
and the probability of occupying each role depends upon their strategy within contests.

2 Definitions

We consider a population where individuals can occupy more than one role, in this case two.
We assume that every game involves precisely one individual in each role (for example, an
owner and an intruder). We note that it would be possible to consider a wider class of games
which are not based upon pairwise interactions as a full generalisation of playing the field
games. However, the problem as considered is still complex, possesses some useful structural
features, and is the natural extension from classical asymmetric games. A population is
represented by a measure on the strategy space. We can view a given population IT as a pair
(T1y, ITy), where TI, represents the population structure (i.e. the distribution of strategies) of
individuals in role r.



2.1 Strategies and Payoffs

We shall denote £ [pi; IT2] as the payoff to the focal individual in role 1 when using
strategy p1 when it is effectively playing in a population of “role 2 players” described by
Iy, which happens with probability o1 ((p1, p2), IT). Similarly we shall use & [pz; ITi]
as the corresponding payoff in role 2. Our player must be in one of the two roles, and so

p2((P1, p2). T) = 1 — py((p1, p2), I0).

Definition 1 We define € [(p1, p2); T, the payoff to a strategy (p1, p2) in a population
IT = (I1y, Iz), by ‘

€ [(P1, p2); TT] = o1 ((p1, P2), TT) &1 [Pt 2] + o2 ((p1, p2), )&z [p2; TI]. (6)

Later we shall consider populations that consist of two distinct classes of individuals,
where the interaction of strategies and roles may be different for each class. For example, at
its simplest, females and males, where females are always in role 1 and males are always in
role 2. In such a case we define the probability of a class & individual being in role 1 when
faced by an individual of class / in role 2 by p1x ((p1, p2), ).

Definition 2 A strategy (p1, p2) is an Evolutionarily Stable Strategy (ESS) of the game if
for every other strategy (q, qz) there exists &, > 0 such that for all £ € (0, &)

E[(p1, p2); ] > € [(q1. q2); 1], )
where IT = (1 — £)8(p,,p,) + €8(q1.q2)-

2.2 Strategies and Roles

Definition 3 We will say that a game is strategy-role independent if the probability of an
individual occupying a particular role does not depend upon their chosen strategy, i.e. if the
function o1 ((p1, p2), 1), and s0 p2 ((p1, p2), T1), does not depend on an individual’s strategy

(p1, P2).

Definition 4 We can say that a game is population-role independent if p; ((p - P2), I'I) does
not depend on IT.

Lemma 1 When there is only one class of individual, the concepts of strategy-role indepen-
dence and population-role independence are equivalent.

Proof Assume that o does not depend on the population. Because every game involves
precisely one individual in each role, half of the population is in role 1 and the other half in
role 2. Thus p1 (p, 8p) = 1/2 for every p, and for any population IT and any pair of strategies
p and q,

1
o1(p. I) = p1(p, &p) = 3 =0 (4, 8¢) = p1(q, I1). &)

Conversely, when the game is strategy-role independent and there is just one class of indi-
vidual, then (in any population) any individual must have a probability of exactly 1/2 to be
in role 1. Consequently, o does not depend on the population. m

Strategy-role independence means that the payoff in Equation (6) to a strategy (py, p2)-
player in a population IT = (I1y, I1,), becomes

1 1
E[pLp); ] = 551 [pi; 2] + 552 [p2; 1], &)



Lemma 1 should be contrasted with games when individuals can be different as we see in
Sect. 5, Example 5.

Note, that in a population IT = >, @;8(g,,.q,1)- the population of individuals in role 2 can
in general be described by

My =" Biady,, (10)

where

@02 (i1, gi2), IT)

= 2 %o ((aj1,q2), ) S
Similarly, we have
M= Bidg,, (12)
i
where
Bl = @01 ((qi1, q:2), 1) (13)

> ((@1,q52), T)°

Note that in the case with identical individuals and strategy-role independence, p = 1/2
and thus 8; = «; for all ;.

2.3 Monomorphic and Polymorphic Populations

Definition 5§ In a population without roles, we say that a game has polymorphic—
monomorphic equivalence if for every strategy p, for any finite collection of strategies (q;}7,
and for any corresponding collection of m constants o; > 0 such that Z:" o; = 1 we have

£ [p; Za,-aq,] —c [p; ) a,.q,.]. (14)

We note that polymorphic-monomorphic equivalence holds only in respect of the static
notion of ESSs, and there is no such equivalence in terms of dynarmnics, since any dynamics
depends directly on the specific combination of strategies within the population.

Definition 6 We say that an asymmetric game has polymorphic—monomorphic equiva-
lence if individuals cannot distinguish between a polymorphic mixture D i8(qi.qi) and a
monomorphic population § (3 @i, Y, a;q;2) - SO that the total payoff, as well as the probability
of being in role 1, are the same in both populations, for all individuals.

Specifically, a game has polymorphic-monomorphic equivalence if for every (p;, p2), any
finite collection of strategies {q;1, 92} | and any corresponding collection of m constants
o; > 0 such that 02 | &; = 1, we have

£ [(pl,pzx Z“is(qn,q.‘z)ZI =£[(01, 225 5(x, a3, aiQ.‘z)] (15)

and

e1{((p1, p2), Zai5(q,1,q,z)) = p1((p1, P2). 35, wan, S, i) (16)

[4



For example, if the game has polymorphic-monomorphic equivalence and the population
is given by IT = (1 — €)8(p,,p,) + £8(q,.qz)- then an individual in role 1 will effectively
play against a population described by Iy = (1 — £)8p, + &£8q, . Note that this concept first
appeared in 3, p.143], but that there only the condition (15) was stipulated (and for the cases
considered the condition (16) was satisfied). However, if (16) does not hold, the probability
of an individual being in role 1 would depend on whether the individual is in a polymorphic or
in a monomorphic population and hence the two populations would not be truly equivalent.

Definition 7 A game has polymorphic-monomorphic equivalence within roles if individ-
uals already in role 1 (or 2) cannot distinguish between polymorphic and monomorphic
populations. Thus whenever Il = >"; @;8(q;,,q;) and IT' = 85, a:(qir,qiz)> then

& [p; M2] = & [p1; 3], amn

& [p2; 1] = & [p2; 1] (18)

Explicitly, a game has polymorphic-monomorphic equivalence within roles if for every

strategy (p1, p2), every m-tuple of strategies (q;7, Qi2)7_, and scalars ()7L, suchthate; > 0
and »°; o; = 1 we have

£ [m; > Biodas | =& [pri by, gz (19)

whenever p ((Pl, p2). Z[ aia(q:'l-‘liZ)) #0orp ((pl’ P2), 82,' di(ﬂil.Qiz)) # 0, and

& l:pz; Z,BilaqHJ =& [P2§ DY ﬂnqn] 20)

whenever p; ((plv p2), Zi O‘i‘s(q“.q,’z)) # Oor PZ((PI, p2), 52,- ai(qil.fliz)) # 0, where the
Bij are defined as in (11) and (13).

3 General Results

The following classical theorem was introduced and proved in [18]. It was reformulated to
be consistent with the more general (in some ways, but not others) terminology of this paper
in [3]. The proof given below comes from [3, p-143], and we show it here for completeness.

Theorem 1 Assume that the population satisfies strategy-role independence, and that the
payoff functions & [pl; l'[z] and & [pz; I 1] are linear on the left, i.e. that there are functions

(f1)it s (fai)i2, such that

& [pi; 2] = Z P f1 (), 21
i=1

& [p2: ] = ZPZifZi(Hl)- (22)
i=1

Then (p1, p2) can be an ESS only if p| and p, are pure strategies.
Proof Let (p1, p2) be given and let iy be such that
J1ig (Op,) = miax{fli(apz)}- (23)



Now, assume that p; is not a pure strategy, in particular it is not the pure strategy Sj,. Since
(p1, p2) is an ESS, it has to resist invasion by (S;,, pz) which by (7) means that

£[(p1, p2); TI] > £ [(Sip, p2); T] (24)
where IT = (1 — £)8(p, py) + €5 Sip.p2)- Inequality (24) is, by (9), equivalent to

& [pl; 5P2] > & [Sio; ‘spz] . 25)

However, the last inequality is not possible since otherwise we would have the following
E1[Sios 8p2] = frin(Bpy) = Z P1i flig (Opy) (26)
> " pui fii(Bp,) = &1 [p1; 8, | 27)

i

> &) [Sio; 3p2] . (28)
Thus p; must be pure for (p,, pz) to be an ESS. A similar argument holds for p;. Thus the
only possible ESSs are pure. m]

This is an important result, since it suggests that the mixed strategies commonplace in
evolutionary games such as the Hawk-Dove game are in fact not possible whenever animals
can distinguish themselves in some way. No two animals are identical, so it suggests that
mixtures are rare and pure solutions (or no ESSs at all) are commonplace. However, strategy-
role independence is needed for the proof to work. What if this condition is not satisfied? We
shall explore this question later, see Sect. 4, Example 2.

Theorem 2 If the game has polymorphic—-monomorphic equivalence, then it has
polymorphic—monomorphic equivalence within roles.

Proof Letus fix a strategy (p1, p2), an m-tuple of strategies (q;;, q;2)]; and scalars (a;)/L |
suchthato; > 0and >, = 1. Let IT = 3, o 8(q;;,q,2) and let [T = 83, w3 aiqin)*
We have to prove that

& I:pﬁ Zﬂﬂ‘sfhz} =¢&1 [pl; ‘SZ,- ﬁizlhz] (29)

whenever o1 ((p1, p2), IT) # 0 or p1((p1, p2), ")) # 0, and the analogous equality for
&, where f;1 and §; are given by (13) and (11). The game has polymorphic—monomorphic
equivalence and thus, by (16), the coefficients 8;; do not depend on whether they are calculated
in population IT or I1’. Also, let us denote

p1 = p1((p1, p2). ) = p1((p1, p2), TT'). (30)
Firstly suppose that we fix q;; = q for all {. We then have
o1€1 l:l)l; Zﬁiztsqizjl = E[(p1,p2); TI] — (1 — p1)& I:pz; Zﬁilaql} (1)
i i
= E[(p1, p2); '] — (1 — p1)&2 [P2; 8, ] (32)
=&[@Lps V] - (- o0& [p2ids, pa) ] 63

= p1éi l:Pli 52; ﬂiZsz] ’ G4



Similarly, fixing a strategy q, and proceeding as above would give an equivalent equation
for role 2 payoffs, and together these give polymorphic—-monomorphic equivalence within
roles. a

Theorem 3 If a game is strategy-role independent, then the game has polymorphic—
monomorphic equivalence if and only if it has polymorphic—monomorphic equivalence within
roles.

Proof If the game has polymorphic-monomorphic equivalence, it has polymorphic—
monomorphic equivalence within roles by Theorem 2. Now, assume that the game has
polymorphic—monomorphic equivalence within roles and is strategy-role independent. Then

1 1
£lp; E a:8¢qii.q) | = €1 | P1s E aidq;; | + &2 | P2; -2- idq; (35)
i s 2 i 2 i

1 1
= 361 [P1i 05, cvan | + 52 [P21 5. w0 (36)
=£ [p; 52 ai(‘]il1'~li2)] . €2
Thus we have polymorphic—-monomorphic equivalence. O

Thus when we have strategy-role independence, whether monomorphic and polymorphic
populations are equivalent reduces to considering this comparison separately within roles.
This equivalence is very useful for analysis, and only having to consider our focal individual
in the separate roles independently simplifies significantly the task of ascertaining if the
polymorphic-monomorphic equivalence condition holds.

4 Population Properties and Examples

Consider a population of identical individuals playing a game with two roles as previ-
ously described. A population may or may not satisfy the properties of strategy-role inde-
pendence, polymorphic—monomorphic equivalence and polymorphic-monomorphic equiv-
alence within roles. There are eight potential combinations of such properties, but which
combinations can occur, and which cannot? We explore this in the current section. Qur
results are summarised in Table 1. In what follows, we will use a shorthand notation; for
example “the game is SR N, PM N, PMR Y” which will mean that the game does not satisfy
the properties of strategy-role independence (SR), and polymorphic-monomorphic equiva-
lence (PM), but satisfies the property of polymorphic—monomorphic equivalence within roles
(PMR).

Example 1 (Owner-Intruder game with strategy-role independence) Consider a contest over
a territory between an owner and an intruder, based upon the Hawk-Dove game. In each role
an individual can play either Hawk or Dove, leading to the following pure strategies [12].

Hawk — play Hawk when both owner and intruder,
Dove — play Dove when both owner and intruder,
Bourgeois — play Hawk when owner and Dove when intruder,
Marauder — play Dove when owner and Hawk when intruder.

The term “Marauder” was used for this type of behaviour in [4] and [3]. Maynard Smith [12]
simply called it “Strategy X”.



In the original game with pairs of individuals meeting at random with each occupying the
owner role with probability 1/2 (i.e. with strategy-role independence) if V > C then Hawk
is the unique ESS, and if V < C then there are two pure ESSs, Bourgeois and Marauder, see
for example [3, Sect. 8.3]. Thus we can see that Theorem 1 is satisfied for this game.

It is clear that the original game satisfies all three properties, which we denote by SRY,
PMY,PMRY.

From Theorem 2 we know that polymorphic-monomorphic equivalence implies
polymorphic-monomorphic equivalence within roles, so that neither SR Y, PM Y, PMR
N nor SRN, PM Y, PMR N can hold. ‘

From Theorem 3 we know that the conditions for polymorphic—monomorphic equivalence
and polymorphic—-monomorphic equivalence within roles are identical under strategy-role
independence, and so we cannot have SR Y, PM N, PMR Y.

Example 2 (Owner-Intruder game without strategy-role independence) Now consider a pop-
ulation consisting only of Hawks (play Hawk with probability 1 in eitherrole, which we denote
by (1, 1)) and Bourgeois (play Hawk with probability 1 if owner and with probability O if
intruder, denoted by (1,0)) individuals, which has contested some territories for some time,
with repeated fights (see [3], p.150). After a contest, the winner of a Hawk-Dove contest will
be an owner, and the loser will be an intruder. If the proportion of Hawks is q,thenifg > 0.5
then all Bourgeois will be intruders, and similarly if ¢ < 0.5 all Hawks will be owners. The
role probabilities are thus

1, ¢q <05

0.5—¢q 0.5:
1,0,g)={ ¢ 957 39
0((1,0),9) [0, 2>05 (39

When g > 0.5 the conditional probability of facing a Hawk when in role 1 is (g —0.5)/0.5
(and we can similarly find other conditional probabilities) and so we have the following
payoffs, see [3, p.150],

05(V—-Cq—-05 _1l-¢g O.S)V—C
e[, ;0] == 1 I-—)—— «o
[ s ] q( 2 05 0.5)+( q 2 “0
V—-C 1—-qV+C
= , 41
st 7 > “41
£[(1,0); 1] = 0. (42)

It is shown in [3, Sect. 8.3] that there is a unique ESS for V < C atg = (V + C)/(20).
Note that this mixed ESS can occur because the assumptions of Selten’s Theorem 1 are vio-
lated, because we do not have strategy-role independence. Clearly we do have polymorphic—
monomorphic equivalence within roles, but we do not have polymorphic—monomorphic
equivalence since the role probabilities of playing against a population comprising of half
Hawks and half Bourgeois are clearly different from playing against a population of the
monomorphic equivalent strategy (1, 0.5). This game is thus of type SR N, PM N, PMR Y.

Example 3 Now consider a game with two pure strategies available in each role, where the
payoffs are governed by the variance of the population strategy within each role. Specifically,



Table 1 The abbreviations SR, PM and PMR refer to the properties of strategy-role independence,
polymorphic-monomorphic  equivalence and polymorphic-monomorphic equivalence within roles,
respectively

SR PM PMR Possible combination
Y Y Y Yes (Example 1)

Y Y N No (Theorem 2)

Y N Y No (Theorem 3)

Y N N Yes (Example 3a)

N Y Y Yes (Example 4)

N Y N No (Theorem 2)

N N Y Yes (Example 2)

N N N Yes (Example 3b)

Games may or may not have any of these three properties, giving eight potential combinations. The table
shows whether or not each of these combinations is actually possible or not, and indicates the result which
demonstrates this in each case

we assume that:

-
& lpi Y. ﬂiz&,,-zl
L

= Bilaz — @) @3)

&1 | P2 D Bitdg =D Bilgin — q)%, (44)

where g;; is the probability of the ith type playing pure strategy 1 in role j, and ¢, =
> Bijqij- A potential scenario is if strategies represent genes with each role corresponding
to a different locus, so that one set of genes contributes to fitness on some occasions, and
the other contributing on the other occasions. Fisher’s Fundamental Theorem of Natural
Selection [7] states that the increase in fitness of an organism is proportional to its genetic
variance, and in our population fitness can similarly depend upon the variance of the terms
in each role.

Clearly all monomorphic populations yield a payoff of zero, and all polymorphic ones
yield positive payoffs. Thus there is neither polymorphic-monomorphic equivalence nor
polymorphic-monomorphic equivalence within roles. We can select the role probabilities as
we like; in particular choosing them either to be always 1/2, or to be (suitable) functions of the
strategies p; and p>. Thus from this example we can have either SR Y, PM N, PMR N (role
probability always equal to 1/2, Example 3a) or SR N, PM N, PMR N (role probabilities
vary, Example 3b).

For a population to satisfy polymorphic-monomorphic equivalence but not strategy-role
independence we require that the probability of playing in role 1 depends on the population
strategy only through the mean values q; = 3, o;q;; and g2 = ; @;q;2. Thus the role
probabilities in any polymorphic population are the same as the equivalent monomorphic
one, so they only depend upon the population through the mean, and can be written in the
form py ((pl, P2), (q1, qz)). Note that the means here written as q ; are different in form to
the earlier ones in Example 3. They are unconditional mean strategies, as opposed to those
above in Example 3 which are conditional on individuals being in a particular role.



Example 4 Consider a population where there are only two pure strategies within each role,
and p; and p; are the probabilities of choosing strategy 1 in role 1 and role 2, respectively.
Assume that the role probabilities depend only upon the mean strategies as above, and are
given by

2+(pi—q) — (P2 —q)
3 .
It should be noted that the expected value of p; over any population is 1/2, which is necessary

for the function defined in (45) to be allowable (i.e. that it is possible to construct a game
with these role probabilities). Further note that, by (13),

(45)

p1((P1,P2), (@1, @) =

@i (2+ (qi1 — q1) — (qi2 — q2)) /4

Bir = 22+ (g —q) — (42— q2)/4 i
- a.2+ (gi1 —q0) ~ (g2 — q2)
t 2 .

Similarly we obtain

2+ (qi2 — q2) — (gi1 — qU)

Biz = ai > 47
We shall define the payoffs to a p;-player in role i to simply be p;q3—;, which gives
€ l:(pl’ P2); Zaia(qil‘q,‘z):l
i
2+ (p1—q0) — (P2 — q2) 2—(p1—q1)+(p2—q2)
- r—q0—(—@ + poay pPL—q P2=42) g

4 4

The population satisfies polymorphic—monomorphic equivalence (and thus polymorphic—
monomorphic equivalence within roles) but not strategy-role independence. Thus we have
SRN,PMY,PMRY.

5 Distinct Classes of Individuals

There are many ways that individuals can be different, such as size, age, sex and so on. This
might affect either the payoff that an individual receives within a particular role, its probability
of occupying that role or both. Thus, assuming that there are m classes of individuals, in
Equation (6) the payoff to an individual of class & in role 1 or 2 can be denoted by & [p1 ; Hz]
and &y [pg; 1'[1], respectively, and the probability of that individual occupying role i in
contests against an individual of class / can be denoted by o4 ((p1, p2), 1'[). Naturally,

P2t ((P1, P2), TT) = 1 = pyya (1, P2). T0) for all &, /.
In this section we consider only differences in the role probability, assuming that

Elpr; Mz] = Eprlpr; Tal, 49)

forall k,! and &', !’ and all p; and I1; (and similarly for role 2), and look at a small number
of ways in which this difference in role probability can affect our results.

Considering polymorphic-monomorphic equivalences of different types (and there may
be extra different possibilities now we have more than one class, for instance depending upon
whether different classes among the opposing population are considered distinct or not) is a



more complex problem which we shall not discuss here. We define the payoff to an individual
in class k by

Ew [(1-p2); TT] =Z ot (P1,P2). 1) Evap1; 21+ 2k (1, P2). 1) Earalp2; Thi]. (50)
]

There are cases where individual classes and roles are equivalent, so that for instance all
games involve one male and one female, and there is a male role and a female role in such
a game. Recall from Sect. 1 that the dynamic version of bi-matrix games is such a case.
Denoting females as class 1 and males as:class 2, then role probabilities are independent
of strategy and population. We can thus write p;x ((p1 , P2), H) 51mp1y as pji; and we have
pi12 = land p121 = 0. Technically we do notneed to define p111 and p125 here, as individuals
never face another of the same type (although the only logical choice in such a case for the
probabilities would be 1/2).

We can now extend the independence concepts introduced in Sect. 2.2 to the case where
there is more than one class of individuals.

Definition 8 We say thata game is strategy-role independent if the function p1x ((p1, p2), IT),
and so o ((p 1, P2), l'I), does not depend on an individual’s strategy (p{, p2), for all classes

s b

Definition 9 We say that a game is population-role independent if py ((p1, P2), l'I) B
Pkl ((pl, P2). 1'[’) for all classes k, { and all populations IT and I1’ that have the same distri-
bution of individuals over the classes.

Example 5 Consider an Owner-Intruder game with two classes of individuals, old and young.
After each contest, the old individuals do not move so widely about the habitat as the young
ones, and in any contest between an old and a young individual, there is a probability o > 0.5
that the old individual takes the role of the owner. This yields the probabilities p11; = p122 =
1/2, p112 = p, p121 = 1 — p where p;p; stands for a probability of a class & individual in
role i € {1, 2} in a contest against a class / individual in role 3 — i (k,! = 1 for an old
individual, £, / = 2 for a young individual). Thus, we have a game that is strategy-role and
population-role independent (but with o not equal to 0, 1/2 or 1).

Recall that for one class of individual, the two concepts of strategy-role independence and
population-role independence are identical. For two or more roles this is not true, as we see
from the following example.

Example 6 Consider a population consisting of large individuals (class 1) and small indi-
viduals (class 2). Each picks a foraging time fraction, which we shall denote by L and S,
respectively. We shall consider a focal large individual with strategy denoted by [ in a pop-
ulation playing L, similarly a focal small individual with strategy s in a population playing
S. When not foraging, for the remainder of the time they rest. Large individuals find objects
atrate fi (d), small ones f5(d), where d(L, S) is the food density, which decreases with the
population choices L and S. It may, for example, be that fs(d) > f(d) but fs(d)/fL(d)
decreases with d. For simplicity we shall assume that switching between periods of search
and rest are sufficiently fast that we can effectively consider search as following a Markov
process with rate given by the product of their search rate and search probability. When an
object is found, a random searching individual (i.c. one not resting) contests the resource
with probability p, taking the role of Challenger versus an Owner.

Assume that there are Ny, large individuals, and N small ones. We track one large focal
individual using strategy [ and would like to see how often it interacts with a small individual



(and in which role). First, we determine what kind of Owner-Intruder contest the next one will
be. There are SNy searching small individuals, each using strategy S, L(N, — 1) searching
large individuals each using strategy L and one focal large individual using strategy /. The
rate at which these types discover food are SN fs(d), L(Ny — 1) fr(d) and If; (d). Thus,
the focal individual will be the next to discover the object (and become an owner) with
probability

L))
SNsfs(d) + LNy — 1) fu(d) + IfL(d)’

The probability that the randomly drawn opponent (from the ones that are searching) it will
face is a small individual is

SNy
SNg+ L(Ny —1)°
Thus, the probability that the next contest will be [ as an owner versus S as an intruder is
_ 1fL(d) _ SNs
SNsfs(@)+ L(N. — 1) fu(d) +1fL(d) SNs+L(NL~-1)

Similarly, a small individual will be the next to discover the object and become an owner
with probability

pis (51)

SNs fs(d)
SNsfs(d) + L(Ny = 1) f(d) + IfL(d)
The probability that the randomly drawn opponent (from the ones that are searching) it will
face is a focal large individual is

I
S(Ns— 1)+ L(Np — 1)+’
Thus, the probability that the next contest will be S as an owner versus [ as an intruder is

SNs fs(d) l

(52)

P SNs fs@ + LN, — D@ +1fcd) SWs — D+ LW, — D +1
Since our process is Markov, we clearly have
I
o) = —25 . (53)
pis + psi
Thus, when we fix the ratio N1/ Ns and send both N and Ny to oo, we get
1
er2) = m‘ (54)
fi(d)

Similarly we get p121(s) = 1/(1 + fr (d)/fs(d)) and p111() = 1/2, p122(s) = 1/2. Thus,
the role probability does not depend on / or s but does depend on the population (through
d=d(L,S)).

However we do have the following result, which implies that population-role independence
is a stronger concept than strategy-role independence.

Theorem 4 If a game in a population with more than one class is population-role indepen-
dent, then it is also strategy-role independent.



Proof We shall focus on the interaction between an individual in class k¥ and one in class
[. Let p(k) and p’(k) be two alternative strategies of a focal player in class k. Consider a
population IT and let M, denote a population which has the same distribution of individuals
over the classes as TI, and such that individuals in classes k& and / are monomorphic 8p(x) and
8p()- Let My, denote a population where individuals in class k are monomorphic 8y ) and
in class / they are monomorphic 8p ).

Note that

ikt (P(K), Mir) + puc (), M) = 1, (55)
o (p'(k), M) + pu (p(), M) = 1, (56)

because the populations are monomorphic in classes & and /, and for contests between class
k and class [ individuals precisely one of the individuals has to be in role 1.
Assume that the game is population-role independent. Thus,

piit (PR, TT) = pia (), M) = 1 — puk (p(2), Miy) (57

=1- pue(pM), Myy) = p1aa (9 (k), Miy) (58)

= o (p'(k), ), (59)

and hence the game is strategy-role independent. u|

In this section we have thus seen just a few ways in which populations with different classes
of individuals can make analysis more complex, and where the kind of simplifications we
are used to use do not always hold. This is, of course, only the briefest of explorations of this
area.

6 Discussion

In this paper we have investigated asymmetric games, and the consequences of departures
from the classical bi-matrix game format. We are particularly interested in the effects of there
being a correlation between an individual occupying a particular role, and the strategies that
they play when in that role. This seems likely to happen in many real scenarios, such as
the Owner-Intruder example (Example 2) that we discuss. We have seen that, naturally, this
significantly complicates analysis.

Using three concepts, strategy-role independence, polymorphic—monomorphic equiva-
lence and polymorphic—-monomorphic equivalence within roles, we have investigated general
populations of individuals which are identical (except possibly in their strategies). Classical
games generally satisfy all three properties, and we have considered all eight combinations
of the presence or absence of the property in a population. We have shown that polymorphic—
monomorphic equivalence is stronger than polymorphic-monomorphic equivalence within
roles. It is not stronger than strategy-role independence, as we see in Example 4. We have
shown that in general populations can satisfy only five of the eight possible combinations,
giving examples of each type.

We note that the payoff functions of our examples (in particular that from Example 4) are in
some cases very different from the kind that we have so far seen in mainstream evolutionary
games, and so perhaps although we have shown that these are theoretically possible, the
relationship with real populations is still open. The concepts that we discuss here will be
relevant to investigate real populations, and developing more realistic models. For instance,
Kokko and Johnston [11] discuss the concept of the operational sex ratio (the ratio of the
number of males searching for mates to the number of females searching for mates), which is



effectively the sex ratio when mating occurs, as opposed to the adult sex ratio in the population
(the ratio of the number of adult males to the number of adult females). This concept is
of relevance precisely when the usual assumptions of independent contests proportional to
population frequency break down, and is closely linked to that of polymorphic—monomorphic
equivalence.

Finally, populations are not composed of identical individuals, and this will have con-
sequences for analysis. Potentially all individuals could be different, but the simplest case
is clearly two different classes of individuals, and we have briefly looked into this in Sect.
5. Examples are large and small individuals, or males and females. In fact, the classical
replicator dynamics considers two distinct classes, which each correspond to arole (so in our -
terminology would have p values of 1 and 0, respectively). We have seen that a fourth concept
of population role independence (which we show is weaker than strategy-role independence)
is useful, and using examplées we see some new phenomena which cannot occur for the single
class population.

Finally, the investigation of the concepts that we have introduced in this paper, in particular
in the case of multiple types, has only just started. It would be of particular interest to see
how often real populations fail the standard assumptions of evolutionary game theory, and
how they can be related to the concepts that we discuss here.
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