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Abstract28

Introduction. Brown adipose tissue (BAT) is a thermogenic organ with substantial metabolic capacity29

and has important roles in the maintenance of body weight and metabolism. Regulation of BAT is30

primarily mediated through the ß-adrenoceptor (ß-AR) pathway. The in vivo endocrine regulation of31

this pathway in humans is unkown. The objective of our study was to assess the in vivo BAT32

temperature responses to acute glucocorticoid administration.33

Methods. We studied 8 healthy male volunteers, not pre-selected for BAT presence or activity and34

without prior BAT cold-activation, on two occasions, following an infusion with hydrocortisone (0.235

mg.kg-1.min-1 for 14 hours) and saline, respectively. Infusions were given in a randomized double-blind36

order. They underwent assessment of supraclavicular BAT temperature using infrared thermography37

following a mixed meal, and during ß-AR stimulation with isoprenaline (25 ng.kg fat-free mass-1.min-138

for 60 min) in the fasting state.39

Results. During hydrocortisone infusion, BAT temperature increased both under fasting basal40

conditions and during ß-AR stimulation. We observed a BAT temperature threshold, which was not41

exceeded despite maximal ß-AR activation. We conclude that BAT thermogenesis is present in humans42

under near-normal conditions. Glucocorticoids modulate BAT function, representing important43

physiological endocrine regulation of body temperature at times of acute stress.44

45
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1. Introduction49

There is increasing evidence that brown adipose tissue (BAT) has important physiological roles beyond50

thermoregulation in newborn infants and rodents [1]. Adult humans have significant amounts of BAT51

[2] and, as a highly metabolic tissue with the capacity to oxidize both glucose and lipid, attention has52

turned to its involvement in the pathogenesis of obesity and the metabolic syndrome [3]. BAT is53

characterized by the presence of uncoupling protein (UCP) 1 which uncouples adenosine triphosphate54

(ATP) production by the mitochrondrial respiratory chain, allowing the dissipation of excess chemical55

energy as heat [4]. The principal factors regulating BAT function in healthy adults have yet to be fully56

established due, in part, to the technical limitations of assessing BAT function in vivo. The majority of57

studies in humans have used 18F-fluorodeoxyglucose-positron emission tomography/computed58

tomography (18FDG-PET/CT) as the gold standard to assess BAT activity, but this is constrained by59

exposure to ionising radiation, the scanning protocols involved [5] and its unsuitability for live tracking60

of BAT activation especially after feeding. Systemic β-adrenoceptor (β-AR) activation promotes BAT 61

activity in humans [6], but the role of other endocrine factors remains largerly unknown. The pre-partum62

elevation of cortisol is pivotal in the initiation of nonshivering BAT thermogenesis at birth [7], and63

glucocorticoids have recently been proposed as regulators of BAT activity in healthy adult females [8]64

and in individuals pre-selected for the presence of active BAT [9]. BAT has also been considered to65

contribute to dietary-induced thermogenesis [10, 11], although this concept remains controversial [12].66

We, therefore, studied whether BAT is activated by feeding, or by an acute increase in cortisol under67

basal and β-AR stimulated conditions.  68

2. Materials and Methods69

70

2.1 Subjects71

Eight healthy male volunteers participated in this randomized, double-blind, placebo controlled study,72

conducted between January and March 2015. Individuals were recruited using print and electronic73

advertising and none was selected or screened on the basis of presence of any active BAT. All subjects74

underwent a medical evaluation during a screening visit to ensure they were healthy. No subject had75

any significant past medical history, smoked tobacco or took any regular medications that could affect76

the study’s outcome measures.77

2.2 Study approval78

The study was approved by the Edgbaston NRES Committee, UK (REC reference 14/WM/1085). All79

participants provided written informed consent.80

2.3 Study design81
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2.3.1. Clinical Research Facility82

All parts of this study were conducted in a temperature controlled room at the National Institute for83

Health Research (NIHR)/Wellcome Trust Clinical Research Facility (CRF) of the University of84

Birmingham at the Queen Elizabeth Hospital Birmingham, UK. Room temperature was held constant85

at 23-26°C and was monitored using an ambient temperature probe.86

2.3.2 Anthropometric measurements87

Measurements were taken during the screening visit. Waist circumference was measured midway88

between the lower margin of the last palpable rib and the top of the iliac crest, and hip circumference89

at the level of the greater trochanters. Total and regional fat masses were measured by dual-energy x-90

ray absorptiometry (DXA). Visceral fat mass was estimated by DXA using a proprietary algorithm91

provided by the manufacturer [13]. Core temperature was measured with a tympanic thermometer.92

2.3.3. Study visits93

Study visits were identical, except for the nature of overnight infusion, and were at least 2 weeks apart94

(Fig. 1A). Subjects were admitted to the CRF in the afternoon, and a cannula for infusion purposes was95

inserted into a right antecubital fossa vein. At 1800 hours, they were served a standardized calorie-96

controlled meal (vegetable lasagne; total energy 2634 kJ; typical nutritional values per 100g of product:97

1.9g fat, 12.2g carbohydrates, 3.3g protein, 1.5g fibre), and then fasted until study completion the next98

day. BAT thermogenesis assessment was performed immediately before and after the meal, which was99

ingested within 20 min and was acompanied by tap water at room temperature. At 1900 hours, a constant100

infusion of either hydrocortisone (HC, 0.2 mg.kg-1.h-1) or normal saline (control study visit) was started101

and given until study completion the following day. Infusions were administered in a double-blind,102

randomized fashion. At 2200 hours, lights were switched off for night rest. In the morning, cannulations103

for blood sampling purposes were performed and, at 0900 hours, the isoprenaline infusion protocol104

commenced. After baseline measurements for 45 min, a one-step infusion of isoprenaline (ISO, 25105

ng.kg fat-free mass-1.min-1) was given for 60 minutes. BAT thermogenic activity was measured at106

baseline and throughout the infusion.107

2.4. BAT thermogenesis assessment108

An infrared thermography (IT) camera (FLIR E60 2.3 Megapixel Infrared Camera; FLIR Systems AB,109

Danderyd, Sweden) was used to acquire images of the anterior neck and upper chest region, which were110

sequentially analyzed and processed by an automated analysis program, as described previously [14].111

Areas of interest for temperature analysis were the supraclavicular region (TSCR) representing BAT, and112

a non-adipose tissue reference point (TREF) on the chest, close to the xiphoid. In addition, during the113

periods of IT, two skin contact temperature sensors (iButton DS1922L, Maxim Integrated, Winnersh,114

UK) recording skin temperature every minute were taped within the supraclavicular fossa (main BAT115
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site) and lateral to the umbilicus (white adipose tissue). For skin contact temperature measurements,116

data were collected every minute, and analysis was performed using 5-minute averages. For meal117

meaurements, the mean of both study days was calculated. Fasting and pre-ISO baseline were defined118

as the average of time points -15 to 0 min. Postprandial and peak post-ISO infusion periods were defined119

as time points 0 to 15 min and 40 to 50 min, respectively. For the duration of the study, participants120

were wearing a hospital gown, with their torso exposed for the duration of all measurements.121

2.5. Analytical methods122

Blood samples were drawn into heparinized syringes, and plasma was prepared rapidly at 4°C and123

immediately frozen at -80°C before analysis. Plasma glucose and NEFA concentrations were measured124

enzymatically using commercially available kits on an ILAB600 or ILAB650 clinical analyser125

(Instrumentation Laboratory UK, Warrington, UK). Insulin and C-peptide were measured by ELISA126

(Invitron, Monmouth, UK) at a reference laboratory (Diabetes Research Unit Cymru, Swansea127

University, UK). Cortisol was measured by a colorimetric assay (R&D Systems, Abingdon, UK).128

2.6 Calculations and statistics129

Indexes of β-cell function and insulin resistance were calculated according to the homeostatic model 130

assessment (HOMA) method, whereby the mean of three consecutive plasma glucose and insulin131

postabsorptive measurements were used. Energy expenditure was calculated based on heart rate, age132

and weight as previously described [15]. Area under the curve (AUC) was calculated using the trapezoid133

rule and is presented as a time-averaged value (tAUC; AUC divided by the relevant time period).134

Comparisons between groups were analyzed using t test or non-parametric tests for data that were not135

normally distributed. A p<0.05 was considered statistically significant. Based on previous studies using136

a similar integrative physiology design [16], the sample size was designed to have 85% power to detect137

a difference of 0.75 standard deviations at the 5% significance level for metabolic parameters. Data138

were analysed using IBM Statistics for Windows v21 and GraphPad Prism for Windows v6.05. All data139

are presented as mean ± SEM, unless otherwise stated.140

3. Results141

3.1 Meal ingestion leads to increased BAT thermogenic activity142

Baseline anthropometric and metabolic characteristics of participants are shown in Table 1 and143

environmetnal temperature data for each individual study day are shown in Supplemental Table 1.144

There was no difference in outside or room temperature between study days. Following the mixed meal,145

postprandial TSCR increased, whereas TREF remained stable (Fig. 1B). All participants responded with146

an increase in BAT thermogenic activity (Fig. 1C), while core temperature did not change (Fig. 1D).147

Skin contact measurements showed a similar postprandial temperature increase of 0.39±0.10°C over148
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supraclavicular BAT (p<0.05 compared to fasting), whereas skin temperature over white adipose tissue149

remained the same.150

3.2 Acute hypercortisolemia induces peripheral insulin resistance and increases basal BAT151

thermogenic activity152

Overnight HC infusion resulted in significantly increased plasma cortisol concentrations (Fig. 2A).153

From a metabolic perspective, basal plasma non-esterified fatty acids (NEFA) were high due to fasting154

(Fig. 2B). HC increased basal NEFA and glucose (Fig. 2C), as well as insulin (basal insulin 30.4±6.0155

pmol/L vs. 55.2±7.4 pmol/L, p=0.025 control compared to hypercortisolemia) and C-peptide156

concentrations (basal C-peptide 0.25±0.03 pmol/mL vs. 0.38±0.04 pmol/mL, p=0.001 control compared157

to hypercortisolemia). In line with this, HOMA indices of peripheral insulin resistance increased158

(HOMA IR index control 0.62±0.11 vs. hypercortisolemia 1.11±0.16, p=0.016) (Table 2).159

Acute hypercortisolemia increased TSCR in the basal state (Fig. 2D). This was accompanied by an160

increase in basal core temperature (Fig. 2E), but we did not observe any effect on blood pressure or161

heart rate (Fig. 2F).162

3.3 Acute β-AR stimulation increases BAT thermogenic activity during control and 163

hypercortisolemia conditions164

From a metabolic perspective, ISO infusion significantly increased systemic NEFA concentrations,165

both under control and hypercortisolemia conditions (Fig. 2B). Despite the augmentation of basal166

systemic lipolysis by HC, the β-AR dependent rise in plasma NEFA was of similar magnitude compared 167

to control conditions (Δ AUC 953±155 vs 979±175 µmol/L; p=0.926 compared to control). Following168

the initial peak, there was a sharp decline in NEFA concentrations despite continuing ISO infusion.169

Control plasma glucose concentrations were unaffected by ISO, while the observed increase in170

concentrations during HC infusion is due to glucocorticoid-induced peripheral tissue insulin resistance171

(Fig. 2C). This is supported by the concomitant changes in insulin, C-peptide and HOMA indexes172

showing a decrease in glucose sensitivity despite a significant increase in insulin and C-peptide173

concentrations during ISO infusion (Table 1). Expectedly, non-selective β-AR stimulation with ISO 174

increased heart rate and systolic blood pressure, responses not significantly affected by HC (Fig. 2F175

and Supplemental Fig. 1). Basal and ISO-induced BAT thermogenic activity measures did not show176

any significant correlation with BMI or measures of adipose tissue distribution (data not shown).177

Adrenergic stimulation resulted in a highly localized increase in temperature within the supraclavicular178

region, representative of BAT thermogenic activity, both under control and hypercortisolemic179

conditions (Fig. 3). All study participants responded to ISO with an increase in BAT temperature180

(Supplemental Fig. 2). Under control conditions, ISO increased TSCR by 0.7°C, plateaued and then181

returned to baseline after the infusion, implying cessation of β-adrenergic-mediated BAT thermogenesis 182
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(Fig. 3A). These responses to ISO were similar during hypercortisolemia (Fig. 3B), whereby peak TSCR183

was slightly higher (Fig. 3C). The ISO-induced TSCR increase was greater than the physiological184

stimulus of diet-induced thermogenesis (Fig. 3D). Skin temperature showed similar results185

(Supplemental Fig. 3). Energy expenditure increased significantly during ISO (Supplemental Fig. 4).186

During hypercortisolemia, ISO-induced energy expenditure was closely correlated with basal TSCR187

during control conditions (Pearson r=0.742, p=0.035) and peak TSCR during HC (r=0.870, p=0.005). In188

response to ISO, peak core temperature was similar between control and hypercortisolemia conditions189

(Supplemental Fig. 5).190

4. Discussion191

Human supraclavicular BAT is characterised by the presence of thermogenically functional UCP1, with192

a respiratory capacity that substantially exceeds that of white fat [17]. Understanding the endocrine193

factors regulating BAT function is an important prerequisite before being able to utilise the metabolic194

capabilities of this tissue. In this study we sought to study BAT in vivo following exposure to a195

combination of physiological stimuli in order to determine the relative importance of diet and edocrine196

mediated effects.197

BAT glucose uptake has been reported to be increased following a single carbohydrate-rich meal [18],198

although overfeeding for 24h did not have any effect [19]. This has led to some controversy regarding199

the contribution of BAT to dietary-induced thermogenesis in humans. We sought to investigate this200

using a single standardized mixed meal, serving as a physiological stimulus. While we did not measure201

whole body energy expenditure, we observed selective temperature changes over the supraclavidular202

region only, immediately after the meal, suggesting direct BAT activation and not a thermic effect of203

food. Interestingly, from a mechanistic perspective, postprandial BAT activation would be204

characterized by both systemic cortisol secretion [20] and sympathetic β-AR stimulation [21], 205

suggesting an acute maximal response following feeding.206

Cortisol promotes important physiological maturation effects around the time of birth, including raised207

UCP1 abundance in adipose tissue [7, 22]. However, in adult rodents, glucocorticoids inhibit BAT [23]208

by interfering with adrenergic signalling [24, 25]. Human data are scarce with one study reporting209

dexamethasone-induced inhibition of UCP1 expression and metabolic rate in human brown adipocytes210

in vitro [26], and another reporting BAT activation following administration of the synthetic211

glucocorticoid prednisolone in vivo [9]. In our study, we chose hydrocortisone to model a physiological212

acute surge of cortisol, as seen during the perinatal period and at times of acute stress. We observed an213

increase of basal TSCR during hypercortisolemia, supporting a physiological role for cortisol in BAT214

activation, as we did not observe any additive effects on blood pressure or heart rate. The duration of215

the infusion was chosen to allow for glucocorticoid-mediated genomic effects to take place [27]. While216
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the achieved plasma cortisol concentrations were in excess of those typical for acute stress [28], it is217

important to note that tissue-responsiveness can be determined by tissue-specific glucocorticoid218

metabolism rather than absolute plasma concentrations [29]. Taken together our data indicate the219

positive relationship between cortisol and BAT temperature as previously indicated from a small study220

on healthy adult females [8].221

ß-AR stimulation induces BAT thermogenesis in humans [6, 30], although findings are inconsistent222

depending on the ß-AR employed [31, 32]. We found a localised increase in supraclavicular temperature223

during ISO infusion both under control and hypercortisolemia conditions. This temperature change was224

temporally limited for the duration of the infusion, suggesting underlying BAT activation. TSCR225

responses for all subjects increased within the first 5 minutes which is in accordance with acute cold226

exposure on BAT [14]. The observed TSCR plateau is suggestive of a limit to BAT thermogenesis in227

vivo. The concomitant sharp decline in NEFA concentrations during the later stages of the infusion is228

consistent with β-AR desensitization due to maximal receptor stimulation [16]. The finding of a slightly 229

higher peak TSCR during hypercortisolemia suggests a minor synergistic effect between cortisol and ß-230

AR stimulation. Interestingly, the two pathways are intrinsically connected as catecholamine synthesis231

is under glucocorticoid control [33].232

Previous studies have shown that active BAT decreases with age and obesity, and its activation varies233

between sexes [14, 34]. We studied BAT activity in healthy males using IT to assess temperature234

changes in the supraclavicular region and a non-adipose tissue reference point. Supraclavicular skin235

temperature increases upon BAT activation [35, 36] and IT has been shown to measure changes in skin236

temperature overlying the main BAT depot in humans [14]. It has been confirmed as a reliable237

alternative for in vivo BAT activity assessment, correlating with 18FDG-PET/CT [9, 37], with the238

additional benefit of enabling real-time tracking of temperature changes. IT-derived BAT temperature239

measurements might be influenced by subcutaneous adipose tissue thickness [38], however, in our study240

participants were lean and we monitored dynamic temperature changes over time, as opposed to a241

single, static measurement. Adrenoceptor-induced vasodilation, both as a result of HC and ISO242

infusions, could increase skin blood flow and interfere with IT measurements. However, compared to243

TSCR, there were clear temporal differences in the change in TREF which showed a later initial increase244

and a sustained increase post-infusion. Overall, we demonstrate a BAT-specific thermogenic and245

vasodilation response to both HC and ISO, clearly differentiated from non-BAT reference areas,246

confirming that the temperature responses we measured are confined to BAT.247

Our findings support previous studies showing β-AR stimulation as a means of activating BAT in 248

humans [6, 30], confirming IT as a sensitive, non-invasive method for the in vivo assessment of BAT249

function in humans under near-normal conditions [9, 14, 37]. This is particularly important when250
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comparing our results with those studies using glucose tracer uptake as an index of BAT activity.251

Similar ISO doses did not show any significant BAT glucose tracer uptake, likely due to competition252

between the tracer and fatty acids from ISO-induced lipolysis combined with increased insulin253

resistance [32]. Given that BAT primarily utilizes fatty acids for heat generation [1], it is possible that254

18FDG-PET/CT underestimates the amount of active BAT in humans. This limitation has led to the255

development of alternative BAT assessment methods, in addition to IT, either using different PET/CT256

tracers [39], or based on magnetic resonance imaging techniques [40]. We demonstrate that temperature257

changes in the supraclavicular area upon β-AR stimulation are indicative of localised BAT activity in a 258

cohort of unselected young individuals, maintained at room temperature. This supports the prospect of259

harnessing BAT activity and the associated increase in energy expenditure as a potential treatment for260

metabolic diseases. We provide further evidence that in humans, in contrast to rodents, acute261

hypercortisolemia does not inhibit BAT function, but results in BAT activation [9]. Despite this, there262

is a threshold of activity that cannot be overcome even during maximal short-term β-AR stimulation. 263

Our study has some limitations by design, including the small size of our sample, although it is standard264

for a healthy volunteer study of this type. The acute infusion of hydrocortisone limits the conclusions265

we can draw in relation to states of chronic glucocorticoid excess that are associated with profound266

metabolic changes, i.e. Cushing’s Syndrome. In addition, the concomitant induction of relative insulin267

resistance during hydrocortisone infusion might have obscured glucocorticoid-specific effects on BAT268

function, especially since there is a complex relationship between insulin-mediated glucose uptake and269

BAT perfusion and activity in vivo [41]. The strenghts of our study are the randomized double-blind270

design of the infusion protocol and that all measurements were carried out within a short period of time,271

reducing the confounding effect of variations seasonal temperature, and thus endogenous BAT activity.272

In addition, by using IT for the assessment of BAT thermogenic activity, we were able to perform live273

tracking of BAT function in response to experimental stimuli.274

In conclusion, glucocorticoids modulate BAT thermogenesis and may represent an important275

physiological mechanism for maintaining human body temperature at times of acute stress. Our study276

suggests that transient stress could act to promote BAT function. This suggests that depending on the277

type and magnitude of stress BAT could be utilised to improve body weight regulation and metabolic278

homeostasis.279

280
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400

Figure captions401

Figure 1402

Study design and temperature responses to a meal. Each participant underwent the study twice, whereby403
BAT thermogenic activity was studied with infrared thermography before and after a standardized meal,404
followed by either a 14 h overnight constant hydrocortisone or normal saline (control) infusion.405
Infusions were given in a randomized, double-blind order and continued during and after β-406
adrenoceptor stimulation with isoprenaline (A). Mean changes in supraclavicular region (TSCR, grey407
circles) and non-adipose tissue reference (TREF, open squares) temperatures (dotted line indicates time408
of meal) (B), individual responses (fasting, open squares; postprandial, black squares) (C), and changes409
in core temperature (fasting, open circles; postprandial, black squares) (D) following the meal. *p<0.05410
compared to fasting baseline, n=8411

412

Figure 2413

Metabolic and cardiovascular responses following saline infusion (S) or hydrocortisone infusion (HC)414
at baseline and during an isoprenaline infusion (ISO, dotted lines indicate infusion period). Plasma415
cortisol concentrations (saline, open circles; hydrocortisone, black squares) (A), non-esterified fatty416
acids (NEFA) (saline, open circles; hydrocortisone, black squares) (B), glucose (saline, open circles;417
hydrocortisone, black squares) (C), supraclavicular temperature (TSCR) (saline, open circles;418
hydrocortisone, black circles) (D) and core temperature at baseline (saline, open squares;419
hydrocortisone, black squares) (E). Systolic (sys) and diastolic (dia) blood pressure (BP) and heart rate420
(HR) at baseline (saline, open bars; hydrocortisone, black bars) (F). *p<0.05 vs. control, n=8421

422

Figure 3423

BAT thermogenic responses. Supraclavicular temperature (TSCR) and non-adipose tissue reference point424
(TREF) following saline (S) infusion (TSCR, grey circles; TREF open squares) (A) or hydrocortisone (HC)425
infusion (TSCR, grey circles; TREF open squares) (B) during and after isoprenaline stimulation (ISO,426
dotted lines indicate infusion period). Individual peak BAT temperatures during ISO (S, open circles;427
HC, black circles) (C). Change in temperature during ISO or following a standardized meal (TSCR, grey428
bars; TREF open bars) (D). *p<0.001 vs. basal, †p<0.05 vs. saline, #p<0.001 vs. saline, ##p<0.001 vs.429
TREF, n=8430

431

432
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Table 1: Baseline anthropometric and metabolic characteristics of participants, n=8440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

Median and range shown. BMI, body mass index; WHR, waist-to-hip ratio; BP, blood pressure; TSH,460
thyroid stimulating hormone; FT4, free thyroxine461

462

463

464

Characteristic

Age (years) 20 (18-34)

Weight (kg) 75.0 (61.5-81.7)

BMI (kg/m2) 23.0 (20.6-24.2)

WHR 0.84 (0.78-0.9)

Trunk fat (kg) 7.7 (5.1-9.2)

Leg fat (kg) 5.5 (4.3-7.5)

Visceral fat (kg) 0.2 (0.1-0.4)

Systolic BP (mmHg) 124 (105-145)

Diastolic BP (mmHg) 72 (59-79)

Heart rate (bpm) 58 (53-62)

Fasting glucose (mg/dL) 113 (89-122)

Fasting insulin (pmol/L) 30.6 (14.4-68.5)

Fasting NEFA (µmol/L) 707 (450-873)

TSH (mIU/L) 1.30 (0.93-4.83)

FT4 (pmol/L) 17.7 (15.0-18.8)
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Table 2: Comparison of insulin and C-peptide AUC, and homeostatic model assessment (HOMA)465
indexes during basal and isoprenaline-stimulated conditions, n=8466

Control Cortisol
P value

control vs
cortisol

P value
basal vs

isoprenaline
Basal ISO Basal ISO Basal ISO Control Cortisol

Insulin
(pmol/L)

30.4±6.0 100.4±15.7 55.2±7.4 206.7±30.5 0.025 0.012 0.012 0.012

C-peptide
(pmol/mL)

0.25±0.03 0.47±0.05 0.38±0.04 0.90±0.09 0.001 0.001 <0.0001 <0.0001

Control Cortisol P value
Δ insulin basal to ISO (pmol/L) 70.0±10.1 151.5±28.9 0.012 

Δ C-peptide basal to ISO (pmol/mL) 0.22±0.03 0.52±0.07 0.012 

HOMA %B 42.2±5.9 40.5±4.5 0.731

HOMA %S 192.2±29.5 105.9±19.2 0.004

HOMA IR 0.62±0.11 1.11±0.16 0.016

Mean and SEM shown467

468
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Supplemental data469

Supplemental Table 1: Environmental temperatures in relation to the time of year throughout which470
each study was conducted. Environmental outside temperature data obtained from the Meteorological471
office. Note overnight duration of infusion as outlined in main text.472

473

Saline infusion

Participant Date of study
Environmental room

temperature (°C)
Environmental outside

temperature (°C)

Infusion
start

Infusion
end

Infusion
start

Infusion
end

1 13/01/2015 23.7 25.2 6 4
2 24/02/2015 22.8 25.8 6 5
3 11/02/2015 24.4 24.0 5 5
4 21/01/2015 24.2 24.6 4 4
5 22/01/2015 24.1 23.9 4 4
6 26/02/2015 24.2 23.2 5 5
7 26/03/2015 25.2 25.2 7 7
8 24/03/2015 24.1 24.6 7 7

Mean ±
SEM

24.1 ± 0.2 24.6 ± 0.3 5.5 ± 0.4 5.1 ± 0.4

474

Hydrocortisone infusion

Participant Date of study
Environmental room

temperature (°C)
Environmental outside

temperature (°C)

Infusion
start

Infusion
end

Infusion
start

Infusion
end

1 10/02/2015 23.7 23.9 4 5
2 14/01/2015 24.0 25.3 4 5
3 15/01/2015 22.2 23.5 5 4
4 25/02/2015 25.5 26.2 5 5
5 12/02/2015 24.0 24.8 5 4
6 25/03/2015 25.2 23.6 7 7
7 11/03/2015 25.1 25.2 6 6
8 12/03/2015 25.3 23.6 6 5

Mean ±
SEM

24.4 ± 0.4 24.5 ± 0.4 5.3 ± 0.4 5.1 ± 1.0

475
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476

Supplemental Figure 1477

Systolic (sys) and diastolic (dia) blood pressure before (basal) and after 50 min of isoprenaline478
infusion (ISO), under control conditions (open bars) and following an overnight hydrocortisone479
infusion (black bars). * p<0.05 compared to basal control, # p=<0.05 compared to basal480
hydrocortisone, n=8481
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482

Supplemental Figure 2483

Individual BAT temperature responses from baseline (open circles) to peak (black circles) following484
saline infusion (A) or hydrocortisone infusion (B), n=8485

486
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487

Supplemental Figure 3488

Brown (BAT) and white adipose tissue (WAT) thermogenic responses to isoprenaline (ISO) using skin489
contact temperature sensors placed over the supraclavicular BAT region (grey circles and bars) or over490
an area of abdominal WAT (open squares and bars) under control conditions (A) and following an491
overnight hydrocortisone infusion (B). Dotted line indicates start of ISO infusion. Mean temperatures492
at baseline and at peak during ISO (C, control and D, hydrocortisone). * p<0.05 peak/post-ISO BAT493
temperaure compared to basal BAT, # p<0.05 peak/post-ISO WAT temperature compared to basal494
WAT, ## p<0.05 compared to basal BAT, n=8495

496

497
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498

Supplemental Figure 4499

Whole body energy expenditure under control conditions (open bars) and following an overnight500
hydrocortisone infusion (black bars) during basal conditions and after 50 min of isoprenaline infusion501
(peak). * p<0.05 compared to basal control, # p=<0.05 compared to basal hydrocortisone, n=8502

503
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504

505

506

507

508

509

510

511

512

Supplemental Figure 5513

Individual peak core temperature responses to isoprenaline infusion following saline infusion (S, open514
circles) or hydrocortisone infusion (HC, black squares), n=8515

516


