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Abstract— This paper presents a new approach torule
extraction from Support Vector Machines. SVMs have been
applied successfully in many areas with excellent generalization
results; rule extraction can offer explanation capabilityto SVMs.
We propose to approximate the SVM classification boundary
through querying followed by clustering, searching and then to
extract rules by solving an optimization problem. Theoretical
proof and experimental results then indicate that the rules can
be used to validate the SVM results, since maximum fidelity
with high accuracy can be achieved.

I. I NTRODUCTION

In recent years, Support Vector Machines (SVMs) have
been utilised in many applications offering excellent gener-
alization results. In many cases, however, developers prefer
not to use SVMs because of their inability to explain how
the results have been obtained. For example, if used for stock
predictions, an SVM can provide users with a mechanism
for forecasting, but the knowledge associated with the pre-
dictions may be incomprehensible; users may have to trust
the prediction results while unable to validate the rules of
the data.

The area ofrule extractionaddresses the above problem.
By extracting rules from SVMs, we can explain the reasoning
process and validate the learning system. Rule extraction
helps, therefore, to integrate the symbolic and connectionist
approaches to AI, offering ways of combining the statistical
nature of learning with the logical nature of reasoning.

Since the early 1990s, various algorithms to extract rules
from trained neural networks have been proposed, notably
[4], [2], [17], [11], [14], [12], [5]. Some of these search for
rules by decomposing the networks and extracting rules for
each unit, and some extract rules directly from the input-
output values of the networks, thus treating them as black-
boxes. Recently, SVMs started to be considered for rule
extraction because of their excellent generalization capability.
Angulo et al [19] used support vectors and prototypes to draw
regions indicating an equation rule or interval rule. Barakat
and Diererich [15] used support vectors to construct synthetic
data, feed the data into a decision tree learner, and extract
rules. Fung et al [6] proposed an algorithm that approximates
linear SVM hyperplanes by a set of rules.

In our opinion, a satisfactory extraction method, striking
a balance between the need for correctness and efficiency,
is still lacking. Most of the extraction methods are designed
for specific architectures and training sets, or are affected
by the tradeoff between efficiency and rule accuracy. In this

paper, we tackle both of these issues by proposing a new
any-time rule extraction algorithm, which uses the SVM as
an oracle (black-box) and synthetic data for querying and
rule extraction, thus making fewer assumptions about the
training process and the SVM training data. The algorithm
is not restricted to a specific SVM classifier such as the
linear classifier considered in [6], neither does it depend on
the availability of specific training sets for rule extraction.
Instead, it seeks to capture the information encoded in the
geometry of the SVM by approximating the region separated
by the SVM classification boundary through querying [12]
and searching, and then extracting rules by solving an
optimization problem, which we describe in detail in the
sequel. We also prove the soundness and completeness of our
approach, and run experiments and compare our approach
with other extraction methods. We examined rule accuracy,
fidelity and comprehensibility in two applications: the iris
flower dataset and the breast cancer-wisconsin dataset. The
results indicate the correctness of our approach through
maximum fidelity.

The paper is organised as follows: Section 2 gives a
brief introduction to SVMs. Section 3 describes our new
extraction algorithm. Section 4 presents the proofs. Section
5 contains the experimental results, and Section 6 concludes
and discusses directions for future work.

II. SUPPORTVECTORMACHINES

We consider the problem of classifyingn points in the
m-dimensional input spaceRm. Consider the training data
set {(xi, yi)}, i = 1, ..., n, yi ∈ {1,−1} and xi ∈ Rm. In
the case of linear SVMs the decision function is a separating
hyperplanef(x) = sign(w ·x+b). The optimal classification
hyperplane that maximizes the distance between classA+ =
1 and A− = −1 can be found byminimizing 1/2‖w‖2

subject toyi(w · xi + b) ≥ 1.
The LagrangianJ below has been introduced to solve this

problem:J = 1
2wT w−Σn

i=1αi(yi(w·xi+b)−1), whereαi ≥
0 is known as the lagrange multiplier. With respect tow and
b, minimizingJ leads tow = Σsv

i=1αiyixi andΣn
i=1αiyi = 0

wheresv is the number of support vectors [21]. By making
some substitutions, we arrive at the hyperplane decision
function f(x) = sign(Σsv

i=1αiyi〈xi · xj〉 + b), j = 1, ..., n,
where〈〉 denotes inner product.

For nonlinear classification, the SVM has to map the data
points into a high dimension feature spaceH in which the
data can be linearly separated. LetΦ : Rm → H. By using



kernel functionsK(x, x′) = 〈Φ(x) ·Φ(x′)〉, all the necessary
operations in the input space may be carried through, and the
decision function can bef(x) = sign(Σsv

i=1αiyiK(xi,xj)+
b). For more details on SVMs, see [21].

III. G EOMETRIC SVM RULE EXTRACTION

Most rule extraction algorithms suffer from a lack of
generality, a balance between correctness and fidelity, or
both. In this section, we present a novel rule extraction al-
gorithm calledGeometric and Oracle-Based Support Vector
Machines Rule Extraction(GSVMORC), which is designed
to alleviate these limitations. GSVMORC utilizes the points
on the SVM classification boundary and synthetic training
instances to construct a set of optimized hypercube rules. The
area covered by those rules is maximized and approximates
the area of interest. The definitions of thehypercube rule
and thearea of interestare given as follows.

Definition 3.1: Hypercube Rule:It is said that an m-
dimensional hypercubeH characterizes a rule if every point
in the scope ofH falls into the same class classified by the
SVM network. More precisely:

H =
{

xi

∣

∣

∧

lj ≤ xij ≤ uj → Ak, 1 ≤ j ≤ m
}

wherexi = [xi1, ..., xim], lj anduj are the upper and lower
bounds onH. Ak indicates a class label, andm is the
dimension of the input space.

Definition 3.2: Area of Interest. This is the whole region
covered by a classAk in the input space.

I(Ak) =
{

xi

∣

∣ the class of xi = Ak, lj ≤ xij ≤ uj ,
}

,

where 1 ≤ j ≤ m, i ≥ 1, xi is an m-dimensional input
vector. uj and lj are the upper and lower bounds ofxij .
xij refers to thejth dimension ofxi. There is no vector
xi ∈ I(Ak) such that the classification ofxi equals the other
class rather thanAk.
The aim of GSVMORC is to use the classification boundary
and synthetic training instances to extract the hypercube
rules without considering the inner structure and the support
vectors of the SVM network. It treats the SVMs asoracles,
and makes fewer assumptions about the architecture and
training process, hopefully being applicable to other non-
symbolic learning methods. All we assume is that an SVM
is given which we can query and find the classification
it gives for input vectorsxi. After querying, a clustering
process is imposed on those inputsxi with the sameyi,
in order to group them into a set of clusters. Then, by
means of a binary search algorithm, we look for the pointsP

that lie on the SVM classification boundaries. Subsequently,
an initial optimal rule set can be extracted for the points
in P and synthetic training instance set by solving an
optimization problem whereby we attempt to find the largest
consistent hypercubes in the input space. Finally, several
post-processing measures are applied to this initial rule set
in order to derive (a relatively small number of) generalized
rules from. In what follows, we explain each of the above
steps of our extraction algorithm.

Querying. The generality of GSVMORC is because it
generates a subset of synthetic training inputs to query the
SVMs, which then returns back the class labels of the inputs.
We use a random data generator to produce a large amount
of inputs. Only those inputs locate in the range of the
input space, and their values of a density estimatorM(x)
are larger than a user-defined constraintc1 are retained.
Unlike TREPEN [13] which uses thekernel density estimates
of individual features, GSVMORC usesmultivariate kernel
density estimateswhich takes into account therelations
within features. M(x) used by GSVMORC models the
probability density function for inputsx as:

M(x) =
1

N

N
∑

i=1

1
∏m

j=1 hj

[
1

(
√

2π)m
e−

1
2
(‖ x−Xi

h
‖)]

where Xi are the given training samples,1 ≤ i ≤ N .
h = [h1, h2, ...hm] is a vector of bandwidth such thath =

[ 4
(m+2)N ]

1
m+4 σ whereσ is standard deviation of the training

samples. Figure 1 contains the input generation algorithm.

DRAWINPUTS

Input: a constraintc1, the lower and upper bounds of the input
spaceL andU , a random data generatorg(x), a density estimator
M(x) and the number of iteration
timesT
Output: the input setx = {xi : i ≥ 1}
(1) Initialize the input setx
(2) GenerateT random data{xi : 1 ≤ i ≤ T} based ong(x)
(3) for each iteration i < T do
(4) If L ≤ xi ≤ U then
(5) Calculate M(xi)
(6) if M(xi) > c1 then
(7) x := x

⋃

xi

Fig. 1. The DRAWINPUTS function: call a random data generatorg(x) to
create uniformly distributed data; use a density estimatorM(x) to reserve
those data whose probabilities are larger than an arbitrary numberc1.
Meanwhile, the outputs should lie betweenL andU.

After obtaining those synthetic inputs{xi, i ≥ 1}, we treat
them as the inputs of the SVMs; the SVMs are considered
asoracles1. Suppose we have an SVM computing function
f(x). For each inputxi, we feedxi into the SVM and
get the corresponding outputyi = f(xi). The instances
{(xi, yi), i ≥ 1} are created. Note that the distanced from
xi to the separating hyperplane is also obtained when SVM
answer the queries fromxi.

The last step in querying is called SELECTINSTANCE.
GSVMORC defines a factorn so that it is much more flexible
in its ability to choose differing sizes of instances. In order to
select the instances with much higherM(x), thosexi (i ≥ 1)

1Notice that the SVM is considered as ablack box. All we need to know
are key input-output patterns, rather than the inner structure. This complies
with Thrun’s desideratum for a general rule extraction method ofno training
requirement[4]. The querying process makes our approach independent of
any special training data, neither does it make any assumption about the
network’s structure. It can be applied to any SVM classifier, regardless of
the algorithms used to construct the classifier, including Sequential Minimal
Optimization (SMO) [10] and DAGs-SVM [9].



with the same class label are sorted first. Suppose that there
are CN classes involved in the classification problem and
that the number ofxi for each class isn(G). In this case,
we choose the firstn/CN instances, or the whole group of
instances ifn(G) < n/CN , to build up the synthetic training
instance setS.

One key issue in querying is how to know the classes
which are needed to be classified in a general way. GSV-
MORC still generates a large amount random dataZ =
{z1, ..., zh}2, which are uniformly distributed in the input
space. These dataZ are then input into the SVM network
to acquire class labels for them. For largeh, we believe that
the data inZ are able to spread throughout the input space.
Therefore, a set of classes (A = {Ak|1 ≤ k ≤ CN,CN is
the total number of classes}) can be obtained after filtering
the duplicates.

Clustering. Since there must be a classification boundary
between different classes, we can find the points lying on the
classification boundary between pairs of data for different
classes. However, for a large number of training data, if we
search each pair of data for different classes, this may lead to
high complexity. Hence, we use clustering to create a balance
between the complexity and prediction accuracy. A cluster
C can be defined as a subset of training dataS = {(xi, yi)},
with the same classyi.

We use hierarchical clustering onS. It starts by con-
sidering each individual point as a cluster, and it merges
the clusters by measuring the distance between two clusters
of data which have the same class labels. Because the
mergence of the clusters is relevant only to those training
instances that have the equivalent class, just the inputsxi

are involved in the distance calculation. Our approach uses
one of the following linkage functions:Single linkage, uses
the smallest distance between datax

r
i and x

s
j in the two

clustersr and s. If the size ofr and s are nr and ns then
d(r, s) = min(dist(xr

i ,x
s
j)), i ∈ (1, ..., nr), j ∈ (1, ..., ns);

Complete linkage, uses the largest distance between datax
r
i

and x
s
j in the two clustersr and s such thatd(r, s) =

max(dist(xr
i ,x

s
j)).

In order to reduce the randomness of the number of
clusters, astopping criterion is defined for the clustering
process. Givenq clusters{rh, h = 1, 2, ..., q}, the classes
of the clusters are identical, and the number of data in each
clusterrh is nrh . It is obvious that the mean and variance
of each cluster relate to the dataxi, 1 ≤ i ≤ nrh inside this
cluster. Hence, the meanmrh of each clusterrh is:

mrh =
1

nrh

nrh
∑

i=1

xi

and the variancesrh is

srh =
1

nr

nrh
∑

i=1

(xi − mrh)2

2h is an arbitrary large integer.

Hence, the intra-cluster deviation is defined as follows:

sintra =

√

√

√

√

q
∑

h=1

(srh ∗ p(rh)) (1)

wherep(rh) = nrh
∑ q

h=1
nrh

.
And the inter-cluster mean and deviation are specified in

Equation 2.

minter =

q
∑

h=1

(mrh ∗ p(rh)) (2a)

sinter =

√

√

√

√

q
∑

h=1

[(mrh − minter)2 ∗ p(rh)] (2b)

Definition 3.3: The stopping criterionD is the rate be-
tweensintra andsinter.

If sintra

sinter > ǫ, then GSVMORC will stop merging the data
further. Note thatǫ is a user-defined parameter.

Searching.The searching step searches for and lo-
cates the points on the decision boundaries. Given clus-
ters P1, P2, ...Pa which fall into classA+, and clusters
N1, N2, ...Nb which fall into classA−, we use Zhang and
Liu’s measure [24] to automatically look for the points on
an SVM’s decision boundary3.

We consider all pairs(p, n) s.t. p ∈ Pj(1 ≤ j ≤ a) and
n ∈ Nk(1 ≤ k ≤ b). For eachp, we find a corresponding
point n whose distance top is minimum. And for eachn, we
find a corresponding pointp whose distance ton is minimum.
As described inqueryingsection, the distance from any point
to the SVM hyperplane is one of the outputs by querying
the SVM network. Letd1 represent the distance fromp to
the hyperplane andd2 represent the same forn. In order
to find the point lying on the hyperplane, a binary search
procedure is performed on(p, n). In other words, if|d1 −
d2| > ε, the mid-pointq betweenp and n is chosen. The
SVM network classifiesq and computes the distance between
q and the hyperplane. If the class ofq equals that ofp, thenp
is replaced byq; otherwise,n is replaced byq. The process
carries on until|d1 − d2| < ε is achieved, whereε denotes
an arbitrary small number.

Extracting. The main idea of our rule extraction approach
is to find a set of optimal rules that 1) covers the maximum
area of thearea of interestand 2) covers the largest cardi-
nality of synthetic instances at the same time.

Suppose that there are a set of pointsX lying on the SVM
decision boundary, whereX is the result ofsearching, a set
of synthetic training instancesS generated fromquerying
for classesA = {Ap, 1 ≤ p ≤ CN}, and the SVM function
f(x).

To realize the first goal of the rule extraction algorithm,
we try to solve the following optimization problem:

maximize
m
∏

i=1

(xi − x0i
) (3a)

3Notice that for simplicity we have been consideringP = 2 classes, but
our extraction algorithm is applicable to any number of classes.



subject to l ≤ x ≤ u (3b)
∫ u

l

(f(x) − Ap)dx = 0 (3c)

wherex0i
denotes theith element of vectorx0 ∈ X (x0

indicates a starting point),xi is theith element ofx, l andu
are the m-dimensional vectors giving lower and upper bounds
to this optimization problem.

The objective function (Equation 3a) aims to maximize the
volume of the hypercube that a rule covers, and it has two
constraints. One is a bound constraint to limit the optimalx

∗

in a given area, while the other is a nonlinear constraint that
is used to exclude the points that have different class labels.

The values ofl and u in Equation 3b can be calculated
based on the lower and upper bounds of the input space. For
example (see Figure 2(a)), suppose the scope of the input
space is[L1, L2] ≤ x ≤ [U1, U2], andx0 = [x01

,x02
] is a

point lying on the SVM boundary. Note that when we change
△x01

onx01
or −△x02

onx02
(△x01

, △x02
≥ 0) the SVM

classification onx0 is classAp. Hence, it is reasonable to
assume that an optimal point can be found and that a rule for
classAp in a rectangle between pointsx0 and [U1, L2] can
be constructed. Here,[U1, L2] is defined as anorientation
for x0. l andu are then narrowed down tol = [x01

, L2] and
u = [U1,x02

].
If more than oneorientationis found for classAp, then the

principal orientations have to be selected. Letv = [v1, v2]
stand for an orientation forx0. In the above example,v =
[U1, L2]. Selecting the orientations forx0 involves deciding
how to compute the significance of each orientation. Equa-
tion 4 shows conditional probability estimation that GSV-
MORC uses to determine the significance of each orientation.
The estimation represents the probability distribution ofx

lying in the area betweenv andx0, given classAp. In Equa-
tion 4, P (min(v,x0) ≤ x ≤ max(v,x0)

⋂

class = Ap)
indicates the probability ofx falling into the area between
v as well as belonging to classAp, andP (class = Ap) is
the possibility that the classification ofx equalsAp. Assume
that the distribution of synthetic training examples is similar
to that of the problem domain. Hence, the probabilities
P (min(v,x0) ≤ x ≤ max(v,x0)

⋂

class = Ap) and
P (class = Ap) could be worked out from the synthetic data
set. The value ofP (min(v,x0) ≤ x ≤ max(v,x0)|class =
Ap) is then calculated by dividingP (min(v,x0) ≤ x ≤
max(v,x0)

⋂

class = Ap) by P (class = Ap). The
end result is that those orientations that have the maximum
probabilities are selected as the principal orientations onx.

P (min(v,x0) ≤ x ≤ max(v,x0)|class = Ap)

=
P (min(v,x0) ≤ x ≤ max(v,x0)

⋂

class = Ap)

P (class = Ap)
(4)

As presented in Equation 3c, the nonlinear constraint is
a multi-dimension integral on a linear/nonlinear function.
GSVMORC uses a quasi-Monte Carlo method [22] to ap-
proximate the integration because it is a superior method

with many advantages such as improved convergence and
more uniformity. Therefore, the hypercubeH is considered
to be composed of the points that are uniformly distributed
as:

1

n

n
∑

i=1

|f(ai) − Ap| ≈
∫ u

l

|f(x) − Ap| dx

whereai is a low-discrepancy sequence inside the hypercube
[l, u], where1 ≤ i ≤ n, and n here means the number of
points selected for approximation in theH. The estimation
error then becomes,

ǫ =

∣

∣

∣

∣

∣

∫ u

l

|f(x) − Ap| dx − 1

n

n
∑

i=1

|f(ai) − Ap|
∣

∣

∣

∣

∣

From the above, it can be shown that the largern is, the
closer the approximation approaches the integral. It is clear
that the complexity increases with the rise ofn. Therefore, in
order to strike a balance between error estimation, fidelity,
accuracy prediction and complexity, a propern has to be
chosen. In the cross-validation experiments, we foundn =
1000 as a suitable number for our benchmark datasets.

With this, the standardpattern search algorithmis applied
to obtain a solutionx∗ to the optimization problem. Charles
and Dennis analyze the generalization of the pattern search
by evaluating the objective function [1]. After obtaining the
optimal point x∗, together with the starting pointx0, the
antecedents of a rule can be constructed by picking the
minimum and maximum values ofx∗ andx0, as shown in
Figure 3. Figure 2(a) gives an example of a hypercube rule
with the starting pointx0.

Finally, to find the set of rules covering all the synthetic
training instances, Equation 3 is used again, and in it,x0 is
replaced withs ∈ S (see Figure 2(b)). The process is the
same, which ensures the extracted rules cover most of the
synthetic training instances as well as the maximum area of
the area of interest.

Figure 3 summaries the rule extraction algorithm and its
associated rule generation algorithm, as discussed above.

The rule set obtained fromextractingmay contain over-
lapping rules, for which a set of post-processing measures in
the next section are employed to solve this problem.

 

s 

x0’(x0’1, x0’2) 

 

[x0’1, x2] < x < [x1, x0’2] �
 Ap 

x* (x1,x2) 

X2 

X1 

(a)

 

[x1, l2] <  x < [u1, x2] 
�

 Ap 

x* (x1, x2) 

x’ 

s (u1, l2) 

X2 

X1 

(b)

Fig. 2. left: extracting the rule from the starting point[x01
,x02

] which
is obtained fromSearching; right: extracting the rule to cover the training
data and approximate the area thatAp covers, the starting point is[s1, s2].



Extracting

Input: A set of pointsX on the SVM boundary obtained from
the searchingstep; a set of training dataS obtained from
queryingstep and the class labelAp.
Output: A set of rulesR = {r},

wherer =
∧

li ≤ xi ≤ ui → Ap, 1 ≤ i ≤ m
(1) for each t ∈ X
(2) Construct the lower and upper boundl andu

by finding the orientations ofx
(3) Apply pattern search algorithm [1]withx0 = t to

obtainx
∗

(4) Call rule generation algorithm with parametersx
∗

andx0 to construct a ruler and makeR := ∪r
(5) for each s ∈ S and its correspondingt ∈ X
(6) Construct the lower and upper boundl andu

by finding the orientations ofs
(7) Apply pattern search algorithm [1] withx0 = s to

obtainx
∗
′

.
(8) Call rule generation algorithm with parametersx

∗
′

ands
to construct a ruler′ and makeR := R ∪ r′

Rule Generation Algorithm

Input: m-dimensional pointsx∗ andx0

Output: a ruler
(1) Let lower boundl = [min(x∗

1,x01
), ..., min(x∗

m,x0m)]
(2) Let upper boundu = [max(x∗

1,x01
), ..., max(x∗

m,x0m)]
(3) Generater =

∧

li ≤ xi ≤ ui → Ap, 1 ≤ i ≤ m

Fig. 3. Rule extraction algorithm

Post-Processing.The purposes of these post-processing
measures are to detect generalized rules, to prune rules with
high error estimation and to construct non-overlapping rules
with high coverage rate.

The notions ofnon-overlappingand coverage rateare
defined as follows.

Definition 3.4: Non-overlapping Rule:Given two rules,
r1 =

∧

ai ≤ xi ≤ bi → Ap andr2 =
∧

ci ≤ xi ≤ di → Ap,
r1 and r2 are said to be non-overlapping iffbi ≤ ci or
ai ≥ di, for any i, 1 ≤ i ≤ m.

Definition 3.5: Coverage rate is the rate between the num-
ber of testing data that are predicted correctly by a rule and
the entire testing data.

1) Rule Extending:Given that the input space of a prob-
lem domain is from[L1, ..., Lm] to [U1, ..., Um] and that of
a rule isr = [l1, ..., lm] ≤ x ≤ [u1, ...um] → Ap, the rule-
extending step attempts to extendr into a larger scope. At the
same time, the new ruler′ still satisfies the constraint that the
area covered byr′ belongs to the same class. To exhaustively
find all the potential rules in an extended scope, a topology
is used to achieve this.

Let the original value ofr be 0 and the new value of
a rule be 1. For example, if the1st dimension of r is
extended toL, then r becomesl′ = [L1, l2, ..., lm] ≤ x ≤
u′ = [u1, ..., um] → Ap. Hence, the new value[L1, u1] on
dimension one is regarded as1. The definition of topology
is defined as follows.

Definition 3.6: Topology: An arrangement in which each

000 

001 010 100 

101 011 110 

111 

Fig. 4. Ordering on extending to the edge of the problem domain.

element means that the value of every dimension is mapped
to 0 or 1 according to the above regulations.

Figure 4 shows an example of a topology where the
dimension of the input space is 3.

We assume that the ruler initially constructs a rule set
R. The function hasm− 1 iterations, and for each iteration,
rj in R is picked, and every dimension ofrj is extended,
where 1 ≤ j ≤ n and n is the number of rules inR. At
the first iteration, there is only one rule inR that isrj = r,
j = 1. Subsequently, each dimensioni is extended toLi, and
the new value[Li, ui] is verified if it satisfies the constraint
1
n

∑n

i=1(|f(xi)−Ap|) = 0. Next, for the same dimension,r
is then extended toUi, and a similar verification is performed
on this new value. If there is any extension on the value of
the ith dimension ofr, the new ruler′ is kept for the next
iteration. After going through each dimension ofrj , all the
new rules,r′, are put together for a new rule setR.

Finally, if the value of theith dimension equals the scale of
the input space, which is believed to be applicable throughout
the total range of theith dimension, GSVMORC then filters
this dimension from the antecedents of the rule.

The complexity becomes exponential if the algorithm goes
through every element in the topology. It increases with the
rise of the dimensionality of the input space and even grows
to be intractable in the worst case. Hence, in practice, an
optimizing measure known as thecracking of topologyhas
been adopted.

Firstly, the definition of aclashof the topology is given. A
clashis an occurrence when the new region of a rule consists
of the points for another class. The rule can be represented
as an element in the topology.

When aclash is identified on a certain element, the rule-
extending process would not continue on with the remaining
elements that have connections with the element that has the
clash. This is calledcracking of topology.

Consider a three-dimensional problem. The antecedents
of an initial rule are interpreted as000. It is then easy to
make a structure in the order of Figure 4. Given such an
ordering, some conclusions can be drawn. If an element
in Figure 4 deviates from1

n

∑n

i=1 |f(ai) − Ap| = 0, then
a clash would be detected, which indicates that no other
element along the ordering of this element would satisfy
1
n

∑n

i=1 |f(ai) − Ap| = 0.



2) Rule Pruning: The rule pruning stage aims to prune
those rules that have a relatively large estimated error.
GSVMORC uses at-test to analyze the null hypothesis that
the mean of the estimated value and the expected value of
the integral of a ruler are equal, that is the mean of the
estimated value equals 0.

As GSVMORC uses quasi-Monte Carlo method to ap-
proximate the integration function in Equation 3c, there
is a potential error between the approximation value and
the integral. Most existing studies use the Koksma-Hlawka
inequality [3] to state the limit of the integration error.

∣

∣

∣

∣

∣

1

n

n
∑

i=1

|f(xi) − Ap| −
∫ U

L

|f(x) − Ap|
∣

∣

∣

∣

∣

≤ V (f)D∗
N

However, it is usually difficult to calculate the total vari-
ation V (f), which makes it problematic to estimate error
through Koksma-Hlawka inequality.

Morohosi and Fushimi [7] introduce a statistical method
for quasi-Monte Carlo error estimation. The rule pruning of
GSVMORC is based on their method. The general scheme
of the method is as follows.

Suppose a ruler with an area ranging froml to u, M

data sets{x(j)
i }n

i=1, wherej = 1, ..., M , l ≤ x
(j)
i ≤ u and

{x(j)
i }n

i=1 is a set of pseudorandom data. For each data set,
the value of Equation 5 is computed.

S(j) =
1

n

n
∑

i=1

|f(xi) − AP | , j = 1, ..., M (5)

The estimate of the mean̂I is calculated by

Î =
1

M

M
∑

j=1

S(j) (6)

so that the error of the integral is estimated using the
variance of the evaluated values.

σ̂2 =
1

M(M − 1)

M
∑

j=1

(S(j) − Î)2 (7)

Hence, thet-test turns out to be:

t =
Î
σ̂√
M

(8)

GSVMORC sets a significance level to specify how close
the approximation value is to the expected value0. If t is
larger than the standard value at the significance level, the
rule is rejected. Otherwise it is accepted.

Those rules rejecting the null hypothesis are removed.
Therefore, GSVMORC’s pruning is able to ensure that
GSVMORC approximates the behavior of the SVM network.

3) Non-overlapping Rule Construction:As mentioned in
the extracting section, there could exist overlapping rules.
To remove the intersections between rules and improve
the comprehensibility of rules, the characteristics of non-
overlapping rules is identified, that is at least one dimension
of each of two rules do not intersect with each other. For

example, letr1 be [a1, .., am] ≤ x ≤ [b1, ..., bm] → Ap

and r2 be [c1, ...cm] ≤ x ≤ [d1, .., dm] → Ap. If ai ≤
ci ≤ bi ≤ di, 1 ≤ i ≤ m, then the overlap ofr1 and
r2 is {[c1, .., cm] ≤ x ≤ [b1, ..bm]}. Supposer2 does not
change andr1 has to be divided. For each dimensioni, a
non-overlapping rule can be constructed in three steps:

Part 1. Keep the original valueaj ≤ xj ≤ bj of r1 for
those dimensionsj < i.

Part 2. Use the non-overlapping valueai ≤ xi ≤ ci for
the dimensionj = i.

Part 3. Use the overlapping valuescj ≤ xj ≤ bj instead
of the original values ofr1 for those dimensionsj > i.

As a result, the non-overlapping rule is the concatenation
of these three parts.

For example, given two rulesr1 = {[1, 4, 3] ≤ x ≤
[4, 7, 6]} → Ap and r2 = {[2, 5, 4] ≤ x ≤ [5, 9, 8]} → Ap,
the intersection part of these rules is[2, 5, 4] ≤ x ≤ [5, 7, 6].
If i = 2 and r2 remains, thenr1 should be split into three
parts:

part 1. 1 ≤ x1 ≤ 4;
part 2. 4 ≤ x2 ≤ 5;
part 3. 4 ≤ x3 ≤ 6.
Then the non-overlapping rule is[1, 4, 4] ≤ x ≤

[4, 5, 6] → Ap.
4) Rule Selection:The last step of post-processing isrule

selection. This discards those rules with zero coverage rate.
The aim of this step is to extract those rules with exten-

sive information. In GSVMORC, this means that the rules
predicting no data in our experiments are removed. Note
that the selection does not change the predictive behavior
of GSVMORC, it simply deletes extraneous rules

IV. PROOF OFALGORITHM

We now prove that the proposed algorithm is quasi-
soundness and quasi-completeness.

Theorem 1:Each ruleR : r → Ap extracted by GSV-
MORC approximates the classification obtained by SVM.
Note thatr refers to the area associated to classAp.

Proof: The proof structure is similar to that given by
Garcez et al 2001 [2].

First, we have to show that a ruleR extracted either
at the extracting stage or at the post-processing stage can
be obtained by querying the SVM. This can be proven by
contradiction.

Consider a set ofm-dimensional input vectors and a SVM
f(x). If the extracted ruleR is not obtainable by querying
the network, then there must exist a pointxi in r such
that the class output off(xi) is not equivalent toAp. By
the definition of the rule, all the points inside the arear
covered byR should refer to the same classAp. If a point
xi exists that belongs to the other class, this contradicts to
the definition of the rule. Therefore,R must be obtainable
by querying the network.

Subsequently, in order to guarantee all the points inr

belonging toAp, the constraint
∫ U

L
|f(x) − Ap| = 0 must

be satisfied, whereL andU are the lower and upper bounds
of the expected range ofR.



At the implementation level, the quasi-Monte Carlo
1
n

∑n

i=1 |f(xi) − Ap| = 0 is used to approximate the
above integral process and obtain the ruleR. There
should then be a potential approximation errorE =
∣

∣

∣

∫ U ′

L′
|f(x) − Ap| −

∫ U

L
|f(x) − Ap|

∣

∣

∣
, whereL′ and U ′ are

the actual lower and upper bounds ofR.
The rule pruning step utilizes a statistical method to

check if the extracted rule has a small errorE. In our
implementation, the significant level at therule pruningstep
is set to95%. Only the rules whoset-test outcomes satisfy
the standard value at the significant level are kept, which
means the estimation of the integral ofr is close to the
expected value of0. This ensures that the approximation error
is E =

∣

∣

∣

∫ U ′

L′
|f(x) − Ap| −

∫ U

L
|f(x) − Ap|

∣

∣

∣
≤ ε. Therefore,

it can be concluded that the SVM classification on most
points is the same as that ofR with a rather small difference,
andR is said to approximate the classification of the SVM.

Theorem 2:With an increasing number of rules, the rule
set approximates the behavior of the SVM. LetS denote
the area covered by the non-overlapping rule setR = {ri →
Ap, i ≥ 1} andV representthe area of interestI(Ap). When
the number of rules increases,S approximatesV , that is
|V −S|

V
≤ ǫ, whereǫ is an arbitrary small number. Note that

ri refers to an area in classAp.
Proof: Give an input domainX ⊆ ℜm, a set of classes

Y = {Ap | 1 ≤ p ≤ CN}, whereCN is the number of
classes, and a classifier functionf : X → Y .

Firstly, we need to show that there is an upper bound on
the area of interest. The definition ofthe area of interest(see
Definition 3.2) clarifies thatI(Ap) has an upper bound equal
to

∏m

i=1(ui − li), whereui and li are the upper and lower
bounds forthe area of interest.

Next, we need to show that any part of thearea of
interestcan be approximated by a set of rules extracted by
GSVMORC (lemma 3), and the more rules we have, the
larger the area covered by the rules (lemma 4).

Lemma 3:ConsiderV ′ as any part of thearea of interest.
V ′ should then be approximated by a set of rules extracted by
GSVMORC whose area equalsSt. This can be represented
as |V ′−St|

V ′
≤ ǫ.

Proof: This can be proven by contradiction. Suppose
that the intersection betweenV ′ andSt is Vt.

Assume thatV ′ cannot be approximated bySt extracted
by GSVMORC; then the area inV ′ that is not covered by
the rule set is large. It also means that the difference between
V ′ andVt is large.

Since the difference betweenV ′ and Vt is also an area,
a set of uniformly distributed synthetic instances can be
generated inside it, and GSVMORC is able to extract rules
based on these instances. Hence, the size ofSt increases, and
the difference betweenV ′ andVt decreases. This process can
be continued until|V ′−Vt| ≤ ε′ so that |V

′−Vt|
V ′

≤ ε, where
ε andε′ are arbitrary small numbers. Then,

|V ′ − St|
V ′ =

|V ′ − Vt − (St − Vt)|
V ′ ≤ |V ′ − Vt| + |St − Vt|

V ′

By deduction, it can be worked out that|St−Vt|
V ′

≤ ε.

1) Suppose that the area covered by a rule isS1 and
that the intersection area betweenS1 and V is V1.
The difference betweenS1 and V1 refers to the part
in S1 that is classified as the other classes by an SVM.
With respect to Theorem 1, an extracted rule from
GSVMORC is known to approximate the classification
obtained by an SVM. Hence, if the points belonging to
the other classes inS1 exist, they occupy only a very
small part ofS1 so that the deviation at this small part
cannot influence the approximation value ofS1, which
is 1

n

∑n

i=1 |f(x) − Ap|. Therefore, by comparing this
with V1, it can be concluded that|S1−V1|

V1
≤ ε, where

ε is a arbitrary small number.
2) Let us assume that|St−Vt|

Vt
≤ ε, wheret is an arbitrary

integer.
Then, forSt+1 = St + S1 andVt+1 = Vt + V1,

|St+1 − Vt+1|
Vt+1

=
|St + S1 − Vt − V1|

Vt+1

≤ |St − Vt|
Vt+1

+
|S1 − V1|

Vt+1

=
ε(V1 + Vt)

Vt+1
= ε

Therefore,

|V ′ − St|
V ′ =

|V ′ − Vt − (St − Vt)|
V ′

≤ |V ′ − Vt| + |St − Vt|
V ′

≤ 2 ∗ ε = ǫ

whereǫ = 2 ∗ ε is an arbitrary small number.
From the above, it can be demonstrated thatV ′ can be

approximated by a set of rules extracted by GSVMORC.
Lemma 4:The areaSt+1 covered byt + 1 rules is larger

than the areaSt covered byt rules (t is an integer).
Proof: [Proof] As the rule is defined to be non-

overlapping (Section 4.6), this means that there is no in-
tersection between the rules. The volume covered byt + 1
rules must then be larger than that covered byt rules.

In other words, ifSt+1 ≤ St, then there must exist at least
two rules that overlap. This contradicts the definition of non-
overlapping. Therefore, it can be concluded thatSt+1 > St.

Lemma 3 demonstrates that any part of thearea of interest
can be approximated by a set of rules. Lemma 4 shows that
the greater the number of rules extracted, the larger the non-
overlapping area covered by the rules. Therefore, when the
number of rules increases, the area covered by the rules can
finally approximatethe area of interest. Furthermore, the
difference between the area covered by the rules (denoted
by S) and the area of interest(denoted byV ) satisfies
|V −S|

V
≤ ǫ, whereǫ is an arbitrary small number.

Hence, by increasing the number of rules, the rule set
extracted by GSVMORC can approximate the behavior of
SVM networks.



V. EXPERIMENTAL RESULTS

We performed experiments in three real-world datasets,
all obtained from the UCI Machine Learning repository:
the Monk’s problem, the Iris flower dataset and the Breast
Cancer-Winsconsin dataset. All of the three Monk’s problems
have seven attributes, which include an Id feature for each
instance. The other attributes are categorical, labelled as
a1, a2, a3, a4, a5, a6. All instances in the Monk’s problems
are divided into two classes:class1 = 0 and class2 = 1.
The Iris problem correlates four attributes (sepal length (SL),
sepal width (SW), petal length (PL) and petal width (PW))
with three classes (Setosa, Versicolour and Virginica). For
the Breast Cancer dataset, there are nine attributes (Clump
Thickness (CT), Uniformity of Cell Size (UCSZ), Uniformity
of Cell Shape (UCSP), Marginal Adhesion (MA), Single Ep-
ithelial Cell Size (SECS),Bare Nuclei (BN), Bland Chromatin
(BC), Normal Nucleoli (NN) and Mitoses (MS)) and two
classes (benign and malignant). We have used 5-fold cross
validation in the experiments. For each fold:

1) We trained the SVM using different algorithms; for the
Monk-2 and Iris datasets, we used DAGs-SVM [9], and
for the Monk-1, Monk-3 and Breast Cancer dataset, we
used SMO [10].

2) We generated a number of training data and queried
the trained SVM to obtained the class label.

3) We applied the rule extraction algorithm to datasets of
varying sizes.

4) We applied the rule extraction algorithm to datasets of
varying number of clusters.

5) We measured rule accuracy with respect to the test set,
rule fidelity to the SVM, and rule comprehensibility.

Accuracy measures the ability of the rules in predicting
unseen cases according to a test set. The results show that
when the data size increases, the accuracy of the rules
increases, converging to that of the SVM as illustrated in
the following Figures. For example, for the Iris dataset (see
Figure 5(a)), whenN equals30, the accuracy is only77.33%.
However,84.67% is achieved whenN equals100. It finally
reaches89.33% at N = 300, which is a value near to the
accuracy of SVM. The same behavior is verified for the
breast cancer dataset (see Figure 6(a)). WhenN equals50,
the accuracy is only around60%. Although the rate of the
increase reduces, it still causes the accuracy result to finally
reach90.14% at N = 200. While for Monk’s problem (the
results are shown in Figure 7(a), 8(a) and 9(a) , whenN
reaches100, GSVMORC achieves100% accuracy for Monk-
1. For Monk-2, GSVMORC obtains84.8% for a 200-size
training set compared with the85.7% accuracy classified
by the SVM network. GSVMORC also achieves an average
95% correctness for a100-size training set in the case of
the Monk-3 problem, while the SVM obtains around94%
accuracy.

Figure 5(b), 6(b), 7(b), 8(b), 9(b) show that when the
number of clusters increases, the accuracy increases as well.
As an example, in the Iris dataset, GSVMORC classifies only
56% instances correctly when the cluster number is one.
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Fig. 5. Result of Iris dataset

But it predicts 84% instances correctly when the number
of clusters goes to six. It is interesting to note that the
value of 84%, closest to the SVM accuracy of89.33%, is
obtained when the training set contains300 instances and has
one cluster for each class. The same convergence movement
occurs for the Breast Cancer dataset. An accuracy of only
62.23% is obtained when each class has one cluster, but
87.55% of instances are predicted correctly when the number
of clusters goes to six. For the Monk’s problem, the accuracy
is only 97%, 62% and58% respectively for Monk-1, Monk-
2 and Monk-3, when the number of cluster is one. However,
the accuracy increases to100% for Monk-1,78% for Monk-2
and90% for Monk-3, when the number of clusters increases
to 5. This is why we have chosen to use the stopping criterion
of Section 3 to find an appropriate cluster value.
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Fig. 6. Result of Breast Cancer dataset
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Fig. 7. Result of the Monk-1 problem

Fidelity measures how close the rules are to the actual
behavior of the SVM, as opposed to its accuracy w.r.t a
test set. The fidelity rate in Monk-1, Iris and Breast Cancer
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Fig. 8. Result of the Monk-2 problem
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Fig. 9. Result of the Monk-3 problem

problems has been 100%. Monk-2 and Monk-3 obtained
99.12% and98.5% fidelity.

Comprehensibilitymeasures the number of rules and the
number of conditions per rule. The following is an example
of the extracted rules on the Iris dataset. GSVMORC obtains
on average ten rules for each class, with four conditions per
rule.
sepal length= [4.3, 6.6]

∧

sepal width= [2.0, 4.0]
∧

petal
length= [2.7, 5.0]

∧

petal width= [0.4, 1.7] → Iris
Versicolour

The rule above correctly predicts45 out of 150 instances
in the data set. Overall,93% training and test examples in
the Iris data set are predicted correctly.

The following is an example of the extracted rules on
Breast Cancer problem. GSVMORC obtained on average26
rules for class1 and81 rules for class−1, with an average
7.2 conditions per rule. The final rule set classifies90.14%
of the test cases and93% of the whole data set correctly.
a3 = [4, 9]

∧

a5 = [3, 9]
∧

a6 = [10, 10]
∧

a7 = [5, 9] → −1

For Monk-1, GSVMORC obtained four rules for all
classes. On average, each rule has 2.37 conditions. This is
from the100 synthetic training instances, which cover100%
of the test cases. For Monk-2, around38 rules were extracted,
with around4.1 conditions per rule for class1. For class 0,
24 rules with 5.8 conditions per rule were extracted. For
Monk-3, 11 rules were extracted, with around3.4 conditions
per rule for class1, while 6 rules with 2.7 conditions per
rule were extracted for class0 (for examplea1 = 1

∧

a2 = 1 → class = 1; in this case,a1 = 1 denotes that
a1 is true).

Discussion and Comparison with Related Work

We have shown how rules can be extracted from SVMs
without needing to make many assumptions about the ar-
chitecture, initial knowledge and training data set. We have
also demonstrated that GSVMORC is able to approximate
and simulate the behavior of SVM networks correctly.

The accuracy and the fidelity of our algorithm are better
than those obtained by the SVM rule extraction approach
proposed in [19], which is an important work on rule
extraction from SVMs. GSVMORC obtains100% accuracy
for Monk-1, while the SVM+prototype [8] predicts only
59.49% of instances correctly in the test set. Compared with
the 63.19% test-set performance by the rule base and the
82.2% SVM classification rate, GSVMORC achieves84.8%
accuracy on the test set while the classification of SVM
is 85.7%. GSVMORC also obtains100% fidelity, but the
SVM+prototype has just92.59% and 75.95% agreement
with SVM networks in the respective data sets. (Note that
the performance measures for the SVM+prototype and other
techniques originate from published papers and not our own
experiments [8].)

In the Iris problem, the SVM+prototype [19] reports an
accuracy rate of71% for interval rules and a fidelity rate
of 97.33% compared with the96% accuracy of RBF SVM
networks [16]. Our algorithm achieves a maximum fidelity
rate (100%) with a far higher accuracy (89.33%), while SVM
accuracy is91.33%.

In the Breast Cancer problem, theExtractRules-PCMap-
proach of [6] achieves an average accuracy of98% compared
with an SVM accuracy of95%. In contrast, our extraction
algorithm shows high agreement between the rules and the
SVM. A good fidelity indicates that the rule extraction
method mimics the behavior of SVM networks, and a better
understanding of the learning process is therefore obtainable.

In the Breast Cancer problem, the eclectic approach of [15]
achieved82% accuracy compared with an SVM accuracy of
95%. Our approach performs better than that approach. It
achieves89% accuracy which is more closer to the SVM
accuracy (94%).

In RuleExSVM [23], another vital algorithm for SVM
rule extraction, rules are extracted based on the SVM clas-
sification boundary and support vectors. RuleExSVM has
high rule accuracy and fidelity in the Iris and Breast Cancer
problems. For example, for the Iris problem, RuleExSVM
achieves98% relative to the97.5% of the SVM classification
results, and in the Breast Cancer domain,97.8% accuracy
is obtained. The fidelity levels of these two domains range
from 99.18% to 99.27%. However, RuleExSVM constructs
the rules largely depending chiefly on the training samples
and support vectors. It is difficult to apply to networks other
than SVM networks. On the other hand, GSVMORC has a
high level of generality in a wide array of networks.

Finally, on the issue of comprehensibility,NeuroRule[18],
an approach to pruning neural networks and using decompo-
sitional extraction, produces five rules with4.2 conditions
per rule in the Breast Cancer domain compared to107
rules with7.2 conditions per rule in our approach. However,



NeuroRulerelies on special training procedures that facilitate
the extraction of the rules. GSVMORC, on the other hand, is
architecture-independent and has no special training require-
ments. It offers the highest fidelity rate and an interesting
convergence property, as illustrated in the figures above.

VI. CONCLUSION AND FUTURE WORK

We have presented an effective algorithm for extracting
rules from SVMs so that results can be interpreted by humans
more easily. A key feature of the extraction algorithm is
the idea of trying to search foroptimal rules with the
use of expanding hypercubes, which characterize rules as
constraints on a given classification. The main advantages
of our approach are that we use synthetic training examples
to extract accurate rules, and treat the SVM as an oracle
so that the extraction does not depend on specific training
requirements or given training data sets. Empirical results
on real-world data sets indicate that the extraction method
is correct, as it seems to converge to the true accuracy
of the SVM as the number of training data increases and
100% fidelity rates are obtained in every experiment. In
future work, we may consider using different shapes than
hypercubes for the extraction of rules and compare results
and further improve the comprehensibility of the extracted
rules.

Support Vector Machines have been shown to provide ex-
cellent generalization results and better classification results
than parametric methods or neural networks as a learning
system in many application domains. In order to develop
further the study of the area, we need to understand why
this is so. Rule extraction offers a way of doing this by
integrating the statistical nature of learning with the logical
nature of symbolic artificial intelligence [20].
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