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Abstract

Activity recognition in smart homes provides valuable benefits in the field of health and elderly care by remote monitoring of

patients. In health care, capabilities of both performing the correct recognition and reducing the wrong assignments are of high

importance. The novelty of the proposed activity recognition approach lies in being able to assign a category to the incoming

activity, while measuring the confidence score of the assigned category that reduces the false positives in the assignments. Multiple

sensors deployed at different locations of a smart home are used for activity observations. For multi-class activity classification, we

propose a binary solution using support vector machines, which simplifies the problem to correct/incorrect assignments. We obtain

the confidence score of each assignment by estimating the activity distribution within each class such that the assignments with low

confidence are separated for further investigation by a human operator. The proposed approach is evaluated using a comprehensive

performance evaluation metrics. Experimental results obtained from nine publicly available smart home datasets demonstrate a

better performance of the proposed approach compared to the state of the art.

Keywords: Activity recognition, Assisted living, Clustering, Performance evaluation metrics, Classification, Reliability.

1. Introduction

The development of effective, long term and technologically

driven solutions in health care improves the living standards of

elderly people and patients with chronic physical (low mobility

level) and cognitive (Alzheimers disease) impairments [1, 2, 3].

In recent years, different strategies such as telemedicine or tele-

monitoring have been applied for remote observations [4]. With

the further advancements in technology, the concept of a smart

home equipped with sensors and actuators that enables people

to live independently at home under a continuous monitoring,

has got more attention [4, 5]. Activity recognition is a funda-

mental task in smart homes through which the performed activ-

ities such as hand washing, meal preparation, eating, sleeping,

appropriate usage of medicines and prescribed physical exer-

cises, can be identified and tracked. A long term analysis of the

performed activities can provide important information to doc-

tors about their patient’s medical condition that is helpful in the

timely prevention of many associated risks.

Low level observations of user and the context information

such as location and human-object interactions, is gathered

through multiple non-intrusive sensors within the environment.

The obtained sensor data is partitioned into multiple segments

in order to map them to the activity descriptions known as activ-

ity segmentation, where a segment is a consecutive sequence of

time instants during which an activity is performed [6]. Activity

segmentation is performed using different techniques, sliding
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windows [7], relative weighting of objects in adjacent activities

[8] or pattern mining [9], just to name a few. Segmented activity

instances are classified in activity classes using different learn-

ing models such as Hidden Markov Model (HMM) [10], Con-

ditional Random Fields (CRF) [11], Naive Bayes (NB) [12],

Support Vector Machine (SVM) [13], Artificial Neural Network

(ANN) [14, 15], and Decision Tree (DT) [16]. In activity clas-

sification, a false assignment could occur due to the unreliable

nature of sensor data [17], incorrect execution of an activity

[18], similar activities due to overlapping in features [19] or in-

ability of a learning algorithm to assign the correct label [20].

In health care systems, the reliability of activity recognition

models is extremely important, therefore along with the cor-

rect recognition of activities, a model should also be capable of

detecting and avoiding false assignments [20]. Most of the ac-

tivity recognition approaches while focusing on the segmenta-

tion and recognition may ignore false assignments [10, 13, 21].

Additionally the existing approaches that exploit the temporal

pattern for recognition assume that the activities follow a cer-

tain predefined sequence of events, however a fixed sequence

may not always be the case, since a single activity can be per-

formed in different ways by different users [22]. The variation

in activity instances may also be observed even in the case of

single user repeating the activity a number of times. Therefore,

it is also important to consider intra-class and inter-subject dif-

ferences along with inter-class differences.

In this paper, we propose an intelligent approach namely, Ac-

tivity Recognition in Smart Homes with the capability of Self

Verification (ARSH-SV) to recognize the pre-segmented activ-

ities of daily life. The proposed approach is able to measure

the reliability of the assigned label using a confidence score
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thus highlighting the activities recognized with less confidence.

ARSH-SV exploits the properties of both learning and statisti-

cal methods. The activity recognition is performed by learning

the differences between the correct and incorrect assignments.

Since the correct assignments are far less than the incorrect as-

signments and each activity class has varying number of activ-

ity instances, we apply the learning method SVM. SVM has

a better generalization ability for imbalance problems due to

considering only the support vectors and is also computation-

ally efficient. We find the confidence score of the assigned la-

bel by finding the underlying distribution of the data through

sub-clustering within each activity class. In the case of clusters

with limited number of instances, the resampling method boot-

strap is applied to improve data representation in the training.

The validation of the approach using nine smart homes datasets

and through a comprehensive performance metrics shows that

compared to the existing approaches, ARSH-SV improves the

activity recognition by successfully reducing the false assign-

ments.

The rest of the paper is organized as follows: Section 2 dis-

cusses the related work on activity recognition. In Sec. 3, the

proposed approach is presented. Next, we discuss the datasets

used, the evaluation criteria and the analysis of results in Sec.

4. Finally, Sec. 5 draws conclusions.

2. Related work

Activities of daily life can be categorized into (i) physical

activities such as sitting, standing, walking, running or falling,

and (ii) general activities such as cooking, eating, sleeping,

cleaning or grooming. The sensing technology to capture hu-

man activity observations is based on either wearable sensors

mainly used in physical activities, such as accelerometer and

gyroscope [16], or environment interactive sensors used in gen-

eral activities monitoring, such as light, temperature, motion,

pressure and binary contact switch sensors [11]. While the pro-

posed approach is focused more on the general activities cate-

gory, for a review of the state of the art, we also briefly discuss

the existing approaches applied for physical activities.

In physical activities, the information through wearable sen-

sors such as movement patterns extracted from acceleration

data [1] obtained from accelerometers are exploited. DT is

applied to classify twenty physical activities [16]. An ANN

based approach [14] using acceleration features first separates

the static (standing, sitting) and dynamic (walking, running)

activities and then classifies the activities in each class, where

Principal Component Analysis (PCA) is used to obtain the well

performing features. ANN is also compared with auto gen-

erated and domain knowledge based DTs for activity classifi-

cation, where auto generated DT shows better accuracy while

ANN suffers from over fitting [23]. DT is then combined with

ANN in a hybrid classifier model for activity recognition, which

merges the prior knowledge of activities with the non-linear

classification properties of ANN [24]. Probabilistic Neural Net-

work (PNN) and Fuzzy Clustering based incremental learning

method can also be applied for activity recognition [25]. The

three classifiers: DT, ANN and SVM, are learned for activ-

ity recognition [26], where SVM shows a stable performance

compared to others. Finally, an interesting approach on eye

movement based activity recognition applies SVM in order to

classify six static activities such as browsing a web and reading

a printed paper [27].

General activities are recognized by gathering the location

information and the user interactions with multiple objects

within the environment [10, 28, 29, 30]. A dense sensing plat-

form is used, such as contact switch sensors to monitor the

opening and closing of doors, motion sensors to detect the user

presence at a particular location, or pressure sensors to indi-

cate the usage of objects, bed or sofa [12, 31, 32]. Switch sen-

sors deployed in multiple objects in a home such as doors, win-

dows, cupboards and refrigerator, can be used in the NB classi-

fier based recognition approaches [12, 30], where NB identifies

the activity corresponding to the sensor values with the high-

est probability. PNN classifier [15, 33] derived from Bayesian

and Fisher discriminant analysis (FDA) can be applied to esti-

mate the likelihood of a sample being part of a learned activ-

ity class. A cluster based classification approach [34] groups

the similar activities into clusters, while learning is performed

within each cluster. The Evidence Theoretic KNN (ET-KNN)

is applied to recognize the activities [34, 35], where neighbor-

hood of each pattern to be classified is considered as an evi-

dence supporting certain hypothesis associated with the class

membership of that pattern. The class with the maximum sup-

porting evidence is assigned to the pattern, while the parameters

are optimized by the error minimizing function in [36]. In or-

der to exploit the semantic information of domain knowledge,

sensor data and activities, context lattices are applied for activ-

ity recognition (CL-AR) [37]. HMM is applied and compared

with CRF [11] and in order to get a more generalized activ-

ity recognition approach, NB, HMM and CRF are compared

for activities within a dataset and by combining the common

activities of multiple datasets with different environmental set-

tings [30]. HMM requires a large set of training samples and

unlike CRF it may not be able to capture long range dependen-

cies of observations [19]. Long range dependencies between

the observations within activity segments can be modeled by

integrating sequential pattern mining, used to characterize the

time spans during an activity execution, with Hidden Semi-

Markov Model (HSMM) for the activity recognition (AR-SPM)

[6]. Switching-HSMM defines two layers to recognize the daily

activities and to identify anomalies [32]. In Hierarchical-HMM

(HHMM) two layers are defined [38], where one layer presents

the activities, while the second corresponds to the clusters of

actions in an activity. HHMM proves to be more effective than

HSMM and HMM.

Activities can be recognized by Frequent Pattern (FP) mining

followed by the Emerging Pattern (EP): a discriminative pattern

used for classification between patterns of activities [39, 40].

Discontinuous FPs are mined to cluster similar activity pat-

terns into groups and then HMM is applied for the recognition

[10]. FP mining is used to find the repetitive patterns and La-

tent Dirichlet Allocation is applied to cluster the co-occurring

sequential patterns in order to recognize the activities (ADR-
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SPLDA) [21]. The pattern mining and sequence alignment

methods can be used to select the representative patterns of ac-

tivities, which are then matched with the observed sequences to

recognize the activities [41]. The Inter-transaction Association

Rule (IAR) mining finds the frequent events, while anomalies

are identified by using emergent IAR that highlights the abrupt

changing points in the dataset [42]. An Active Learning ap-

proach in the presence of Overlapping activities (AALO) per-

forms location based frequent item set mining to find the activ-

ity patterns and then density based clustering is applied to form

the activity clusters [29]. Soft-SVM (C-SVM), Linear Discrim-

inant Analysis (LDA) and CRF classification approaches are

compared in handling the issue of imbalanced data in recogniz-

ing daily activities [43].

Feature selection techniques have been applied in the activity

recognition problem to select significant and discriminant sub-

set of features [13, 27, 31, 44]. Minimum Redundancy Maxi-

mum Relevance (mRMR) can be used to select the best feature

subset for target classes, then SVM is used for the classifica-

tion of activities [27]. The mRMR and Information Gain (IG)

methods are applied for feature selection and then four classi-

fiers SVM, LogitBoost, Bayes Belief Networks and ANN are

compared for recognition of activities [31], where LogitBoost

proves to be better among the four due to its ability of generat-

ing a stronger classifier by combining the several weak classi-

fiers. In a PCA-SVM approach [13], PCA is used to extract the

significant features and the multi-class SVM (one-versus-one)

is applied for classification of activities. Using SVM for classi-

fication, the comparison of the feature selection methods, filter

and wrapper based on single and sequential feature selection

shows that wrapper method based on sequential feature selec-

tion performs better [44], since it also considers the redundancy

of features during the selection process, unlike the other two.

Most of the existing activity recognition approaches focus on

the segmentation and recognition of the activities, while a few

deal with the uncertainty and noise in the data at sensor level

[17, 28, 45, 46]. An evidential fusion approach exploits the

combination rule of Dempster Shafer Theory (DST) to support

conflict resolution in activity recognition (EFA-AR) by combin-

ing the sensed information and commonsense knowledge [45].

The two data fusion and reasoning approaches DST and Dy-

namic Bayesian Network are compared and their applicabilities

are discussed under activity recognition scenario in [47]. The

temporal information of domain knowledge is incorporated in

the DST of evidence, where the activity start time and dura-

tion is used in the Evidence Decision Network (EDN) to rec-

ognize the daily activities [28, 48]. A three layered framework

for monitoring the human activities in a smart home, exploits

DST, the prior use of domain knowledge and the activity pat-

terns in order to manage the uncertainty of sensor data [46].

In a data fusion approach for activity recognition, ontology is

applied to represent the hierarchical interrelationships between

sensors, contexts and activities, while DST is used for the rea-

soning under uncertainty [17].

The existing activity recognition approaches address the

problem of uncertainty in observations at data fusion level. In

the proposed approach, we minimize the uncertainty of obser-

vations at the decision level through the verification of assigned

labels while utilizing the environment interactive sensors for the

recognition of general activities.

3. Activity recognition with self verification

ARSH-SV assigns the label of an activity class to the pre-

segmented activity instance, while separating more reliable as-

signments from the less reliable based on the confidence score.

The block diagram of ARSH-SV is shown in Fig. 1. The ap-

proach is discussed in the following sub-sections and summa-

rized in Algorithm 1.

3.1. Activity representation

Let A = {A1, ..., Ak, ..., AK} be a set of K activity classes

and Ik =
{

I1k, ..., I jk, ..., IJk

}

be a set of J pre-segmented activity

instances of an activity class Ak, in the training data. Each I jk is

observed by R binary sensors installed at multiple locations in

a smart home. I jk is represented by a feature set F jk =
{

f r
jk

}R

r=1
of R features. The number of features in the feature set is equal

to the number of installed sensors. Each feature represents the

number of times a sensor is activated in an activity instance,

while for a non-activated sensor a zero is assigned. We normal-

ize the feature set F jk such that 0 ≤ f̂ r
jk
≤ 1 given by

F̂ jk =
{

f̂ r
jk

}R

r=1
=















f r
jk
−minr f r

jk

maxr f r
jk
−minr f r

jk















R

r=1

. (1)

The normalized feature sets are used in the learning model for

the label assignment and in the measurement of the confidence

of that label.

In order to identify the intra-class variations in the perfor-

mance and the location, we group the similar activity instances

within an activity class Ak into sub-clusters using the Lloyd’s

clustering algorithm [49]. Each sub-cluster S uk aims at mini-

mizing the error objective function that measures the distance of

the activity instances from their respective cluster centers given

as
Uk
∑

u=1

J
∑

j=1

||I jk −Cuk ||2, (2)

where Cuk is R dimensional cluster-center for each S uk. We

get u = 1 · · ·Uk sub-clusters for Ak, after removing any empty

clusters in case of less intra-class variations.

In order to measure the inter-class variations, we represent

Ak by Mean Feature Representation (MFR). We obtain a set

of mean features Mk = {mr
k
}R
r=1

using all the activity instances

{I jk}Jj=1
of Ak in the training data such that

mr
k =

1

J

J
∑

j=1

f̂ r
jk, (3)

where mr
k

is the mean representation of each feature in Mk and

k = 1 · · ·K.
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Figure 1: Block diagram of the proposed approach. Black-blue colors represent label assignment and Black-green colors represent confidence measure.

3.2. Activity classification

In order to learn the distances between correct and incorrect

assignments, we calculate for each activity instance I jk, a set

∆ jk = {Ωd
jk
}K
d=1

of difference vectors where Ωd
jk

is a difference

vector between the feature set F̂ jk and Md, where d = 1 · · ·K
given as

∆ jk = {Ωd
jk}

K
d=1 = {F̂ jk −Md}Kd=1. (4)

∆ jk contains one difference vector Ωk
jk

from the MFR of the

same class (k = d) and K − 1 difference vectors {Ωd
jk
}k,d from

MFR of other classes. We then solve the binary class problem

such that for each Ωd
jk

a binary target T jk is assigned as

T jk =















1, if k = d;

−1, otherwise.
(5)

If each activity class has J instances then by using Eq. (5), we

get J × K number of Ωk
jk

with T jk = 1 and J × K × (K − 1)

number of Ωd
jk

with T jk = −1. Fewer positive compared to the

negative classes represent a class imbalance problem by 1 : K.

We use the learning method SVM for the activity classifi-

cation. SVM is a binary classifier and finds the most optimal

hyperplane to discriminate the data points of two classes with

maximum margin [50]. SVM supports the efficient learning of

linear and non-linear functions through kernel trick in a variety

of classification problems [51, 52].

Consider the training sample set (Ωi,Ti), where for simplic-

ity i = jk with an upper limit of J × K2. Ωi is R dimensional

feature vector, Ti is the target and can have the values of −1

and +1. SVM learns on the correct and incorrect differences.

A hyperplane is defined by wi.Ωi + b = 0, where wi is R di-

mensional weight vector, Ωi is R dimensional data point on the

hyperplane and b is the bias. In the case of linearly separable

data, the separating hyperplane is defined by:

Ti(wi.Ωi + b) ≥ 1, (6)

where Ωi nearest to the boundary are support vectors and de-

fined by Ti(wi.Ωi +b) = 1. The optimal hyperplane can be con-

structed by solving the optimization problem minwi

{

1
2
‖wi‖2

}

under the constraints of Eq. 6. As in our problem the data is

non-linearly separable, a slack variable ξi is introduced for the

non-linear support vector machine

Ti(wi.Ωi + b) > 1 − ξi. (7)

A penalty term C
∑J×K2

i=1 ξi is usually added, when ξi is very

large for a solution. The optimization problem is then given by:

mini

















1

2
‖wi‖2 +C

J×K2
∑

i=1

ξi

















, (8)

under the constraints of Eq. 7, where C is a positive regulariza-

tion constant. It defines the trade-off between a large margin

and misclassification error. ξi controls the distance of Ωi from

the decision boundary.

For non-linear problems, the training data is mapped from

an input space to a high dimensional feature space H through a

mapping function φ, which fits a hyperplane s.t Ωi → H. The

input data point in the high dimensional space H is presented

by φ(Ωi). The computational complexity of SVM in the feature

space is reduced by using a positive definite kernel function

(Ker)

φ(Ω).φ(Ωi) = Ker(Ω.Ωi), (9)
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which leads to a final decision function:

f (Ω) = sign (

J×K
∑

i=1

αiTiKer(Ω.Ωi) + b), (10)

where αi represents the Lagrange multiplier and a Linear, a Ra-

dial Basis or a Polynomial kernel function can be used. The

kernel function must satisfy the Mercer condition [50].

3.3. Distribution estimation

In order to measure the confidence score of the recognized

activity instance, we estimate the distribution of data from the

sub-clusters defined within each activity class. For the activ-

ity instances within each sub-cluster S uk represented by I
(u)

jk
,

we measure their relative distances D(·) from the cluster-center

Cuk. D(·) receives a feature pair as input and returns the dissim-

ilarity δ jk between F̂
(u)

jk
and Cuk

δujk = D(F̂
(u)

jk
,Cuk) = ||F̂(u)

jk
− Cuk ||, (11)

where ||.|| is the Euclidean norm. The obtained set of dissimi-

larities Vu
k = {δujk}

Juk

j=1
for each sub-cluster S uk within the activ-

ity class Ak is used to find the distribution of activity instances

from Cuk. Assuming a Gaussian distribution [18], we apply

the bootstrap method [53] to obtain the mean µuk and the stan-

dard deviation σuk of the distribution in the set Vu
k . Bootstrap

is a computational method to increase the accuracy of an esti-

mate. It is particularly useful in cases, where sufficient amount

of data is not available or the distribution of underlying data is

unknown. Bootstrap generates Z number of independent and

identically distributed bootstrap estimates by resampling from

the original sample, where Z can be a large value. From the set

of dissimilarities Vu
k within the cluster S uk, a bootstrap resample

V
u(z)

k
= {δu(z)

jk
}Juk

j=1
is drawn at random by reassigning and recom-

puting the values of original sample such that the values in the

rearranged sample may appear zero, once or multiple times. For

each resample S
(z)

uk
, the mean µ

(z)

uk
and the standard deviation σ

(z)

uk

is calculated as

{

µ
(z)

uk
, σ

(z)

uk

}

=



















1

Juk

Juk
∑

j=1

δ
u(z)

jk
,

√

√

√

1

Juk

Juk
∑

j=1

(δ
u(z)

jk
− µ(z)

uk
)2



















. (12)

Finally, the true mean µuk and true standard deviation σuk is

measured from the bootstrapped means {µ(z)

uk
}Z
z=1

and standard

deviation {σ(z)

uk
}Z
z=1

such that

{µuk, σuk} =











































Z
∑

z=1

µ
(z)

uk

Z
,

Z
∑

z=1

σ
(z)

uk

Z











































. (13)

The estimated {µuk, σuk}Uk

u=1
for each Ak are then used in measur-

ing the confidence score of the assigned label in the test data.

Algorithm 1 Activity recognition with self verification

Ak : kth activity class;

I jk : jth activity instance of kth class;

K : total number of activity classes;

J : total activity instances per class;

F̂ jk : normalized feature set of I jk;

Mk : mean feature representation of Ak;

S uk : uth sub-cluster of Ak;

Cuk : center of S uk;

Uk : total number of sub-clusters in Ak;

µuk : mean of data distribution in S uk

σuk : standard deviation data distribution in S uk

Ω jk : difference vectors;

δu
jk

: dissimilarity I
(u)

jk
from Cuk

1: TRAINING

2: Input: J × K normalized feature sets F̂ jk = { f̂ r
jk
}R
r=1

3: for k = 1 to K do

4: for r = 1 to R do

5: mr
k
= 1

J

J
∑

j=1
f̂ r

jk

6: end for

7: Mk = {mr
k
}R
r=1

8: end for

9: for k = 1 to K do

10: for j = 1 to J do

11: for d = 1 to K do

12: Ω
d
jk
= F̂ jk − Md

13: end for

14: ∆ jk = {Ωd
jk
}K
d=1

15: end for

16: end for

17: Assign labels T d
jk

using Eq.5

18: Input: (Ωd
jk
,T d

jk
) to learning model SVM

19: Output: weight vector wi

20: for k = 1 to K do

21: for u = 1 to Uk do

22: for j = 1toJuk do

23: δu
jk
= ||F̂(u)

jk
− Cuk ||

24: end for

25: Vu
k
= {δu

jk
}Juk

j=1

26: end for

27: end for

28: Obtain {µuk , σuk}Uk

u=1
for Ak using Eq.12 and Eq.13

——————————————

χ : pre-segmented new activity instance;

k∗ : label of recognized activity class;

u∗ : label of the sub-cluster in Ak∗ ;

Γu∗
χk∗ : confidence score of χk∗ ;

1: LABEL ASSIGNMENT

2: Extract feature set F̂(χ)

3: for k = 1 to K do

4: Ω(χ)k = F̂(χ) −Mk

5: end for

6: for k = 1 to K do

7: P(χ)k = Ω(χ)k × wi

8: end for

9: k∗ = arg maxk P(χ)k

10: Activity instance gets the label as χk∗

11: for u = 1 to Uk∗ do

12: δu
(χ)k∗ = ||F̂(χ) − Cuk∗ ||

13: end for

14: u∗ = arg minu δ
u
(χ)k∗

15: Obtain Γu∗
(χk∗ of χk∗ using Eq. 17

16: if Γu∗
(χ)k∗ ≥ 3σ∗uk∗ then

17: Flag χk∗ with low confidence score

18: end if
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3.4. Label assignment

Let χ be a newly detected activity instance. Our objective is

to find the correct label of χ from the existing activity classes in

A. We extract the normalized feature set F̂(χ) using Eq. 1. F̂(χ)

can have similarity with multiple activity classes with different

degree of relevance. Using the feature set F̂(χ) (Eq. 1) and the

mean feature sets {Mk}Kk=1
(Eq. 3), we find the set of difference

vectors ∆(χ) = {Ωk
(χ)
}K
k=1

using Eq. 4. We find the cross product

P(χ)k between each difference vectorΩ(χ)k and the weight vector

wi obtained from SVM

P(χ)k = Ω(χ)k × wi. (14)

P(χ)k generates a similarity score between χ and Ak. The higher

the value of P(χ)k the closer χ is to Ak. We find the activity class

with the highest value of P(χ)k given by

k∗ = arg max
k

P(χ)k, (15)

where k∗ ∈ 1, · · · ,K is the ID of the recognized activity class.

The new activity instance is assigned to Ak∗ represented as χk∗ .

In order to find the confidence score of the assigned label, we

exploit the prior knowledge of {µuk∗ , σuk∗ }
U∗

k

u=1
of the distribution

of activity instances in the sub-clusters within the assigned ac-

tivity class Ak∗ . We find the dissimilarity measures {δu
(χ)k∗ }

Uk∗
u=1

between χk∗ and {Cuk∗ }Uk∗
u=1

of Ak∗ (Eq. 11). Next, we assign χk∗

to the sub-cluster with the least dissimilarity as

u∗ = arg min
u

δu(χ)k∗ . (16)

Using {µu∗k∗ , σu∗k∗ } of the selected cluster S u∗k∗ in the Gaussian

distribution, we measure the confidence score Γu∗

(χ)k∗ as

Γu∗

(χ)k∗ = g(δu
∗

(χ)k∗ , µu∗k∗ , σu∗k∗ ) =
1

µu∗k∗
√

2π
e

−(δu
∗

(χ)k∗ −(µu∗k∗ )2

2(σu∗k∗ )2 . (17)

If Γu∗

(χ)k∗ lies within 3σu∗k∗ or 99% of the distribution of S u∗k∗ ,

we assign a high confidence to the label, otherwise a low con-

fidence score is assigned. We highlight the labels with the low

confidence and separate those instance for further analysis by a

human operator.

4. Evaluation and discussion

The objective of this evaluation is to analyze the effectiveness

of ARSH-SV in recognizing the general activities and measur-

ing the confidence of the recognitions in a smart home. ARSH-

SV is evaluated through a comprehensive performance evalua-

tion metrics containing seven performance measures using nine

publicly available smart home datasets. The results are com-

pared with the state-of-the-art activity recognition approaches

[13, 15, 30, 35] using three-fold cross validation. The recogni-

tion rate (number of correctly recognized instances out of all in-

stances in the test set) and F1-score (Eq. 23) are also compared

with [21, 29, 43, 54] and [6, 37, 38, 45, 48], respectively. We

perform the activity level performance analysis through con-

fusion matrices and F1-score. The results are compared with

[6, 28, 29, 48].

4.1. Performance evaluation metrics

The performance evaluation metrics is comprised of Preci-

sion, Recall, Specificity, False Positive Rate (FPR), Matthews

Correlation Coefficient (MCC), F1-score and Accuracy, ob-

tained from True Positives (TPs), False Negatives (FNs), True

Negatives (TNs) and False Positives (FPs) in the recognized ac-

tivity instances. For an activity class Ak, TP are the number

of instances correctly assigned as Ak, while FN are the num-

ber of instances of Ak incorrectly recognized as any other class

(missed assignments of Ak). TN are the number of instances

correctly recognized as not from Ak, while FP are the instances

of other classes recognized as Ak.

Precision is the ratio of correctly labeled instances out of the

total recognized instances of a class. A high precision value

indicates the presence of a higher number of correctly assigned

labels out of the total assigned labels to an activity class.

Precision =
T P

T P + FP
× 100. (18)

Recall is the percentage of correctly labeled instances from the

total instances of that class. Recall represents the ability of a

classifier to return the most of the correct labels out of the total

correct labels. It is also known as ’Sensitivity’. Precision and

recall together shows the ability of an approach in retrieving the

correct label with consistent performance.

Recall =
T P

T P + FN
× 100. (19)

Specificity, also known as ‘True Negative Rate (TNR)’, is the

percentage of correctly assigned labels to other classes out of

the total labels assigned to other classes.

Specificity =
T N

T N + FP
× 100. (20)

FPR is the percentage of incorrectly recognized instances. FPR

is 100−Specificity.

FPR =
FP

T N + FP
× 100. (21)

MCC measures the overall performance of a classifier, which

takes into account TPs, TNs, FPs and FNs. The range of MCC

is between [−1 , 1]. A value of 1 indicates a perfect prediction

of the classifier, 0 indicates a random prediction, where as −1

shows the conflict between the prediction and observation. We

have used MCC in the performance evaluation, since it is con-

sidered a balanced measure in the case of activity classes with

different number of instances.

MCC =
(T P × T N) − (FP × FN)

√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

.

(22)

F1-score combines precision and recall of the system into a sin-

gle measure, which is the weighted average of precision and re-

call. Its value is between [0 , 1]. F1-score closer to 1 shows the

best performance, whereas 0 indicates the worst performance.

F1 − score =
2 × Precision × Recall

Precision + Recall
. (23)
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Table 1: The description of nine datasets used for the evaluation of ARSH-SV. Key: R1 - Resident 1, R2 - Resident 2, 1+pet - One resident and a pet, 2+pet - Two

residents and a pet.

S.no Datasets Description Participants Activity classes Activity instances Name of activities

1 Aruba1 Daily life, 2010-2011 1 11 6477

Bed to Toilet, Eating, Enter Home, House Keeping,

Leave Home, Meal Preparation, Relax, Resperate, Sleeping,

Wash Dishes, and Work.

2 Kasteren Kasteren 1 7 245
Breakfast, Dinner, Drink, Leave Home, Shower, Sleep,

and Toileting.

3 Kyoto1 ADL Activities 20 5 120
Cleaning, Cooking, Eating, Phone Call, and

Wash Hands.

4 Kyoto2 ADL Activities with Errors 20 5 100
Cleaning, Cooking, Eating, Phone Call, and

Wash Hands.

5 Kyoto8 Daily life, Summer 2009 2 11 1290

Cleaning, Cooking, Grooming, R1 Shower, R1 Sleep,

R1 Wakeup, R1 Work, R2 Shower, R2 Sleep, R2 Wakeup,

and R2 Work.

6 Tulum1 Daily life, 2009 2 10 1513

Cook Breakfast, Cook Lunch, Enter Home, Group Meeting,

Leave Home, R1 Eat Breakfast, R1 Snack, R2 Eat Breakfast,

Wash Dishes, and Watch TV.

7 Tulum2 Daily life, 2009-2010 2 16 12637

Bathing, Bed to Toilet, Eating, Enter Home, Leave Home,

Meal Preparation, Personal Hygiene, R1 Sleeping,

R2 Sleeping, Wash Dishes, Watch TV, Work Bedroom1,

Work Bedroom2, Work Living Room, Work Table, and Yoga.

8 Milan Daily life, 2009 1+pet 15 2310

Bed to Toilet, Chores, Desk Activity, Dining Room Activity,

Evening Medications, Guest Bathroom, Kitchen Activity,

Leave Home, Master Bathroom, Master Bedroom Activity,

Meditate, Morning Medications, Read, Sleep, and Watch TV.

9 Cairo Daily life, 2009 2+pet 13 600

Bed to Toilet, Breakfast, Dinner, Laundry, Leave Home, Lunch,

Night Wandering, R1 Sleep, R1 Wake, R1 Work in Office,

R2 Sleep, R2 Take Medicine, and R2 Wake.

Finally, the Accuracy of the system is measured, which takes

into account not only the correctly assigned labels (TPs) but

also the activities that are correctly rejected (TNs) out of the

total assigned labels

Accuracy =
T P + T N

T P + FP + T N + FN
× 100. (24)

4.2. Datasets

Table 1 shows the summary of activities performed in each

of the nine publicly available challenging smart home datasets:

eight from CASAS [55] and one from Kasteren [11]. Datasets

are selected based on the challenges that include the number

of participants in each home, overlapping of features among

activity instances of different classes, variations in the perfor-

mance of the same activity instances by different users, addi-

tion of noise and errors in the the datasets because of the sen-

sors and the participants, and the presence of non participating

agents (pets) in the home that affect the sensor inputs during an

activity instance. The number of available instances per activity

class is also considered as a factor in the selection of the dataset,

since fewer instances make it challenging for the learning meth-

ods to be trained while large number of instances increases the

computational cost of a system.

Kasteren and Aruba1 datasets include activities performed

by a single resident in a smart home, where 7 and 11 types of

different activities are performed, respectively. Total number of

instances in Kasteren are 245 and in Aruba1 are 6477. In Ky-

oto1 and Kyoto2 datasets, 5 types of activities are performed by

20 participants. Each activity is performed once by each par-

ticipant one after the other. The number of activity instances

are 120 in Kyoto1 and 100 in Kyoto2. Types of activities in

Kyoto2 are same as in Kyoto1 while some erroneous features

are added in the activity instances. Kyoto8, Tulum1 and Tulum2

contain activity instances performed by two residents living to-

gether and performing activities independently without cooper-

ation. These are typically large datasets containing 11, 10 and

16 types of activities, respectively. Milan and Cairo datasets

contain 15 and 13 types of activities performed by single and

two participants, respectively, along with a pet in the house.

In the above datasets, the binary sensors used are motion sen-

sors, contact switch sensors, absent/present status of item sen-

sors and door open/close status of cabinet sensors. In addition,

the analog sensors to measure the temperature and the status of

water and burner are used.

4.3. ARSH-SV results and evaluation

Table 2 shows the number of assigned labels separated based

on confidence scores using ARSH-SV. Labels with low and

high confidence scores are assigned to the activity instances

depending upon their distances from the predicted sub-clusters

within an assigned class. ARSH-SV correctly assigns low con-

fidence to more than 90% of the incorrect labels. A few of

correct labels far from the centers of the sub-clusters within an

activity class are also assigned low confidence, which is useful

in such systems that require high accuracy in outputs for auto-

mated decisions, such as in medical diagnostic systems. 90% to

95% of the correctly assigned labels are given high confidence

score. However, we can see that between 1 to 15% of the activ-

ity instances with incorrect labels are also assigned high confi-

dence. The overall accuracy of the confidence score assignment
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Table 2: Confidence measure for assignments by ARSH-SV for nine smart home datasets. Key: LC - Low Confidence, HC - High Confidence, TP - True Positive,

FP - False Positive, TN - True Negative, FN - False Negative, Acc - Accuracy.

Total Labels LC to incorrect LC to correct Labels HC to correct HC to incorrect Acc (%)

Datasets Assignments with LC labels - TP labels - FP with HC labels -TN labels - FN (Eq.24)

Aruba1 6477 448 301 147 6029 5650 379 91.88

Kasteren 245 16 10 6 229 221 8 94.30

Kyoto1 120 14 12 2 106 104 2 96.67

Kyoto2 100 14 11 3 86 84 2 94.98

Kyoto8 1290 83 52 31 1207 1174 33 95.04

Tulum1 1513 13 8 5 1500 1494 6 99.28

Tulum2 12637 493 481 12 12144 10250 1894 84.92

Milan 2310 536 534 2 1774 1665 109 95.20

Cairo 600 29 20 9 571 545 26 94.17

remains more than 90% for eight datasets, while one dataset

have accuracy of 84%. In Tulum1 dataset, we achieve the high-

est accuracy of up to 99%, where almost all incorrect labels

are assigned low and all the correct labels are assigned the high

confidence score. This is because of the presence of well sep-

arated activity classes with high inter-class differences and low

intra-class differences among the activity instances. In Tulum2,

it can be observed that low confidence is correctly assigned to

98% of the incorrect labels. However, a large number of in-

correct labels (1894) also get high confidence score because of

the presence of very high inter-class similarities. Activities cat-

egorized in different classes share similar features because of

the same location and same sensor activations, such as bathing

and personal hygiene, enter home and leave home, and watch

tv and work living room (see Table 1), which result in the least

accuracy of 84% in Tulum2 dataset.

Table 3 shows the performance of ARSH-SV compared with

the existing learning approaches; PCA-SVM [13], ET-KNN

[35], PNN [15] and NB [30], using defined performance evalu-

ation metrics applied on the results obtained from nine datasets

using three-fold cross validation. ARSH-SV, shows the highest

accuracy (using Eq. 24) in activity recognition for all datasets.

After ARSH-SV, the next highest accuracies are achieved by

ET-KNN in four, PCA-SVM in three and PNN in two out of

nine datasets. The accuracy of PCA-SVM and ET-KNN re-

mains comparable to each other, while PNN has comparatively

less accuracy in recognition than ARSH-SV in the datasets

with activities having similar features. One such example is

of Tulum2 dataset, where PNN obtained the lowest accuracy

of 90.70%, while in Kyoto1 and Kyoto2 with activities having

enough discriminative information, PNN performs better com-

pared to PCA-SVM and ET-KNN. NB classifier achieves the

least accuracy in all datasets and especially in Kasteren dataset,

it gets the the lowest accuracy of 74.70%, which is 24.36%,

23.32%, 23.67% and 19.01% less than ARSH-SV, PCA-SVM,

ET-KNN and PNN, respectively.

In the next sub-sections, we perform a detailed comparison

of the results presented in Table 3 by grouping the datasets with

similar properties. We also discuss the confusion matrix of one

of the datasets in each group. The extra column of IA (Irregular

Activities) in a confusion matrix refers to the activity instances

of a class that are recognized with less confidence and are not

confused with other activity classes.

Single resident - Datasets

Single resident activities are performed in Kasteren and

Aruba1 datasets. The number of instances in Kasteren are far

less compared to Aruba1 dataset. Some of the activities such as

meal preparation, dinner, drink and dish washing are performed

in the same location and therefore share same sensors, which

may result in less discriminative information, highlighting less

inter-class variations.

In Kasteren dataset, ARSH-SV achieves precision, recall and

specificity rates of 94.57%, 90.39% and 99.36%. Precision

and recall of NB are up to 73% less than that of ARSH-SV,

which shows a poor performance of NB in labeling the ac-

tivity instances belonging to a class. In addition, the speci-

ficity reaches up to 13% less than ARSH-SV, which shows

that the NB approach also do not label the negative instances

correctly. MCC measure of ARSH-SV, PCA-SVM, ET-KNN,

PNN and NB is 0.91, 0.85, 0.90, 0.64 and 0.08 respectively. In

Aruba1 dataset, precision, recall and specificity of ARSH-SV

are 90.12%, 91.71% and 99.40% respectively, which remain

higher than PCA-SVM, ET-KNN, PNN and NB. Higher val-

ues of precision and recall show that ARSH-SV is better able

to label the instances belonging to one activity class. Similarly,

higher specificity shows that ARSH-SV is able to identify the

instances not belonging to the target class. Finally, the higher

MCC measure of 0.90 of ARSH-SV compared to PCA-SVM

(0.78), ET-KNN (0.76), PNN (0.41) and NB (0.21) and the

higher F1-score, confirms the correct label assignments with

less false assignments in the case of less inter-class variations.

Table 4 shows the confusion matrix of activities in Aruba1

dataset. It can be observed that almost all the activities are

recognized with high accuracy. The activity instances identi-

fied with low confidence are separated as irregular activities. In

House Keeping activity, 69% of instances are identified with

high confidence, while 24% are recognized with low confi-

dence. It shows that 69 + 24 = 93% of HK instances are not

confused with other classes, while indicating that 69% assign-

ments are reliable. A few of the activities are transferring their

errors to the other similar activities. An interesting example is

that of Leave Home (LH) and Enter Home (EH). Since LH and
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Table 3: Performance evaluation metrics on nine smart home datasets for ARSH-SV and the existing approaches [13], [35], [15] and [30] using three-fold cross

validation. Precision, Recall, Specificity, FPR and Accuracy are in percentages (%), The range of F1-score is between [0 , 1], and range of MCC is between [−1 , 1].

Key: FPR - False Positive Rate, MCC - Matthews Correlation Coefficient. The highest values in the performance evaluation metrics are highlighted in bold.

S.no Datasets Classifiers Precision(%) Recall(%) Specificity(%) FPR(%) MCC F1-score Accuracy(%)

1 Aruba1

ARSH-SV 90.12 91.71 99.40 0.60 0.90 0.90 98.92

[13] 77.97 80.19 99.31 0.69 0.78 0.79 98.82

[35] 80.31 77.53 99.07 0.93 0.76 0.75 98.39

[15] 65.60 36.53 94.60 5.40 0.41 0.41 93.98

[30] 27.08 30.76 92.50 7.50 0.21 0.22 86.81

2 Kasteren

ARSH-SV 94.57 90.39 99.36 0.64 0.91 0.92 99.06

[13] 87.06 86.34 98.76 1.24 0.85 0.86 98.02

[35] 92.07 90.83 98.98 1.02 0.90 0.90 98.37

[15] 80.84 59.97 94.39 6.00 0.64 0.65 93.71

[30] 16.38 16.67 85.84 14.00 0.08 0.10 74.70

3 Kyoto1

ARSH-SV 98.43 98.33 99.58 0.42 0.98 0.98 99.33

[13] 94.87 94.17 98.54 1.46 0.93 0.94 97.67

[35] 95.46 95.00 98.75 1.25 0.94 0.95 98.00

[15] 96.30 95.83 98.96 1.04 0.95 0.96 98.33

[30] 73.88 74.17 93.54 6.46 0.68 0.71 89.67

4 Kyoto2

ARSH-SV 98.10 97.94 99.49 0.51 0.97 0.98 99.19

[13] 92.96 91.11 97.75 2.25 0.90 0.91 96.39

[35] 90.06 90.00 97.50 2.50 0.87 0.90 96.00

[15] 92.57 90.75 97.76 2.24 0.89 0.91 96.40

[30] 60.83 60.00 90.02 9.98 0.51 0.55 83.96

5 Kyoto8

ARSH-SV 94.57 97.27 99.76 0.24 0.95 0.95 99.53

[13] 57.44 63.29 96.78 3.22 0.56 0.58 94.81

[35] 61.31 59.87 96.82 3.18 0.55 0.57 94.99

[15] 44.75 40.97 95.94 4.06 0.38 0.41 91.03

[30] 16.48 18.96 92.94 7.06 0.10 0.11 88.48

6 Tulum1

ARSH-SV 95.91 96.31 99.96 0.04 0.96 0.96 99.92

[13] 67.28 62.79 97.68 2.32 0.62 0.64 96.21

[35] 63.64 62.45 97.33 2.67 0.60 0.62 95.69

[15] 54.19 36.99 93.64 6.36 0.37 0.38 91.45

[30] 33.32 42.06 92.51 7.49 0.27 0.29 86.17

7 Tulum2

ARSH-SV 72.07 70.74 99.01 0.99 0.70 0.70 98.12

[13] 65.51 61.08 98.09 1.91 0.60 0.60 96.06

[35] 60.50 61.72 97.80 2.20 0.58 0.60 96.08

[15] 53.80 23.93 94.43 5.57 0.28 0.26 90.70

[30] 34.78 18.47 93.94 6.06 0.17 0.17 89.06

8 Milan

ARSH-SV 87.31 83.55 99.64 0.36 0.85 0.85 99.36

[13] 69.50 69.86 98.78 1.22 0.68 0.69 97.84

[35] 70.66 67.79 98.73 1.27 0.68 0.68 97.75

[15] 57.95 45.30 97.89 2.11 0.48 0.48 96.29

[30] 46.83 39.09 96.84 3.16 0.38 0.38 94.51

9 Cairo

ARSH-SV 94.95 94.92 99.64 0.36 0.95 0.95 99.33

[13] 64.98 63.54 96.92 3.08 0.61 0.63 94.36

[35] 66.85 65.67 97.16 2.84 0.63 0.65 94.79

[15] 59.63 56.92 96.37 3.63 0.54 0.56 93.36

[30] 41.53 42.27 95.67 4.33 0.37 0.39 92.18

EH are recognized by the single door sensor making them sim-

ilar to each other, both LH and EH transfer 18% of their errors

among each other. Similarly, Wash Dishes (WD) could be a

part of Meal Preparation (MP) activity and can be carried out

during MP, therefore WD is transferring 15% of errors to MP.

For the remaining activity classes, ARSH-SV correctly assigns

the low confidence to the incorrect instances instead of sharing

them with similar activities.

Multi-participants - Datasets

Multiple participants perform individual activities without

cooperation, in Kyoto1 and Kyoto2. Similarly to Kasteren

dataset, the number of activity instances are very less. Vari-

ation in performing the same activity by multiple participants

is observed, which results in intra-class and inter-subject vari-

ations. However, each activity class is discriminative enough

and well separated resulting in high inter-class variation.

In Kyoto1, we achieve the highest precision, recall and speci-

ficity (98.43%, 98.33%, 99.58%) for ARSH-SV respectively.

Precision and recall of NB is up to 24% and specificity is up

to 6% less than ARSH-SV. The results show the higher ability

of ARSH-SV in correct labeling of activity instances to the tar-

get class and the correct rejection of the activity instances of

other classes. Similarly, MCC measure (0.98) remains highest

for ARSH-SV compared to PCA-SVM (0.93), ET-KNN (0.94)

PNN (0.95) and NB (0.68). It is to be noted that the perfor-
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Table 4: Aruba1 - confusion matrix using ARSH-SV. Rows represent the actual

activities and columns represent the predicted activities. Key: Acts - Activities,

Tlt - Bed to Toilet, Eat - Eating, EH - Enter Home, HK - House Keeping, LH

- Leave Home, MP - Meal Preparation, Rlx - Relax, Res - Resperate, Slp -

Sleeping, WD - Wash Dishes, Wk - Work, IA - Irregular Activities

Acts Tlt Eat EH HK LH MP Rlx Res Slp WD Wk IA

Tlt 98.7 0 0 0 0 0 0 0 0 0 0 1.3

Eat 0 90.3 0 0 0 0 1.9 0 0 0 1.2 6.6

EH 0 0 80.3 0 18.8 0 0 0 0 0 0 0.9

HK 0 3 0 69.7 0 0 3 0 0 0 0 24.3

LH 0 0 18.1 0 80 0 0 0 0 0 0 1.9

MP 0 0 0 0 0 81.6 0 0 0 6.7 0 11.7

Rlx 0 0 0 0 0 0 92.4 0 0 0 0 7.6

Res 0 0 0 0 0 0 0 83.3 0 0 0 16.7

Slp 0 0 0 0 0 0 5.5 0 82.3 0 2 10.2

WD 0 0 0 0 0 15.4 0 0 0 78.5 0 6.1

Wk 0 0 0 0 0 0 0 0 0 0 90.6 9.4

Table 5: Kyoto2 - confusion matrix using ARSH-SV. Rows represent the actual

activities and columns represent the predicted activities. Key: Acts - Activities,

Cl - Cleaning, Ck - Cooking, Eat - Eating, Ph - Phone Call, WH - Wash Hands

and IA - Irregular Activities.

Acts Cl Ck Eat Ph WH IA

Cl 90 0 5 0 0 5

Ck 0 60 0 0 0 40

Eat 0 0 85 0 0 15

Ph 0 0 0 95 0 5

WH 5 0 0 0 90 5

mance of ARSH-SV is not affected by the less amount of train-

ing data because of the use of support vectors in SVM, while

the inclusion of confidence measure in the proposed approach

improves the results by reducing the False Positives. In Kyoto2

dataset, some errors are added in the activity instances such as

leaving the stove burner ON, or not using the water for dish

cleaning after Cooking, leaving the water turned ON after Wash

Hands, dialing a wrong number, and not bring the medicine

container to dining room. ARSH-SV is able to accurately as-

sign the correct labels to ’activity instances with errors’. Low

confidence scores are assigned to 14 activity instances. Preci-

sion, recall, specificity and F1-score of ARSH-SV are 98.10%,

97.94%, 99.49% and 0.98, respectively. NB is not able to per-

form better in label assignment and shows nearly 37% less re-

sults in precision, recall and 9% less in specificity than ARSH-

SV because of the less data available for training. Similarly,

MCC values of ARSH-SV, PCA-SVM, ET-KNN, PNN and NB

are 0.97, 0.90, 0.87, 0.89 and 0.51, respectively. ARSH-SV

exploits multiple sub-clusters within an activity for class vari-

ations, which makes it more robust for intra-class and inter-

subject variations.

Table 5, shows the confusion matrix of activities in Kyoto2.

Most of the activities with errors are identified correctly, while

5% instances of both Cleaning and Wash Hands activities are

recognized as Eating and Cleaning, respectively. The remain-

ing instances of all the activity classes identified with low confi-

dence are successfully represented as the irregular instances of

the corresponding activity classes reducing the false positives.

Table 6: Tulum1 - confusion matrix using ARSH-SV. Rows represent the actual

activities and columns represent the predicted activities. Key: Acts - Activities,

CBF - Cook Breakfast, CL - Cook Lunch, EH - Enter Home, GM - Group Meet-

ing, LH - Leave Home, R1BF - R1 Eat Breakfast, R1Snk - R1 Snack, R2BF

- R2 Eat Breakfast, WD - Wash Dishes, WT - Watch TV and IA - Irregular

Activities.
Acts CBF CL EH GM LH R1BF R1Snk R2BF WD WT IA

CBF 100 0 0 0 0 0 0 0 0 0 0

CL 0 98.6 0 0 0 1.4 0 0 0 0 0

EH 0 0 100 0 0 0 0 0 0 0 0

GM 0 0 0 45.5 0 0 0 0 0 0 54.5

LH 0 0 0 0 100 0 0 0 0 0 0

R1BF 0 0 0 0 0 98.5 0 0 0 0 1.5

R1Snk 0.4 0 0 0 0 0.4 98.8 0 0 0 0.4

R2BF 0 0 0 0 0 0 0 100 0 0 0

WD 1.4 0 0 0 0 0 0 0 97.2 0 1.4

WT 0 0 0 0 0 0 0 0 0 99.4 0.6

Multi-residents - Datasets

The activities in Kyoto8, Tulum1 and Tulum2 datasets are

performed by two residents each. The residents share kitchen,

living/dining and bathroom, while they live in two separate bed-

rooms. The activities carried out in shared locations are over-

lapping in features with less discriminative information. The

variation within the same activity can also observed because of

the activity instances of the same class performed by different

residents. Datasets have both inter-class and intra-class varia-

tions.

In Kyoto8 dataset, 83 instances are assigned low confidence

score from a total of 1290. Precision and recall of ARSH-SV

are 94.57% and 97.27% respectively, which are 37.13% and

33.98% higher than PCA-SVM, 33.26% and 37.40% higher

than ET-KNN, 49.82% and 56.30% higher than PNN and

78.09% and 78.31% higher than NB. ARSH-SV also has the

highest MCC and F1-score of 0.95 each, while PCA-SVM, ET-

KNN, PNN and NB remain less accurate in correct recognition

of the activity instances. In Tulum1 dataset, a total of 1513 ac-

tivity instances for ten classes are present. Precision, recall and

specificity of ARSH-SV are 95.91%, 96.31% and 99.96% re-

spectively, which is higher than those of PCA-SVM, ET-KNN,

PNN and NB. Similarly, MCC and F1-score of ARSH-SV also

remained higher at 0.96 each. Tulum2 dataset contains the

highest number of activity instances (12637), where some of the

activity classes are similar to each other, such as bathing, bed

to toilet and personal hygiene are highly interrelated with each

other (see Table 1). Precision, recall and specificity obtained

by ARSH-SV are 72.07%, 70.74% and 99.01% and remained

better than PCA-SVM and ET-KNN. The values for F1-score

in case of ARSH-SV, PCA-SVM, ET-KNN, PNN and NB are

0.70, 0.60, 0.60, 0.26 and 0.17, respectively, and show the ef-

fectiveness of approach in the correct labeling of the activity

instances to the target class in the case of both inter and intra-

class variations.

Table 6 shows the confusion matrix of Tulum1 dataset. Other

than Group Meeting GM, all the activities are correctly recog-

nized with high confidence. In GM, 45.5% instances of GM

are recognized with high confidence, while 54.5% of instances

are identified with low confidence. Note that GM is not con-

fused with other activities, however, a less confidence measure

compared to other activity classes is due to the complex na-
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Table 7: Cairo - confusion matrix using ARSH-SV. Rows represent the actual activities and columns represent the predicted activities. Key: Acts - Activities, Tlt

- Bed to Toilet, BF - Breakfast, Dnr - Dinner, Ldy - Laundry, LH - Leave Home, Lch - Lunch, NW - Night Wandering, R1Slp - R1 Sleep, R1Wkp - R1 Wakeup,

R1WO - R1 Work in Office, R2Slp - R2 Sleep, R2Md - R2 Take Medicine, R2Wkp - R2 Wakeup, and IA - Irregular Activities.

Acts Tlt BF Dnr Ldy LH Lch NW R1Slp R1Wkp R1WO R2Slp R2Md R2Wkp IA

Tlt 96.7 0 0 0 0 0 0 0 0 0 0 0 0 3.3

BF 0 89.6 2.1 0 0 0 0 0 0 0 0 0 0 8.3

Dnr 0 4.8 90.5 0 0 0 0 0 0 0 0 0 0 4.7

Ldy 0 0 0 70 10 0 0 0 0 0 0 0 0 20

LH 0 0 0 1.4 97.1 0 0 0 0 0 0 0 0 1.5

Lch 0 2.7 2.7 0 0 91.9 0 0 0 0 0 0 0 2.7

NW 0 0 0 0 0 0 97 0 0 0 0 0 1.5 1.5

R1Slp 0 0 0 0 0 0 0 92 0 0 4 0 0 4

R1Wkp 0 0 0 0 0 0 0 0 96.2 0 1.9 0 0 1.9

R1WO 0 0 0 0 0 0 0 0 0 89.1 2.2 0 0 8.7

R2Slp 5.8 0 0 0 0 0 0 1.9 0 0 80.8 0 3.8 7.7

R2Md 0 0 0 0 0 0 0 0 0 0 0 95.5 0 4.5

R2Wkp 11.5 0 0 0 0 0 0 0 0 0 0 0 76.9 11.6

ture of the activity, since multiple participants are involved and

least number of activity instances (only 11) are available for the

training that may not cover all the intra-class variations.

Residents with a pet - Datasets

In Milan dataset, one resident living with a pet, and in Cairo,

two residents living with a pet, perform the activities. The

activity classes in Cairo dataset such as Breakfast, Lunch and

Dinner, or in Milan dataset such as Morning Medication and

Evening Medication, have similar features. The presence of

pet results in the activation of sensors that do not correspond

to any activity and insert noise in the dataset. Additionally,

the variation in the activity instances in Cairo dataset can be

observed due to more number of users. Less inter-class while

more intra-class and inter-subject variations result in more chal-

lenging datasets.

In Milan dataset, from the total of 2310 activity instances,

precision, recall and specificity of ARSH-SV are 87.31%,

83.55% and 99.64% respectively, and higher than other ap-

proaches. The high recall shows that ARSH-SV is least affected

by the noise in the data and it is able to correctly identify the

activity instances. MCC measure of ARSH-SV is 0.85, which

is also better compared to PCA-SVM, ET-KNN, PNN and NB.

In Cairo dataset, total activity instances are 600, the precision,

recall and specificity of ARSH-SV are 94.95%, 94.92% and

99.64%, respectively. MCC measure of ARSH-SV is also better

than PCA-SVM, ET-KNN, PNN, and NB. F1-score of ARSH-

SV, PCA-SVM, ET-KNN, PNN and NB is 0.95, 0.63, 0.65, 0.56

and 0.39, respectively. It can be observed that noise due to the

presence of pet, overlap in features and variations in activity

instances affect the performance of PCA-SVM, ET-KNN, PNN

and NB more than ARSH-SV. ARSH-SV shows better results

in the case of intra-class and inter-subject variations due to non-

related sensor activations.

Table 7 shows the confusion matrix of activities in Cairo

dataset. Despite the presence of 2 residents and a pet, it is

observed that ARSH-SV has high recognition performance for

activities other than Laundry (Ldy) and R2 Wakeup (R2Wkp).

Table 8: Comparison of existing approaches with ARSH-SV. Recognition rate

is in percentage(%) and the range of F1-score is between [0, 1].

Evaluation Cross
Dataset Existing approaches

measure validation

Recognition

1 day out

Kyoto1

ARSH-SV 93.00

rate

ADR-SPLDA(SPL2) [21] 92.49

ADR-SPLDA(SPL3) [21] 79.44

Kasteren

ARSH-SV 94.24

C-SVM [43] 93.40

CRF [43] 95.60

LDA [43] 93.50

Kasteren10
ARSH-SV 88.55

AALO [29] 75.86

three-fold Cairo

ARSH-SV 92.86

CRF [54] 91.00

HMM [54] 82.00

F1-score

1 day out

Kyoto7
ARSH-SV 0.91

AR-SPM(C+CP) [6] 0.73

Kasteren

ARSH-SV 0.91

AR-SPM(C+LP) [6] 0.81

EFA-AR [45] 0.77

Murphy rule [45] 0.68

Dempster-Shafer rule [45] 0.54

Temporal EDN [48] 0.70

No time EDN [48] 0.45

Kasteren10

ARSH-SV 0.80

HHMM [38] 0.78

HSMM [38] 0.72

ten-fold Kasteren

ARSH-SV 0.90

CL-AR [37] 0.87

J48-DT [37] 0.79

In the case of Ldy, 70% of instances are recognized with high

confidence and 20% of instances are recognized with low con-

fidence (irregular). In R2Wkp, 76% of instances are identi-

fied correctly with high confidence and 11% with low confi-

dence. The remaining 11% goes into Bed to Toilet (Tlt) activity,

since Tlt is the next activity in the sequence of performance and

shares overlapping features.

4.4. ARSH-SV comparison with existing approaches

Table 8 shows the performance comparison of ARSH-SV

with the existing activity recognition approaches [6, 21, 28, 29,
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Table 9: Confusion matrices on Kasteren10 dataset for activity recognition using leave one day out cross validation (a) AALO [29] (b) ARSH-SV. The rows

represent the actual activities and columns represent the predicted activities. Key: Acts - Activities, LH - Leave Home, Tlt - Toileting, Shr - Shower, Slp - Sleep, BF

- Breakfast, Dnr - Dinner, Snk - Snack, Drk - Drink, WM - Washing Machine, DW - Dish Washer, IA - Irregular Activities.
(a) AALO [29]

Acts LH Tlt Shr Slp BF Dnr Snk Drk WM DW IA

LH 89.9 0 0 0 0 0 0 0 0 0 10.1

Tlt 0 70.3 0 0 0 0 0 0 0 0 29.7

Shr 0 0 77.5 0 0 0 0 0 0 0 22.5

Slp 0 0 0 98.7 0 0 0 0 0 0 1.3

BF 0 0 0 0 64.5 0 4.2 6.3 0 5.8 19.2

Dnr 0 0 0 0 0 69.8 2.4 2.9 0.5 1.3 23.1

Snk 0 0 0 0 0 10 74.3 4.6 0 0 11.1

Drk 0 0 0 0 11.1 9.4 5.2 74.3 0 0 0

WM 0 0 0 0 0 10 0 0 70.4 0 19.6

DW 0 0 0 0 4.6 20.5 0 5.5 0 69.4 0

(b) ARSH-SV

Acts LH Tlt Shr Slp BF Dnr Snk Drk WM DW IA

LH 100 0 0 0 0 0 0 0 0 0 0

Tlt 0 98.2 0.9 0 0 0 0 0 0 0 0.9

Shr 0 0 100 0 0 0 0 0 0 0 0

Slp 0 8.3 0 66.7 0 0 0 0 0 8.3 16.7

BF 0 0 0 0 75 0 10 5 10 0 0

Dnr 0 0 0 0 11.1 44.4 33.3 0 0 0 11.1

Snk 0 8.3 0 0 16.7 0 33.3 16.7 16.7 0 8.3

Drk 0 0 0 0 0 0 0 95 0 5 0

WM 0 0 0 0 0 0 0 0 88.9 0 11.1

DW 0 0 14.3 0 0 0 0 0 0 85.7 0

37, 38, 43, 45, 48, 54]. In addition to the already used three

datasets: Kasteren, Cairo and Kyoto2, two more datasets: Ky-

oto7 (Daily life, Spring 2009) [55] and Kasteren10 [11] com-

prising of 14 and 10 activities, respectively are used (activity

descriptions in Fig. 2b and Table 9). We apply the cross val-

idations same as mentioned in the compared approaches. We

also use the evaluation measures: recognition rate and F1-score

as applied in the state-of-the-art approaches. ARSH-SV shows

the recognition rate better or comparable to the existing ap-

proaches in [21, 29, 43, 54] using four datasets: Cairo, Kyoto2,

Kasteren and Kasteren10. Since recognition rate does not con-

sider false positives and false negatives, which are the main fo-

cus of ARSH-SV, the complete performance is not measurable

through recognition rate alone. Also, since some activities are

executed more frequently than others (imbalance), it is possi-

ble for a classifier to achieve a high recognition rate by assign-

ing the correct label to the class with the majority of instances.

Therefore, F1-score is applied, which incorporates both preci-

sion and recall and thus is more reliable. It can be observed that

ARSH-SV has the highest F1-score in datasets, Kyoto7 (91%),

Kasteren (91%) and Kasteren10 (80%) compared to the exist-

ing approaches in [6, 37, 38, 45, 48]. The results show that in

ARSH-SV, the activities are correctly recognized, while incor-

rect labels are correctly identified through confidence measure

that remain useful in reducing the false positives effectively.

Table 9 shows the comparison of confusion matrices, for

AALO [29] and ARSH-SV. AALO is a frequent itemset mining

and clustering based activity recognition approach, which as-

signs labels to the activity instances and separates the instances

not associated with any cluster. We can observe that ARSH-

SV achieves improved performance than AALO in the activ-

ities of Leave Home, Toilet, Shower, Breakfast, Drink, Wash-

ing Machine and Dish Washing. In the case of eating activi-

ties (Snack, Dinner and Breakfast) because of the similarity of

activity classes being performed in the same location, 33% of

Dinner is recognized as Snack and 16% of Snack is recognized

as Breakfast. It can be observed from the results that ARSH-

SV achieves an overall better recognition performance and cor-

rectly assigned the low confidence to the irregular instances,

which could otherwise be confused with other activity classes.

Figure 2 shows the activity level comparison of ARSH-SV

with AR-SPM [6], Temporal EDN, No time EDN, NB and J48-

DT [48] for Kasteren dataset (Fig. 2a), and with AR-SPM [6]

for Kyoto7 dataset (Fig. 2b) using F1-score. We apply leave

one day out cross validation, a stringent test using single day

data for testing and the remaining for training and the process

is repeated for all days. In Kasteren dataset, ARSH-SV attains

high F1-score in all the seven activities compared to no time

EDN, NB and J48-DT and for five activities compared to AR-

SPM, while it shows comparatively less F1-score in the din-

ner activity compared to temporal EDN and AR-SPM, due to

the similarity with breakfast and the availability of less (9) in-

stances for training. In Kyoto7, ARSH-SV achieves better F1-

score in most of the activities while comparable to AR-SPM in

a few.

ARSH-SV shows its effectiveness in the recognitions in the

case of inter-class similarities and intra-class variations. The

confidence measure is useful in highlighting the anomalous and

incorrectly assigned activity instances and improves the relia-

bility and performance of the activity recognition system.

5. Conclusions

We proposed an activity recognition approach that improves

the reliability of the recognized activities by measuring the con-

fidence of the assigned labels. Binary SVM is used for the clas-

sification of pre-segmented activity instances, while the under-

lying distribution of data within an activity class is estimated

through sub-clustering. Sub-clusters represent the intra-class

variations among the activity instances of the same class, which

are exploited to measure the confidence score of the assigned

labels. This proves to be useful in reducing the number of

false positives in the assignments resulting in more reliability

in the recognition performance. The performance of ARSH-SV

is evaluated on nine real smart home datasets using a compre-

hensive evaluation metrics. ARSH-SV correctly measures the

confidence score on average up to 94% of the assigned labels

and shows a better performance by achieving an average accu-

racy of 98.85% on nine datasets, which is 6% higher compared

to the existing learning approaches for activity recognition.
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Figure 2: Activity level performance comparison of ARSH-SV with existing methods through F1-score using ’leave one day’ out cross validation: (a) AR-SPM

(C+LP) [6] Temporal EDN, No time EDN, NB and J48-DT [48] on Kasteren, and (b) AR-SPM (C+CP) [6] on Kyoto7. Key: R1Tlt - R1 Bed to Toilet, R1BF - R1

Breakfast, R1Grm - R1 Groom, R1Slp - R1 Sleep, R1WCm - R1 Work at Computer, R1WDT - R1 Work at Dining room Table, R2Tlt - R2 Bed to Toilet, R2BF -

R2 Breakfast, R2Grm - R2 Groom, R2PDnr - R2 Prepare Dinner, R2PLch - R2 Prepare Lunch, R2Slp - R2 Sleep, R2WT - R2 Watch TV, R2WCm - R2 Work at

Computer.
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