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Fibre Bragg Grating-based system for 2D analysis 
of vibrational modes of a steel propeller blade 

Saeed Javdani, Matthias Fabian, Martin Ams, Member, OSA, John Carlton, Tong Sun, and Kenneth T. V. Grattan 

 
Abstract—This paper reports results obtained using Fibre 

Bragg Grating (FBG)-based sensors to investigate the 
displacement mode shapes of a cantilevered steel propeller 
blade, using FBG arrays for vibration monitoring for the first 
time. The experimental data obtained are cross-compared with 
those from a finite element analysis of the same blade, 
undertaken using proprietary software. In the experimental 
configuration used, a network of gratings, forming a series of 
sensor arrays, was mounted on the blade under study to monitor 
its bending modes, whilst a further set was mounted 
perpendicular to this array to monitor torsional modes. To 
obtain the shape of the strain modes generated in the blade at 
specific frequencies, the dynamic response of the FBG arrays, as 
a function of time, was captured and then processed using 
Fourier Transform algorithms to show the natural frequencies 
of the blade. As a result, the displacement modes shapes for the 
bending, torsional and coupled modes of the first nine natural 
frequencies of the plate were obtained. The experimental data 
show very good agreement with theoretical analysis. This work 
demonstrates the potential of using the lightweight, minimally 
invasive sensing technique described for the analysis of 
propeller blades and thus illustrating an effective method to 
overcome the deleterious effects of propellers seen in some 
commercial propeller designs.  
 

Index Terms—Fibre Bragg Grating (FBG), wavelength shift, 
signal-processing, vibration sensor, mode shape, vibration 
analysis 
 

I. INTRODUCTION 
OPTICAL fibre sensors (OFSs) have been widely 

accepted as a highly effective means of monitoring a range of 
important physical and chemical parameters, in different 
ways. Through their applications in the structural health 
monitoring (SHM) of a range of materials e.g. composites, 
concrete and metals, the field has developed rapidly, with a 
number of in-the-field tests and evaluations on different 
systems having been carried out by some of the authors and 
others [1]–[6]. Amongst those important parameters which 
have been measured are physical parameters such as 
temperature and strain and the ingress of chemical species 
such as pH, moisture and chloride, especially in concrete 
structures. However, the effects of vibration and of a range of 
acoustic frequencies on a structure are important for many 
different types of structures and to date there has been little 
done to exploit the potential of optical fibre sensors for such 
analysis in SHM. In particular, a major advantage of the use 
of optical fibre sensors is that they can be configured along a 
single optical fibre network and thus a number of different 
sensors, all acting as optical transducers but often each for a 
different measure and at a different location, can be 
multiplexed and where required, widely distributed on the 
structure. 
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In addition, optical fibre methods are well suited for use 

in the marine environment due to the inertness of the sensors, 
their resistance to corrosion due to exposure to sea water, and 
their low mass and the lightweight nature of the whole optical 
sensor network. Thus they have been successfully used in 
monitoring marine platforms of various types [7], [8] but 
little has been reported on vibrational analysis of ship related 
structures. Vibration is an interesting and integrity-related 
parameter for marine propellers because small changes in 
their manufacture or deviations from the original design 
configuration can cause unacceptable changes in cavitation 
performance and acoustic emissions. 

To understand this deleterious aspect of the propeller 
performance better, vibration measurement through 
displacement estimation of vibrating bodies (such as a 
propeller) becomes an important issue both in the reduction 
of the vibration of the elastic components of a structure and 
in terms of correlation with numerical analysis methods [9]. 
The direct measurement of displacement is often highly 
complicated, or indeed impossible to make in-situ due to the 
operating condition of a structure; for example making 
measurements on marine propellers when fully operational 
and when they are at sea and underwater. Therefore, indirect 
displacement measurements, for instance involving the 
application of conventional strain gauges, have become a 
favoured, yet essentially flawed, technique in the vibration 
analysis of such structures. Conventional strain gauges are 
relatively bulky and are prone to damage from cavitation and 
breakage, apart from not being well suited to working 
underwater. Thus such an approach is fundamentally 
unsatisfactory. To pave the way for future studies on complex 
propeller blades a rectangular blade was used for the current 
study as a means of proving the technique. 

During the past two decades, the use of OFS-based 
methods for vibration measurements has received greater 
attention amongst scientists and engineers. Optical fibre 
sensors for vibration measurements can generally be 
categorized into three major groups namely: Intensity Based 
Sensors (IBS), Fibre Bragg Gratings (FBGs), and Fabry-Perot 
Interferometer (FPI) [10]. To make the measurements 
required in a simple and minimally-intrusive way, in this 
paper FBG-based methods were selected as being the most 
appropriate and thus a network of such FBG-based sensors 
was designed, configured and used to measure the frequency 
range of vibration of a model (for ease of analysis in the 
laboratory) propeller blade, ultimately to allow for plans for 
measurements on actual full-scale propellers to be made. 
Modal shapes of the vibration of this blade were determined 
by monitoring the vibration signal (corresponding to 
wavelength shifts of the FBG-based sensor network in the 
time-domain) in order to obtain the natural frequencies of the 
plate using a Fast Fourier Transform analysis. To support the 
experimental study, a comparison was made of the results of 
experiments with those of the finite element analysis of the 
structure with a close agreement seen, as is discussed. This 
approach builds on work done in SHM of other structures but 
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extends it in a new direction to achieve novel performance 
characteristics of an important marine structure using a large 
FBG-based sensor network. 
 

II. THEORETICAL BACKGROUND 
 

The key, desired outcome of the work described has been 
to determine the deflection mode shapes of a propeller related 
structure by using the displacement/vibration data obtained 
from a strategically placed optical fibre Bragg grating-based 
measurement system. An accurate knowledge of modal 
properties of the structure under consideration is important, 
as emphasised, for example, by Pisoni et al. [9]. Different 
methods have been discussed in the literature for 
reconstructing the deformation mode shapes of a structure 
such as that considered. For example, Kang et al. [11] 
suggested that the bending modes of a cantilever beam could 
be obtained using the following relationship 
 

{d} = [ФN]T([ψN]T[ψN])-1 [ψN]T{s}         (1) 

where {d}, [ФN], [ψN] and {s} represent the displacement, the 
displacement mode shapes, the strain mode shapes and strain 
respectively. Although this approach can be used as a general 
solution to strain-displacement transformation relationship 
even for coupled modes, it requires information on the 
displacement mode shapes, which sometimes can be quite 
complicated to achieve. Existing literature looking at the 
subject in a simplistic way takes an approach mainly based 
on uncoupled vibration modes, where essentially only pure 
bending is considered as there is still lack of theoretical 
information in strain-displacement relationship, particularly 
in the case of torsional vibration and strain data. 

Much has been written on the strain-displacement 
relationship in pure bending vibration analysis. For example, 
Foss and Haugse [12], Bogert et al. [13] and Chuang et. al. 
[14], suggested the concept of a modal transformation 
algorithm to recover deformations from strains and structural 
modal characteristics. Pisoni et al. [9] presented a similar 
procedure for the determination of displacements at any 
given point in a vibrating body by using two strain gauges. 
Davis et al. [5] reconstructed vertical deflections of simple 
beam models using Fibre Bragg Grating (FBG) sensor signals 
and using the relationship between the strain and the 
deflection. Thus the data obtained from the finite element 
analysis carried out could be made directly comparable with 
those from the optical sensors used, due to their low mass and 
minimal interference with the shape and configuration of the 
structure. 

For the purpose of this study, to reconstruct the 
displacement mode shapes, a curve fitting procedure outlined 
by Yau et al. [15] was used. In this analysis, in order to 
calculate the modes shapes, it was assumed that the plate has 
a small deflection and therefore the relationship between the 
strain and deflection in the bending modes could be described 
by the following curvature function [16] 

       = - 
         = 

                         (2) 

where      is the curvature at location   on the surface of the 
plate and      and      are strain amplitude and vertical 

position at  location   respectively.      is the deflection at 
location  . Therefore integrating the above formula twice will 
provide a relationship for the deflection at each FBG location 
for the various modal shapes. A zero displacement boundary 
condition was considered at the clamped end of the plate and 
in order to solve the 4th or 5th degree polynomial functions 
of deflection and to find the nodal position, Roark’s formula 
for a cantilevered beam was used [17] 
         √                                   (3) 

where    is the natural frequency (Hz),    is a constant 
where   refers to the mode of vibration,   is gravitational 
acceleration (units consistent with length dimension),   is the 
modulus of elasticity and   is area moment of inertia.   and   
are uniform load per unit length (including beam weight) and 
beam length respectively. 

In torsional motions (which are additional to out of plane 
expansions) there is a twisting angle along the nodal line. 
Figure 1 shows two elements of a plate undergoing a twisting 
motion (θ, the twist angle) along the z axis. Therefore, in 
mode shape extraction, this angle also has to be considered. 
An estimation of this angle can be obtained from the strain 
values monitored along the x axis. In order to find the 
direction of bending when the structure is in flexural or 
torsional vibration, the wavelength shift at each FBG was 
determined. If there is a compression at the FBG location, the 
wavelength blue-shifts (i.e. the wavelength decreases) and 
similarly if there is an expansion at the FBG location, the 
wavelength red-shifts (i.e. the wavelength increases). 
 

 
 
Fig. 1. Two elements of a plate undergone a twisting motion (θ, 
twist angle) along z axis 
 

Most of the previous works in the area of strain-
displacement relationship, particularly using FBG sensors, 
has been limited to the analysis of cantilevered beam type 
geometries in a single dimension. The present work provides 
more detailed information on the deformation mode shapes, 
i.e. taking a two-dimensional approach, as well as providing 
information on the direction of bending not only in the 
flexural modes, but also in the torsional and coupled modes.   

 
III. EXPERIMENTAL ASPECTS 

 
It is well-known in vibration analysis that the vibrational 

modes of a structure, beyond the fundamental and first 
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torsional and flexural modes, are extremely complex. This 
complexity, in the case of marine propellers, seems likely to 
arise from a variety of causes such as a non-symmetrical 
outline of the blade, the variable thickness and camber 
distribution both chordally and radially, and the twist of the 
blade caused by changes in the radial distribution of the pitch 
angle. Immersion of a propeller in water also causes a 
reduction in the modal frequency and to a lesser extent 
changes the mode shapes compared with the corresponding 
characteristics in air. Thus, in order to understand better how 
blade vibration can be a problem, a symmetrical flat blade in 
air is first examined, so that many of the practical 
complexities are eliminated, to allow an initial and simplified 
consideration of the problem [18]. It is a common practice in 
marine engineering to simplify the propeller blades geometry 
since the fundamental modes are similar with respect to their 
shapes in the case of a simple geometry and a complex 
propeller blade. 

To do so, a series of pilot experiments was performed in 
the laboratory with a flat-plate blade as a basis to understand 
both vibration behaviour in terms of the modal response and 
the frequencies generated and its relationship with the 
vibration/displacement values measured by the use of a series 
of FBG sensors. In this experimental arrangement, a flat steel 
plate of size 7 x 7 inches (178 x 178 mm) and thickness of 
0.073 inches (1.85 mm) was manufactured and cantilevered 
at one end of its axis to a vibration-less table by three G-
clamps. The modes of vibration in air were excited by 
bowing on the centre-line, with a small hammer, close to the 
root of the blade (Fig.2a) and in order to capture the 
vibrational frequency range, an optical FBG sensor network 
of the type discussed earlier was used.  
 

(a)                                                  (b)                                          

 
 

Fig. 2. Schematic of the instrumented model steel plate as used for 
the optical sensor vibrational analysis using a fibre Bragg grating 
grid (a: top side, b: bottom side). Location P shows the excitation 
point on the plate. 

 
 

The FBGs used as the sensor elements were as follows. 
Type I FBGs (of 6 mm length) were fabricated using the 
conventional zero-order nulled diffraction phase mask 
technique [19]. To do so, 248 nm laser pulses (12 mJ at 300 
Hz) from an ATLEX-300-SI excimer laser were focussed via 
a 20 mm focal length plano-cylindrical lens through a series 
of commercially available phase masks (Oe-land, QPS) into 
the core of a photosensitive fibre (Fibercore PS1250). Five 
FBGs at wavelengths between 1525 nm and 1565 nm were 
chosen to ensure that there was no spectral overlap even 
when each sensor responds to its maximum range. These 
gratings were respectively written into four optical fibres, 

each of length 300 mm, and were fixed to the blade surface 
by means of a two component adhesive. The blade 
dimensions as well as the specific sensor locations on the 
blade surface are shown in Fig. 2. 
 

The dynamic Bragg wavelength shifts of each FBG in the 
FBG network, caused by the vibrations detected, were 
captured simultaneously using a Micron Optics SM130-700 
sensing interrogator unit, at a sampling rate of 2000 Hz. All 
the DC components were then removed from the transient 
signals before a Fast Fourier Transform (FFT) algorithm was 
applied to extract the frequency components from each of the 
sensor data sets, with the maximum detectable vibration 
frequency being 1000 Hz (half the sampling rate). In order to 
determine the strongest spectral features for all frequencies in 
the FFT spectra the sampling interval was chosen to be 0.625 
s. Longer sampling intervals were found to result in lower 
amplitudes for the higher frequencies as they typically 
dampen faster than low frequency vibrations. The frequency 
resolution, Δf, of the FFT spectra depends on the sampling 
frequency, fs, and the number of sample values N taken (Δf = 
fs/N), where N is a product of the sampling frequency and the 
sampling interval ts. Thus, Δf = 1/ts = 1.6 Hz for the chosen 
sampling interval of 0.625 s. A band-pass filtering approach 
was also applied to track the relative wavelength shifts of 
each FBG at their natural frequencies to obtain the strain 
mode shape of the plate at that specific frequency. For each 
of the detected frequency components, the amplitudes and 
relative wavelength shifts at the different sensor locations 
were then used to plot the deflection charts (mode maps) of 
the steel blade. 

In order to be able to compare accurately the results from 
the optical sensors with those obtained from an analysis of 
the vibrational modes of the plate, a finite element analysis 
was undertaken using the commercially available ANSYS FE 
software. The modal analysis function from the software was 
used and a solution was obtained when the deflection results 
converged as the mesh density increased. 
 

IV. RESULTS AND DISCUSSION 
 

Examples of typical time domain plots captured during 
vibration tests from the five FBGs along one fibre are shown 
in Fig. 3(a). The corresponding FFT spectra of these transient 
signals are shown in Fig. 3(b). Firstly, it was observed that 
the positioning of the FBG sensors along the plate directly 
affects their responsiveness to the vibrational modes of the 
plate and, as expected, it was noted that the captured signal 
for each FBG depends on the location of the sensor. This can 
be seen, for example, in Fig 3(b) where FBG1 which was 
close to the root of the plate and was sensitive to the low 
fundamental frequency while FBG5 on the same fibre was 
more sensitive to higher modes of vibration. Secondly, a 
number of tests conducted on the plate showed that not only 
did the amplitudes of the individual FFT features depend on 
the location at which the plate was being excited, but also in 
some of the tests it was noted that the higher natural 
frequencies were appearing in the output signal only if the 
plate was excited at specific locations. Therefore a number of 
tests were carried out to find the best location at which to 
excite the plate. This location (P) is shown in Figure 2 (a). 

The vibration frequencies captured by the optical sensors 
were compared to the data obtained from the finite element  
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 (a)                                                                                                        (b) 

  
Fig. 3. (a) Example time domain signal of 5 FBGs along the same fibre. (b) Corresponding FFT  spectra of the transient signal shown in (a) 
 
 

TABLE 1 
SIMULATED AND EXCREMENTALLY OBTAINED NATURAL FREQUENCIES OF THE MODEL STEEL PLATE. 

 

 
 

 
model created using the ANSYS software, for a series of 
vibrational nodes of the steel plate (Table 1). The results 
shown are in excellent agreement for the first 9 natural 
frequencies of the plate. This outcome confirms that the optical 
FBG sensor network is able to provide valuable data over a 
wide frequency range and at multiple positions which cannot 
readily be achieved with conventional sensors. 
 

 
 
Fig. 4. Band-pass filtered transient of Fig. 3(a), showing as an 
example the bending mode at around 860 Hz in the time domain. 
 

With the effective magnitudes of vibration and frequency at 
each location known (from the FFT feature amplitudes), the 
direction of bending at any given point in time could then be 
obtained from the transient data by band-pass filtering the time 

domain signals and extracting only a single frequency 
component. Figure 4 shows as an exemplar, the magnified 
section of a software based band-pass filtered transient of the 
first five gratings (Fig. 2, FBG1-5) showing the second 
bending mode at a frequency of approximately 860 Hz 
(Butterworth, cut-off frequencies: 850..870 Hz, grade: 2). A 
wavelength red-shift indicates grating expansion (increased 
strain, downward bend, negative curvature) and a blue-shift 
grating compression (reduced strain, upward bend, positive 
curvature). Thus, for any given point in the data set, the 
direction of the bending can be obtained with regard to the 
sensor location when the fitted signals are in phase.  

Figure 5 shows the effect of combining the effective 
vibration magnitude and the direction of bending (the values of 
the dotted line in Fig. 4) of the same bending mode at 860 Hz, 
plotted against the locations of the grating sensors, FBG1-5. As 
illustrated in Fig. 4, a positive magnitude measured at FBG 1 
and 2 represents a negative curvature (expansion) at the 
locations of these two grating sensors and the negative 
magnitude of FBG 3-5 indicates a positive curvature 
(compression) at their corresponding locations. Considering 
Equation 2, the longitudinal strain      is inversely 
proportional to radius of curvature at location x and the sign of 
y(x) and of ρ(x) govern the sign of     .  These considerations 
reveal the strain profile along the corresponding axis of the 
blade (dashed line in Fig. 5) from which can be inferred the 
displacement or deformation profile (shown as a solid line), by 
applying the zero displacement boundary condition at the 
clamped end of the plate,  as explained in Section II.  
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Fig. 5. Fitted curve to the strain data (dashed line); Strain data 
governing equation for curve (circles); Deflection curvature (solid 
line) 
 
 

In order to create pure torsional modes (column 2, 4 and 8 
in Fig. 6) the wavelength shifts of the bottom layer sensors in 
Fig. 2(b) were used to determine the strain magnitude and 
direction of bending along the x-axis which was monitored. 
The curvature at the location of each sensor in torsional modes 
represents the angle of twist, θ, (see Fig. 1) along the z axis. In 
the case of the coupled modes, i.e., columns 5, 6 and 9 in Fig. 
6, the strain values of the top and bottom layer sensors were 
combined to obtain the deformation mode shapes.  

Finally, an interpolation of the deformation data obtained 
from all the sensors and their corresponding frequencies enable 
the 2D displacement mode shapes shown in Fig 6 to be created. 
Here the excellent agreement between the experimental results 
obtained and the results of the simulation can be seen. The top 
row in Fig. 6 shows the simulated deformation mode shapes of 
the first nine natural frequencies of the model steel blade used 
in this work. The bottom row shows the experimentally 
obtained mode shapes at the same frequencies. 

Column 1 in Fig.6 shows the fundamental mode shape of 
the plate, with zero deformation at the root and maximum out 
of plane deformation at the tip. This mode appears in all 
 
 

  
Fig. 6. The first 9 simulated (top row) and experimentally obtained (bottom row) displacement mode shapes of the model steel 
plate. Dark lines (nodal lines) in each mode shape represent zero deformation. Between these lines and from these lines towards 
the edges, out of plane deformation increases. Each figure represents the entire plate with the x-axis (clamped base) being the 
clamped base and y-axis (plate edge) pointing towards the tip of the plate. 

 
cantilevered structures like marine propeller blades as the first 
mode of vibration. Columns 3 and 7 show the first and second 
flexural modes where the dark lines (nodal lines) show zero 
deformation and on the sides of these lines the plate deforms 
out of the plane (x,y plane) in opposite directions. This can 
also be seen in Figure 5 (solid line) along an array of sensors 
where the nodal points (with zero deformation) are seen as 
appearing somewhere between FBG 2 and 3 and at FBG 4. 

Column 2 shows the first torsional mode, with zero 
deformation along the centreline and maximum deformation at 
the two corners of the tip in opposite out of plane directions. 
Columns 4 and 8 represent the second and third torsional 
modes where the dark lines (nodal lines) show a zero 
deformation and the plate deforms out of plane in opposite 
directions between the lines and towards the edges. As for 
coupled modes, seen from columns 5, 6 and 9, the plate 
deforms in the opposite directions between the nodal lines, in 
the same way as was explained for the case of the pure flexural 
and torsional modes. 

The close correlation in the results revealing these two sets 
of profiles can especially be seen in the nodal lines (the areas 
of no deformation, shown as dark areas) which are of particular 

interest in the mode shape analysis as they are the distinctive 
property of a mode shape and are independent of the direction 
of bending (zero displacement). The inevitable small 
discrepancies in the relative displacement amplitudes or of the 
mode shapes reported are likely due to the blade not being 
perfectly rectangular or having a non-uniform thickness, as is 
featured in the simulation model used. The bonding 
mechanisms used to secure the blade to its base may also have 
an effect on its vibrational properties which would also not be 
represented in the simulation carried out. Other sources of error 
that may have created the small differences between the 
experimental and the simulated outputs may include the 
presence of reflected vibrations from the table to which the 
blade was clamped and the actual clamping technique itself. 
However Table 1 shows that good agreement to within 
experimental error in most cases is achieved, showing the 
veracity of the techniques used. 
 

V. CONCLUSION 
 

A novel approach to the generation of accurate 
experimental information for the analysis of the displacement 
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mode shapes of a cantilevered steel plate based on real-time 
Bragg wavelength shift data of arrays of FBG sensors was used 
and verified through a comparison of the results obtained from 
these experimental measurements and those from simulation 
using finite element techniques. The experimentally obtained 
results showing the frequencies detected, as well as the shapes 
of all the bending, torsion and coupled modes, were found to 
be in very good agreement, within experimental error, with 
those from the theoretical model which allowed an analysis to 
be performed using ANSYS FE software. It was also found 
that the location of the excitation of the blade, as expected, 
directly affected the amplitudes of the various frequencies that 
were detected in the experiment. 

The results of this work have shown the potential for the 
use of these experimental and modelling techniques for a more 
comprehensive investigation of not only a single blade, as was 
undertaken successfully in this work, but of actual multiple 
blade propellers. This is the subject of on-going research. 
However, the outcome of this work has shown the value of the 
FBG sensors being mounted along the estimated nodal lines in 
order to reduce the effects due to the position of the source 
when the blades are excited representing an innovative use of 
FBG devices for this purpose in marine technology. 
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